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Multi-objective Evolutionary Optimization of Neural Networks for

Virtual Reality Visual Data Mining: Application to Hydrochemistry

Julio J. Valdés and Alan J. Barton

Abstract— A method for the construction of Virtual Reality
spaces for visual data mining using multi-objective optimization
with genetic algorithms on neural networks is presented. Two
neural network layers (output and last hidden) are used for
the construction of simultaneous solutions for: a supervised
classification of data patterns and the computation of two
unsupervised similarity structure preservation measures be-
tween the original data matrix and its image in the new
space. A set of spaces is constructed from selected solutions
along the Pareto front which enables the understanding of the
internal properties of the data based on visual inspection of
non-dominating spaces with different properties. This strategy
represents a conceptual improvement over spaces computed
by single-objective optimization. The presented approach is
domain independent and is illustrated with an application to
the study of hydrochemical properties of ice and water samples
from the Arctic.

I. INTRODUCTION

The purpose of this paper is to explore the construction

of high quality VR spaces for visual data mining through

the use of multi-objective optimization based on genetic

algorithms (MOGA) operating on neural networks. Both the

network output and the output of the last hidden layer are

used for constructing solutions that simultaneously satisfy

class separability and similarity structure preservation. Thus,

a set of spaces can be obtained in which the different

objectives are expressed to different degrees; with the proviso

that no other spaces could improve any of the considered

criteria individually (if spaces are selected from the Pareto

front). This strategy represents a conceptual improvement

over spaces that have been computed from the solutions ob-

tained by single-objective optimization algorithms in which

the objective function is a weighted composition involving

different criteria. This approach is applied to a hydrochemical

investigation in the Arctic.

II. HYDROCHEMICAL RESEARCH IN THE ARCTIC

During the scientific expedition Spitzbergen’85, organized

by the University of Silesia Poland in 1985, a scientific team

composed by specialists from this university, the National

Center for Scientific Research Cuba, and the Academy of
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Sciences of Cuba, performed glaciological and hydrogeolog-

ical investigations in several regions of the Spizbergen island

in the Svalbard archipielago (Fig.1).

Fig. 1. The Svalbard archipielago (Spitzbergen is the main island). The
area where the samples were taken is the neighborhood of the Werenskiold
Glacier, to the north-west of the Hornsund Fiord (highlighted with a circle).

The purpose of the research was to determine the mass and

energy balance within experimental hydrogeological basins,

to study the interaction between natural waters and rock

forming minerals under the severe conditions of polar climate

and the comparison with similar processes developed in trop-

ical conditions. This has been a long term research of several

polish universities (Silesia, Warsaw and Wroclaw) and the

Polish Academy of Sciences since the First Geophysical Year

in 1957. This research has made an important contribution

to the evaluation of the impact of global climatic changes.

In this region there are complex processes taking place

under peculiar geological, geomorphological and hydrogeo-

logical conditions which are reflected in water geochemistry.

During that expedition, a collection of ice and water samples

were taken from different hydrogeological zones in the

region of the Hornsund fjords in Spitzbergen, specifically in

the basin of the Werenskiold Glacier (Fig.1). These samples

are representative of different zones from a hydrogeological

point of view: subglacier, supraglacier, springs, lakes, snow,

ice, and the tundra. Geochemical and hydrogeological studies

of these data [8], [9] have shown the relation between the

different hydrogeological conditions present in Spitzbergen

and the chemical composition of the waters and ice. This

is reflected by the existence of several families of waters,



thus enabling an indirect assessment of their hydrogeological

origin from the information given by their geochemical

parameters. A set of 51 water samples from Spitzbergen

corresponding to 5 hydrogeological families of waters were

characterized by a collection of physical and chemical pa-

rameters which were determined in situ: temperature, pH,

electrical conductivity, hydrocarbonate, chloride, sulphate,

calcium, magnesium and sodium-potasium.

Fig. 2. Schematic longitudinal section of the Werenskiold Glacier. The
different types of waters analyzed are: A) precipitation (snow, ice), B)
supraglacier, C) subglacier, D) tundra, E) moraine lakes.

III. VIRTUAL REALITY REPRESENTATION OF

RELATIONAL STRUCTURES AND VISUAL DATA MINING

A visual virtual reality based data mining technique ex-

tending the concept of 3D modeling to relational struc-

tures was presented in [22], [24], (see also http://www.

hybridstrategies.com). With this approach, large

highly dimensional, heterogeneous, incomplete and impre-

cise data, as well as other forms of structured and un-

structured knowledge can be visually explored. The data

objects are considered as tuples from a heterogeneous space

[23] which is a Cartesian product of a collection of source

sets: Ĥ n = Ψ1 × ·· · ×Ψn , where n > 0 is the number of

information sources to consider.

The notion of a virtual reality space is given by the tuple

ϒ =< O,G,B,ℜm,go, l,gr,b,r >, where O is a relational

structure (O =< O,Γv >, O is a finite set of objects, and Γv

is a set of relations. For example, v different classifications

defined on the same set of objects); G is a non-empty set of

geometries representing the different objects and relations; B

is a non-empty set of behaviors of the objects in the virtual

world; ℜm ⊂ Rm is a metric space of dimension m which

will be the actual virtual reality geometric space. The other

elements are mappings: go : O → G, l : O → ℜm, gr : Γv → G,

b : O → B which have to be defined for the particular kind

of representation desired.

Of particular importance is the mapping l, where several

desiderata can be considered for building a VR-space. From

a supervised learning point of view, l could be chosen as

to emphasize some measure of class separability over the

objects in O [14], [24]. From an unsupervised perspective,

the role of l could be to maximize some metric/non-metric

structure preservation criteria [3], [1], or minimize measures

of information loss [15], [21], defined to be:
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where δi j is a dissimilarity measure in the original space

between any objects i, j and ζi j a dissimilarity measure

in the new space (the virtual reality space) between the

images of objects i, j. Typically, classical algorithms have

been used for directly optimizing such measures, like Steep-

est descent, Conjugate gradient, Fletcher-Reeves, Powell,

Levenberg-Marquardt, and others. However, they suffer from

local extrema entrapment. Hybrid approaches have been con-

sidered, like combining Particle Swarm Optimization with

classical optimization [25]. The l mappings obtained using

approaches of this kind are only implicit, as no functional

representations are found. However, explicit mappings can

be obtained from these solutions using neural network or

genetic programming techniques. An explicit l in the form

of a general function approximator is useful for both practical

and theoretical reasons because the properties of the mapping

can be learned from a sample. If the learning process is

successful and a reasonable degree of generalization has been

achieved, the learnt function can be applied to new incoming

patterns (as long as they can be considered as samples from

the statistical populations represented in the training set).

IV. MULTI-OBJECTIVE OPTIMIZATION

USING GENETIC ALGORITHMS

A genetic algorithm permits particular sequences of opera-

tions on individuals of the current population in order to con-

struct the next population in a series of evolving populations.

The classical algorithm requires each individual to have one

measure of its fitness, which enables the algorithm to select

the fittest individuals for inclusion in the next population.

An enhancement is to allow an individual to have more

than one measure of fitness. The problem then arises for

determining which individuals should be included within the

next population, because a set of individuals contained in

one population exhibits a Pareto Front[19] of best current

individuals, rather than a single best individual. Most [2]

multi-objective algorithms use the concept of dominance

when addressing this problem.

A solution
↼
x(1) is said to dominate [2]

↼
x(2) for a set of m

objective functions < f1(
↼
x), f2(

↼
x), ..., fm(

↼
x) > if

1)
↼
x(1) is not worse than

↼
x(2) over all objectives.

For example, f3(
↼
x(1)) ≤ f3(

↼
x(2)) if f3(

↼
x) is a mini-

mization objective.

2)
↼
x(1) is strictly better than

↼
x(2) in at least one objective.

For example, f6(
↼
x(1)) > f6(

↼
x(2)) if f6(

↼
x) is a maxi-

mization objective.

One particular algorithm for multi-objective optimiza-

tion is the elitist non-dominated sorting genetic algorithm



(NSGA-II) [4], [5], [6], [2]. It has the features that it i) uses

elitism, ii) uses an explicit diversity preserving mechanism,

and iii) emphasizes the non-dominated solutions.

A. Multi-objective Optimization of Neural Networks for

Space Transformation

In the supervised case, a natural choice for representing

the l mapping is a nonlinear discriminant neural network

(NDA) [27], [16], [17], [13]. The classical backpropagation

approach to building NDA networks suffers from the well

known problem of local extrema entrapment. This problem

was approached in [26] with hybrid stochastic-deterministic

feed forward networks where training is based on a combi-

nation of simulated annealing with conjugate gradient, which

improves the likelihood of finding good extrema while con-

taining enough determinism. The problem can be approached

from an evolutionary computation (EC) perspective with

networks trained with evolution strategies, particle swarm

optimization, or other EC algorithms. In particular genetic

algorithms may be used in the following way: The network

weights of the different layers is coded into a real-valued

chromosome. Then, the output of both the output layer and

the last hidden layer are exported (Fig. 3) and are used

for computing three different error measures: one related

to supervised learning and the other two - to unsupervised

learning.

Fig. 3. Feed forward neural network for 3-objective optimization. ~xi is an
input pattern to the network, ci is the network-predicted class membership
of the input vector as coded by the output network layer and ~xt

i is the output
of the last hidden layer, representing a transformation of the input vector
into another space. Objective 1 (supervised): classification error based on
ci, Objectives 2-3 (unsupervised): Sammon error and Kruskal stress based
on ~xt

i .

The collection of last hidden layer outputs is the image

of the data matrix in the original n-dimensional space, to

the usually lower m-dimensional Euclidean subspace defined

by the hypercube with sides conditioned by the range of

the activation function operating in the last hidden layer.

A similarity (dissimilarity) measure can be defined for the

patterns in the transformed space and an error measure w.r.t

another measure in the original space can be computed for

evaluating the structure preservation (loss) associated with

the transformation performed by the collection of hidden lay-

ers of the network. In a multi-objective setting, both Sammon

Error and Kruskal stress (Eq.2) were simultaneously used as

measures for characterizing dissimilarity loss.

V. EXPERIMENTAL SETTINGS AND MAIN RESULTS

A multi-objective experiment was performed in order

to study some of the properties of the data used within

this study. The experimental settings for the multi-objective

experiment is shown in Table-I.

TABLE I

EXPERIMENTAL SETTINGS FOR i) THE INPUT DATA ii) THE LEADER

ALGORITHM, iii) THE EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION

ALGORITHM (NSGA-II), AND iv) THE OBJECTIVE FUNCTIONS (E.G. THE

NON-LINEAR DISCRIMINANT ANALYSIS).

Number of attributes 9
Number of objects 51
Number of classes 5

Population Size 100
Max. No. Iterations 2000
Chromosome Length Determined by NN layout

(9 ·3+3)+(3 ·5+5) = 50
Seed 101
Number of New Individuals 20
Probability of Crossover 0.8
Probability of Mutation 0.4
Optimization Direction Minimize (for all three objectives)
Crossover Type Uniform, prob.= 0.6
Mutation Type Gaussian
Selection Tournament, prob.= 0.6
Mutation and crossover yes
Initialization bounds [−1,1] per allele
Mutation Bounded NO
Fitness Type Raw
Stopping Rule After max. No. iterations
Restart GA No
3 Objectives Classification Error and

Sammon Error and
Kruskal stress

Constraints NO

Network Layout 1 hidden layer (3 neurons)
output layer (5 neurons)

Activation Functions tanh for both layers
NN Output Threshold 0

A multi-objective algorithm (NSGA-II) was used to gen-

erate and search for solutions minimizing three objectives;

namely, two unsupervised measures (Sammon Error and

Kruskal Stress) and one supervised measure. The goal was

to find a set of solutions (lying in 3-objective space) that

would have the best features of all of the objectives. This

set of solutions (if global convergence of the optimization

procedure has occurred) belong to a surface that is known

as the Pareto Front. Fig.4 shows an approximation to the

Pareto Front that was obtained using the Werenskiold Glacier

data. The minimum value of each of the objectives occurs

in the lower left hand corner, which would be the absolute

ideal solution (i.e. all objectives with a zero error value) if

such a solution were possible. In order to aid visualization,

the set of obtained solution points were used to construct a

local polynomial surface representation; overtop of which,



the points have been placed (small plus symbols) to give

an indication of their location on the surface. Overall, the

surface is tending to bend toward the ideal solution surface,

as expected. This set of solutions was obtained after 2,000

iterations of the algorithm. Since this is an evolutionary

algorithm consisting of a population of solutions, it can be

desirable to consider the evolution of the solution surface. For

example, has the surface stabilized to what might be a good

approximation to the Pareto Front? Fig.5 shows two sets of

solutions. The local polynomial surface representation of the

solution points obtained after 1,800 iterations is shown in

light grey, while the local polynomial surface representation

of the solution points obtained after 2,000 iterations is shown

in black. It can be seen that the black surface is beneath the

light grey surface, indicating that the evolutionary process

is moving the approximation of the Pareto Front closer

towards the lower left hand corner (the ideal minimum

error solution point for all objectives) as expected. Fig.6

is a 2-dimensional representation of an approximation to

the 3-dimensional Pareto Front for which the algorithm is

searching. It shows all of the 100 solution points plotted

in terms of each of their respective objective values; of

which the two unsupervised objectives were selected. The

best solutions would have minimum Sammon Error and

Kruskal Stress (lower left hand corner). It can be seen

that when Sammon Error is reduced then Kruskal Stress

is increased, leading to a parabolic type of relationship.

If the algorithm was only producing 2-objective solutions,

then, for example, the clearly dominated solutions at about

(0.074,0.36) would not be in the figure. Hence, this confirms

both the 3-dimensional nature and tradeoffs of the objective

measures over the obtained solutions.

Fig. 4. Local polynomial surface representation of 100 solutions obtained
after 2,000 iterations of the NSGA-II algorithm. Small plus symbols placed
on surface indicate solution locations in the objective space. Lower left hand
corner: location of the best theoretical solution (i.e. all objectives with a zero
error value).

It is interesting to observe the relative location of the

different classes of waters in the multi-objective VR spaces

of Figs.7-10. At the lower left extreme are the precipitation,

supraglacier and tundra classes and at the upper right is

the moraine-lakes class. The firsts have low mineralization

Fig. 5. Two sets of solutions each with 100 points. The local polynomial
surface representations of the solution points obtained after i) 1,800 itera-
tions (light grey), and ii) 2,000 iterations (black). Lower left hand corner:
location of best theoretical solution (i.e. all objectives with a zero error
value).
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Fig. 6. 2-dimensional representation of an approximation to the 3-
dimensional Pareto Front showing all 100 solution points. The two unsuper-
vised objectives were selected (Sammon Error and Kruskal Stress). Lower
left hand corner: location of best theoretical solution (i.e. all objectives with
a zero error value).

(expressed by the electric conductivity and the ion concen-

trations of the chemical species), whereas the last one has

the highest mineralization levels. The waters from moraine

lakes are stagnated and are in contact with the rock for a long

time. Moreover, they are affected by the cryochemical effect

which increases the concentration of the chemical content

when freezing.

The common relations emerging from the VR spaces

of Figs.7-10 suggest a scheme of transitions starting from

precipitation waters (spheres), which forks into supraglacier

waters (rods) and tundra (cubes) (both with low mineral

content but well differentiated in the VR space). Whereas

tundra waters remain stagnated, supra-glacier waters evolve

into subglacier, as they percolate down into the glacier

through cracks, joints, sinks, etc. They can interact with

the rock materials embedded within the ice and eventu-

ally those who reach the bottom of the glacier, with the

bedrock. Also, they traverse greater lengths through the



Fig. 7. VR spaces corresponding to selected multi-objective optimization algorithm (NSGA-II) solutions. Left: Chromosome 1 (Sammon: 0.0524355,
Classif: 0.823529, Kruskal: 0.446838) Middle: Chromosome 63 (Sammon: 0.0635931, Classif: 0.862745, Kruskal: 0.359690) Right: Chromosome 2
(Sammon: 0.0830854, Classif: 0.764706, Kruskal: 0.346527) Geometry: disk = Subglacir, rod = Supraglacier, sphere = Precipitation, cone = Moraine lakes,
cube = Tundra. Behavior = static.

geological space and as consequence, they increase their

original mineral content. Finally, these subglacier waters

emerge from the glacier as springs or underground rivers

and either reach the sea or get trapped into depressions

in the zone of the frontal moraines. The general direction

lower-left → upper-right in all of the multiobjective VR

spaces captures the hydrogeological history of the waters

in the geological environment studied, as portrayed by the

changes in the physical and chemical properties. Moreover,

a closer look at the individual relationships seen in the VR

spaces suggest possible explanations for apparent anomalies

observed in some samples. For example, at the lower right

of almost all VR spaces two subglacier samples overlap with

supraglacier ones, deviating from the general scheme outlines

above. It means that from the point of view of the physical

and chemical composition, the corresponding samples are

very similar, to the point that these samples were classified

as supraglacier (which physically they are not). However,

considering that the information represented by the space

concerns only physical and chemical properties, this might

provide an indication that these waters emerging from the

glacier might have experienced short paths within the glacier

and/or rapid transit times because they moved through large

open spaces like galleries or underground rivers, as opposed

to other samples coming from springs fed by waters moving

through narrow cracks or joints in the ice mass.

Fig. 8. Proposed scheme for water evolution based on the VR spaces
obtained with multi-objective optimization.

VI. CONCLUSIONS

Advanced computational intelligence approaches such as

multi-objective optimization of neural networks using genetic

algorithms, proved to be very effective for constructing

new feature spaces for visual data mining. In particular,

networks trained to maximize structure preservation (using

two unsupervised criteria computed from the last hidden

layer output of the network) and classification accuracy

(using the network’s output layer) can be simultaneously

computed. From them, spaces constructed using the set of

solutions distributed through the Pareto front lead to visual

representation capturing important relationships between the

data objects which helps in their interpretation and under-

standing. The application of this approach to the study of

the relationships of the physical and chemical properties of

natural waters with the hydrogeological environment proved

to be effective.
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