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Numerical simulation of fluid-solid interaction using an
immersed boundary finite element method

F. llinca and J.-F. Hétu
National Research Council, 75 de Mortagne, Boucherville, Qc, Canada, J4B 6Y/

Abstract

This paper presents applications of a recently proposed immersed boundary
method to the solution of fluid-solid interaction. Solid objects immersed into
the fluid are considered rigid and their movement is either imposed or deter-
mined from the interaction forces with the fluid. The use of body-conforming
meshes to solve such problems may involve extensive mesh adaptation work
that has to be repeated each time a change in the shape of the domain or
in the position of immersed solids is needed. Mesh generation and solution
interpolation between successive grids may be costly and introduce errors
if the geometry changes significantly during the course of the computation.
These drawbacks are avoided when the solution algorithm can tackle grids
that do not fit the shape of immersed objects. We present here an extension
of our recently developed Immersed Boundary (IB) finite element method
to the computation of interaction forces between the fluid and immersed
solid bodies. A fixed mesh is used covering both the fluid and solid regions,
and the boundary of immersed objects is defined using a time dependent
level-set function. Boundary conditions on the immersed solid surfaces are
imposed accurately by enriching the finite element discretization of interface
elements with additional degrees of freedom which are latter eliminated at
element level. The forces acting on the solid surfaces are computed from
the enriched finite element solution and if needed the solid movement is
determined from the rigid solid momentum equation. Solutions are shown
for various fluid-solid interaction problems and the accuracy of the present
approach is measured with respect to solutions on body-conforming meshes.

Keywords: Immersed boundary method, Fluid-solid interaction, Finite
elements, Non body-conforming mesh, Pressure enrichment
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1. INTRODUCTION

Most CFD and fluid-structure interaction solvers are based on body-
conforming (BC) grids (i.e. the external boundary and surfaces of immersed
bodies are represented by the mesh faces), but there is an increased inter-
est in solution algorithms for non body-conforming grids. Such methods are
reported under a variety of appellations: immersed boundary, immersed in-
terface, embedded mesh, fictitious domain, all having in common the fact
that the spatial discretization is done over a single domain containing both
fluid and solid regions and where mesh points are not necessarily located
on the fluid-solid interface. For simplicity, we will use in the present work
the immersed boundary (IB) term to identify a non body-fitted method. IB
methods have the main advantage of avoiding costly and sometimes very
difficult meshing work on body-fitted geometries. Generally a regular par-
allelepiped is meshed with an uniform grid. The IB method results also
in important algorithmic simplifications when immersed moving bodies are
considered. One important drawback of such a method is that the boundary
which has an important influence on the solution especially for fluid-solid
interaction is also a place where distorted elements may be found once reg-
ular mesh elements are cut by the solid boundary. The imposition of the
boundary conditions on the immersed boundary is also a point of concern.

The IB method was first introduced by Peskin [1] and used source terms
distributed through the solid region to indirectly enforce the proper bound-
ary conditions on the solid-fluid interface. IB methods received particular
attention in recent years. Their applications cover a broad spectrum of fluid
dynamics problems from flow through heart devices [1, 2|, to the interaction
of body movement and fluid flow [3], modeling anguilliform swimming [4] and
3-D parachute simulation [5]. Reviews of IB methods may be found in [3]
and [6]. Two classes of methods are discussed depending on how the source
terms describing the presence of the boundary are imposed: directly in the
continuous equations describing the flow (continuous forcing approach) or in
the resulting system of linear equations (discrete forcing approach).

Most of the numerical developments were made in a finite difference
framework and IB methods using finite elements were developed more re-
cently. Glowinski et al. [7] proposed a Lagrange multiplier-based fictitious
domain method which was further extended to obtain finite element solutions
around moving rigid bodies using meshes which are not boundary fitted [8].
The method consists of filling the moving bodies by the surrounding fluid



and impose rigid body motions to the fluid occupying the regions originally
occupied by the rigid bodies. The rigid body motion constraint is then re-
laxed by using distributed Lagrange multipliers and a flow problem over the
entire domain is solved. A finite element implementation of the IB method
which makes use of a Dirac function to impose the interaction force at the
fluid-structure interface was presented by Boffi and Gastaldi [9]. A discussion
on the stability of the space-time discretization can be found in [10]. Zhang
et al. [11] present the immersed finite element method for the solution of
fluid-structure interactions with deformable solids. In their method, a La-
grangian solid mesh moves on top of a background Eulerian fluid mesh which
spans over the entire computational domain and a discretized delta function
is used to describe the coupling between the fluid and solid domains. The fi-
nite element solution of the flow around immersed objects using a fixed mesh
ALE approach is presented by Codina et al. [12]. In their work the solid
boundary is represented using a level-set function defined on a background
fixed mesh, while the moving boundary is treated by an ALE technique in the
region close to the immersed surface. Boundary conditions on the immersed
boundary are imposed by a least-squares approximation.

In most IB methods, boundary conditions on immersed surfaces are han-
dled either accurately by using dynamic data structures to add/remove grid
points as needed, or in an approximate way by imposing the boundary con-
ditions to the grid point closest to the surface or through least-squares. Our
recently proposed approach [13, 14] achieves the level of accuracy of cut cell
dynamic node addition techniques with none of their drawbacks (increased
CPU time and costly dynamic data structures). The finite element discretiza-
tion of elements cut by the fluid/solid interface is enriched by the addition of
degrees of freedom associated to interface nodes which are latter eliminated
at element level. This approach is extended to fluid/solid interaction in the
present contribution.

In this work the flow around immersed bodies is solved using a 3-D finite
element IB method. The solution is interpolated using linear elements and
time integration is done by an implicit Euler scheme. The immersed bound-
ary is represented using a time dependent level-set function using the same
linear interpolation functions that are used to solve the flow problem. Spe-
cial emphasis is put on the computation of fluid/solid interaction forces. The
proposed approach is verified on simple cases for which solutions on BC grids
can be obtained and is then applied to more complex fluid/solid interaction
problems.



The paper is organized as follows. The model problem and the associated
finite element formulation is presented in section 2. The IB formulation is
discussed briefly and the procedure to recover the forces acting on the solid
surfaces is detailed. Section 3 illustrates the performance of the present IB
method for a selection of 2-D and 3-D test problems. The paper ends with
conclusions.

2. THE MODEL PROBLEM

We consider the transient incompressible fluid flow problem on a bounded
computational domain (2 formed by the fluid region €(t) and the solid vol-
ume {2,(t) as shown in Figure 1. The fluid and solid volumes are time depen-
dent but the total volume €2 formed by their reunion is not. The immersed
interface I';(t) = OS2 (t) N OS2, (t) represents a boundary for the fluid flow and
is considered as being time dependent.

Figure 1: Computational domain formed by fluid region £;(¢) and solid region Q,(¢).

2.1. Model equations and boundary conditions
The equations of motion are the incompressible Navier-Stokes equations:

p(g—ltl+u~Vu> = —Vp+V-[,u(Vu+(Vu)T)]+f (1)
Vou = 0, (2)

where p is the density, u the velocity vector, p the pressure, u the viscosity,
and f a volumetric force vector.



The interface I';, between the fluid and solid regions, is specified using a
level-set function 4, which is defined as a signed distance function from the
immersed interface:

d(x,%;(t)), x in the fluid region,
Y(x,t) = 0, x on the fluid/solid interface, (3)
—d(x,x%;(t)), x in the solid region,

where d(x, x;(t)) is the distance between the point P(x) and the fluid/solid
interface P;(x;(t)) at time ¢. Hence, points in the fluid region have positive
values of 1, whereas points in the solid region have negative ones. The
definition of the level-set function may be more complicated for complex 3-D
geometries. In such a case, we may consider that the immersed boundary
surface is provided in the form of a CAD file from which we generate a surface
mesh with a mesh size sufficiently small to have a correct representation of
the surface. Then, the level-set function is simply computed from the shortest
distance between the nodes of the 3D mesh and the surface mesh. In this
work only cases for which the level-set function is given analytically were
considered.

The initial and boundary conditions associated to equations (1) and (2)
are

u = Up(x), for t =t,, (4)
u = Up(x,t), for x € I'p(t), (5)
g (Vu+Vu’) - f — pi = t(x, t), for x € T4(¢), (6)

where I'p is the portion of the fluid boundary 6§ where Dirichlet conditions
are imposed, and t is the traction imposed on the remaining fluid boundary
I'y = 0Q¢\I'p. Dirichlet boundary conditions are imposed at the interface
between fluid and solid regions, i.e. I'; C I'p. Because I'; is not represented
by the finite element discretization, a special procedure is used to enforce
velocity boundary conditions on this surface. This approach will be discussed
in Section 2.3.

2.2. The Finite Element Formulation

The finite element formulation is the same as in reference [14]. Time
derivatives are computed using an implicit Euler scheme. Both velocity
and pressure are discretized using linear continuous interpolants and the



weak form of the equations corresponds to the GLS (Galerkin Least-Squares)
method:

/p (“_“" +u-Vu) Ni“dﬂ—/pVNi“dQ
Q At Q

+ / p(Vu+ vua®) - VNMQ - / fNFAQ
Q Q

u—14yp
+ / {p( +u-Vu)+Vp

—V - [p(Vu+VuT)] — f} r,u- VN!Q, = / tN¥dl,  (7)

Ty
V- uNPdQ + /{(u—u0+u-Vu)+Vp
/n ; o U\ At

-~V [p(Vu+VuT)] — £} ,VNPAQk =0, (8)

where (u,p) is the solution at the current time step t,, ug is the solution
at the previous time step ¢,-; and At = t, — t,_1 is the time step incre-
ment. N}, NP are continuous, piecewise linear test functions associated to
the velocity and pressure equations. The first four integrals in the right hand
side of equation (7) and the first integral in equation (8) correspond to the
Galerkin formulation whereas the integrals over the elements interior are the
GLS stabilization terms. The stabilization parameters are computed as from
Refs. [15, 16]:

~1/2
o (2ela\, (4
Tw=Tp= [( hg ) + mih% 9)

Here hg is the size of the element K and my is a coefficient set to 1/3 for
linear elements (see [15, 17]).

The nonlinear equations for the velocity and pressure, are solved with
a few Picard steps followed by Newton-Raphson iterations. The resulting
linear systems are generated directly in a compressed sparse row format [18],
and solved using the bi-conjugate gradient stabilized (Bi-CGSTAB) iterative
method [19] with an ILU preconditioner.

2.3. The IB method

The algorithm used to treat the immersed boundary surface is the same
as introduced by Ilinca and Hétu for the static fluid/solid interfaces [13] and
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for moving interfaces [14].

o N,
| N;

O Ngt
ONg

Immersed
boundary

Figure 2: Decomposition of elements cut by the immersed boundary.

The mesh is intersected by the interface at the current time step ¢, at
points located along element edges (NV; in Figure 2) and we consider those
points as additional degrees of freedom in the finite element formulation.
While elements cut by the immersed boundary have nodes in both fluid and
solid regions, the addition of nodes on the interface and the decomposition of
interface elements yields the formation of elements which are either entirely
in the fluid region (E;s in Figure 2) or in the solid region (E;, in Figure 2).

When solving the fluid flow we consider that the solid embedded in the
mesh has a prescribed velocity ug(t). This velocity can also be computed
from the forces applied on the solid body. The solid velocity is therefore
imposed on the solid nodes including the additional interface nodes. By do-
ing so no additional degrees of freedom need to be included for the interface
nodes. Only the right hand side of equations associated to fluid nodes con-
nected to them will change and by these means take into account the location
of the interface.

The pressure degrees of freedom are associated to the continuity equa-
tions. In order to enforce mass conservation in the entire fluid region, the
continuity equations are solved on all fluid elements, including the fluid sub-
elements at the interface. The continuity equations are not solved in the
solid elements and the pressure is set to a constant (say zero) on solid nodes.
The pressure discretization is considered discontinuous between interface sub-
elements and the additional pressure degrees of freedom corresponding to
interface nodes are eliminated by static condensation. For more details the
reader should consult [13, 14].



The use of a discontinuous pressure interpolation for interface sub-elements
introduces more freedom to the finite element space. The advantage of such
an approach is that the additional pressure degrees of freedom at the interface
nodes can be eliminated locally on each sub-element. One major drawback
however is that the resulting pressure will be discontinuous at the interface
nodes, while the actual pressure field we want to solve is continuous. In or-
der to increase the regularity of the discontinuous interface pressure we have
opted for a modified pressure stabilization inside interface sub-elements. For
sub-elements containing interface nodes the pressure stabilization parameter
in equation (8) was taken

7, = 67, (10)
It means that the pressure stabilization is increased only for interface sub-
elements containing the discontinuous pressure discretization. Numerical
tests indicated that the factor 6 is quite optimal as a closer to continuous
interface pressure is obtained without introducing undesired diffusion.

2.4. Computation of fluid/solid interaction forces

In this work the fluid and solid equations are solved separately. The
fluid flow uses the solid velocity as boundary conditions and then provides
the forces acting on the solid to serve in the computation of the solid body
movement. One main aspect in the simulation of fluid/solid interaction is
therefore the computation of the interaction forces between the fluid and
solid. The force acting on the fluid at the solid interface is computed from:

Fr(t) = / [ (Vu+ VuT) - & — pi] dT, (11)
where the fluid/solid interface I'; is considered as formed by the triangular
faces of interface sub-elements having all three nodes on the interface and
f is the outward unit normal vector on these faces. Remark that while the
pressure and the unit normal vector are computed for each triangular face
from the values at the vertices of the face, the velocity gradient is a quantity
which should be recovered from the three-dimensional tetrahedral interface
sub-element containing the respective face. Integration is however simplified
by the fact that the velocity gradient is a constant piecewise quantity, whereas
the pressure is linear.

The force acting on the solid may be seen as a reaction force and has the
same magnitude as the force on the fluid but acts in the opposite direction:

Fs = —Fp (12)
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Figure 3: Computational domain for flow in a channel obstructed by a cylinder.

As it is the case very often in aero and hydrodynamic applications, in the
work shown in the next section we will make reference to the drag and lift
coefficients acting on the solid immersed body. These are dimensionless coef-
ficients representing the normalized forces acting in streamline direction for
the drag and normal to the streamline direction for the lift and are deter-
mined as:

FSz
Cp= 13
P 3eUZA (13)
Fg
Cr = Y 14
" 1oUZA (14)

where p is the fluid density, Uy is a velocity scale representative of the flow
field and A is a representative area of the body. Usually for a sphere of
diameter d we have A = nd%/4 and for a cylinder of diameter d and length
L placed along a direction normal to the flow we have A = dL.

3. APPLICATIONS

3.1. Flow inside a channel obstructed by a cylinder

This first validation test consists in the 2-D flow in a channel obstructed
by a cylinder placed at equal distance from the channel walls as shown in
Figure 3. The flow enters the domain from the left at uniform speed Uy and
the obstruction ratio is 1 : 1.2. Because the problem is two-dimensional, only
a slab of thickness 0.2d was meshed with 3D tetrahedral elements and the w
component of the velocity was set to zero. The mesh was generated for both
the fluid region and the interior of the cylinder. In such a way the problem
can be solved by the IB method considering the entire computational domain
and also by a standard method on a body-conforming (BC) mesh represent-
ing only the fluid region. This will result in a rigorous evaluation of the

9
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Figure 4: Pressure drop determined by the cylinder obstruction

performance of the IB method since the IB and BC solutions are obtained
on similar meshes. The solid interface in the IB method is determined by
the level-set function ¢ = r — R, where r = (z% + yz)l/ ? is the distance from
the point P(z,y) to the center of the cylinder and R is the cylinder radius.
Therefore, 1B simulations can be carried out for different values of the cylin-
der radius by simply modifying the level-set function to the corresponding
value of R.

Simulations were carried out for two flow regimes: low Reynolds number
Re = pUpd/p = 20 and moderate Reynolds number Re = pUyd/p = 80. In
both cases a steady state solution is obtained. The pressure drop along the
channel generated by the presence of the cylinder as computed by the IB and
BC methods is compared in Figure 4 for three meshes with different mesh
refinement. The coarser mesh, Mesh 1, has 19,520 tetrahedral elements and
two successively refined meshes are obtained by reducing in half the element
size, thus resulting in an eight fold increase in the number of elements after
each refinement. Mesh 2 has 156,160 elements and Mesh 3 has 1,249,280
elements. As can be seen, the pressure drop provided by the IB method is
virtually the same as the one computed on a BC mesh for all three meshes.

The force acting on the cylinder is plotted in Figure 5. Solutions were
obtained by the IB method for different values of the cylinder radius R rang-
ing between 0.99R; and 1.01Ry, with Ry = d/2 being the reference value
of the radius used in the BC solution. The lines in Figure 5 indicate the
dependence of the drag coefficient on the cylinder radius as computed by
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Figure 5: Drag coefficient on the cylinder

the IB method and the symbols indicate the corresponding drag coefficient
from the BC solution which is available only for R = Ry. Remark that for
all three meshes the IB and BC solutions compare extremely well. The IB
solutions for various cylinder radius were computed by using increments as
small as 10~* Ry, thus indicating that the method is sensitive even to such a
small change in the position of the solid-fluid interface. Recall that all three
meshes have been generated in such a way as to have mesh nodes on the
interface only for R = Ry. In all cases the solution exhibits smooth changes
when the cylinder radius varies from smaller than Ry to larger than Ry val-
ues and the method is stable and accurate even when very small interface
elements are generated as is the case when R is very close to Rp.

3.2. Steady cylinder in uniform flow

This problem consists in the flow around a stationary circular cylinder
placed in uniform flow. The computational domain and boundary condi-
tions are shown in Figure 6 with the flow entering the left side with uniform
velocity. The cylinder is located at 10 diameters from the inlet and at 24
diameters from the outlet. The height of the computational domain is 35d
thus corresponding to an obstruction ratio A = 0.0286. Because the problem
is two-dimensional, only a slab was meshed with 3D tetrahedral elements and
the w component of the velocity was set to zero. The mesh was designed to
have smaller elements in the region of the immersed cylinder and in the wake
of the cylinder where the solution is expected to exhibit larger time varia-
tions. The grid has 376 elements in flow direction, 176 elements in direction
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normal to the flow and only 2 elements are used in the width of the slab for
a total of 661,760 tetrahedral elements. A detail of the mesh in the region of
the cylinder is shown in Figure 7(a). The part of the mesh contained inside
the solid cylinder is plotted with a lighter gray color to indicate that only
the solution in the fluid region is computed. To quantify the accuracy of the
IB solution, comparison was made with the finite element solution computed
on a BC grid with similar mesh size as shown in Figure 7(b). The BC grid
has 665,600 tetrahedral elements.

Table 1: Steady flow past a circular cylinder: length L of standing eddy behind the cylinder
and drag coefficient Cp.

L Cp

Re =20
Linnick and Fasel [20], A =0.056 0.93 2.16
Linnick and Fasel [20], A = 0.023 0.93 2.06

Present, BC, A = 0.0286 0.947 2.188
Present, IB, A = 0.0286 0.948 2.127
Re =40

Linnick and Fasel [20], A = 0.056 2.23 1.61
Linnick and Fasel [20], A = 0.023 2.28 1.54

Cheny and Botella [21] 2.299 1.508
Present, BC, A = 0.0286 2294 1.613
Present, IB, A = 0.0286 2.298 1.580

This problem was the object of several numerical studies. It was used
as a test problem for the immersed boundary methods proposed by Linnick
and Fasel [20] and by Cheny and Botella [21]. It has also been used by the
authors to validate the behavior of the proposed IB method [13]. However,
while in reference [13] only the flow response was analyzed, the present work
emphasizes on the fluid-solid interaction force. Present computations were
carried out for Reynolds numbers Re = p Uy d/p ranging from 20 to 200. The
critical Reynolds number for this flow is Re,, = 51 [22]. For flows having
Reynolds numbers smaller than Re. we expect to obtain a steady state
solution presenting two symmetrically located standing eddies behind the
cylinder. For higher Reynolds numbers than Re,, the flow becomes unsteady
and the well known Karman vortex street forms in the wake of the cylinder.

13



Table 2: Unsteady flow past a circular cylinder: Strouhal number St, drag coefficient Cp,
and lift coefficient Cp.

St Cp Cy

Re =100

Liu et al.[23] 0.165 1.35+0.012 +0.339
Linnick and Fasel [20], A = 0.056 0.169 1.38 +0.010 +0.337
Linnick and Fasel [20], A = 0.023 0.166 1.34 & 0.009 +0.333

Cheny and Botella [21] 0.170 1.317+0.009 -
Present, BC, A = 0.0286 0.1679 1.369 £0.0087 =+0.323
Present, IB, A = 0.0286 0.1679 1.360 & 0.0092 =+0.324
Re =200

Belov et al. [24] 0.193 1.1940.042 +0.64
Liu et al. [23] 0.192 1.31 0.049 +0.69

Linnick and Fasel [20], A = 0.056 0.199  1.37 +0.046 +0.70
Linnick and Fasel [20], A =0.023 0.197 1.34 £0.044 +0.69

Cheny and Botella [21] 0.200 1.327+0.045 -
Present, BC, A = 0.0286 0.1989 1.343+0.0428 =0.670
Present, IB, A = 0.0286 0.1989 1.349 £0.0447 =£0.677

The IB results are compared with the solutions on the BC mesh as well as
with other numerical solutions in Table 1 for Re = 20 and Re = 40, and in
Table 2 for Re = 100 and Re = 200. The present BC and IB predictions of
the mean drag coefficient and of the maximum lift coefficient are compared
in Figure 8. For the steady state cases the IB method recovers almost the
same length of the recirculation region behind the cylinder and shows a 2-3%
difference for the drag coefficient when compared with the BC solutions. For
the higher Reynolds number flows the vortex shedding frequency is virtually
the same for the IB and BC solutions, while the drag and lift coefficients
show differences smaller than 1%.

3.8. In-line oscillating cylinder in uniform flow

For this test problem an in-line oscillating cylinder is placed in uniform
flow. The computational domain and boundary conditions are the same as
for the stationary cylinder case of section 3.2. Here again the accuracy of the
IB solution is verified with respect to the finite element solution computed

14
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Figure 8: Dependence of the drag and lift coefficients with respect to the Reynolds number.

on the BC grid. Because the position of the cylinder changes with time
we use for the BC mesh an Arbitrary Lagrangian-Eulerian formulation on a
deforming mesh as described in [14]. Mesh deformation parameters are the
same as those of Ilinca and Hétu [14].

Numerical simulations were conducted using the flow parameters of Saiki
and Biringen [25]. The Reynolds number is Re = p Uy d/u = 200, where U,
is the free-stream velocity and d is the cylinder diameter. The cylinder is
oscillating parallel to the free-stream flow at a frequency f, = 1.88f,, with
fs being the Strouhal frequency for the stationary cylinder. For Re = 200
we have St = f.d/Uy = 0.1989 (see Table 2) and therefore f. = 0.374U,/d.
The center of the cylinder is considered initially at z. = 0, y. = 0 and is
displaced in time following the relationship z. = A.sin(2nf.t) with A, =
0.24. Experimental data for the same conditions and Re = 190 are reported
by Griffin and Ramberg [26] and similar experiments were made by Ongoren
and Rockwell [27]. It is reported that there are three vortices shed during
a cycle of the motion, two being clockwise and one counter-clockwise. This
flow pattern is identified as anti-symmetrical mode A-III by Ongoren and
Rockwell [27] and occurs when f./fs is close to 2. Numerical solutions using
an IB method for Re = 100 and f,/f, = 2 are provided by Liao et al. [28].

Following the work of Sohankar [22], the time-step was initially set to
At = 0.025d/Uy. Simulations were also performed with smaller time steps,
At = 0.0125d/Uy, At = 0.00625d/Uy and At = 0.003125d/Uy respectively.
It was found that differences between the solutions for the two smallest time
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Figure 9: Drag and lift coefficients for anti-symmetrical mnode A-II

steps were negligible and therefore we present here only the results for At =
0.00625d/U,. Both the IB and BC-ALE solutions resulted in a periodic
flow with a time period twice that of the oscillating cylinder (T" = 2T;) in
agreement with the experimental observations.

Numerical simulations carried out with both BC and IB methods indicate
that the flow exhibits first an anti-symmetrical mode A-II as of Ongoren and
Rockwell [27] in which two vortices shed during a flow period, one clockwise
and the other counter-clockwise. During this initial period of time the drag
and lift coeflicients varies as shown in Figure 9. The drag coefficient has
the same period of oscillation as the movement imposed on the cylinder T,
because the drag is the same when vortices shed from the upper or the lower
part of the cylinder. The lift coefficient has a period twice that of the cylinder
with the values taken in the second cylinder period equal in amplitude but
with opposite sign than those taken in the first cylinder oscillation period.
This flow pattern is however unstable and the flow rapidly evolves toward
an anti-symmetrical mode A-III as of Ongoren and Rockwell [27]. The drag
and lift coefficient for this type of flow pattern are shown in Figure 10.

Vorticity contours during a vortex shedding period for the stable A-III
flow pattern are shown in Figure 11. Results indicate that the two methods
produce very similar solutions, thus indicating that the IB method performs
well. Recall that the time period of vortex shedding T is twice that of the
cylinder oscillation 7,. Three vortices shed during a cycle of the motion
(composed of two complete oscillations of the cylinder), two being clockwise
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Figure 10: Drag and lift coefficients for anti-symmetrical mode A-III.

(red in Figure 11) and one counter-clockwise (blue in Figure 11).

3.4. Sphere settling under gravity

A 3-D fluid-solid interaction problem for which experimental data are
available is the falling of a sphere under gravity in an enclosure filled with
a viscous fluid. In the experimental setup of ten Cate et al. [29] the sphere
has a diameter d = 0.015m and is placed inside a box of dimensions 0.1 x
0.1 x 0.16m?® as shown in Figure 12(a). The sphere is released at a initial
height of 0.12m from the bottom of the box. The present IB method was
tested for the same set of conditions used in the experiment of ten Cate
et al. [29] and for which numerical results given by an immersed boundary
method were presented by Liao et al. [28]. The density of the falling sphere
is p, = 1120kg/m3 and the fluid properties for the four cases considered are
summarized in Table 3.

Table 3: Fluid properties for sphere settling under gravity.

Case Re p(kg/m3) u(Ns/m?)

E1l 1.5 970 0.373
E2 4.1 965 0.212
E3 11.6 962 0.113
E4 319 960 0.058
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(a) t = 2nT,; IB method (b) t = 2nT,; BC-ALE

(c) t = 2nT. + T./2; IB method (d) t = 2nT. + T/2; BC-ALE

(e) t = 2nT, + T,; IB method (f) t = 2nT,. + T.; BC-ALE

(g) t = 2nT, + 3T./2; IB method (h) t = 2nT, + 3T./2; BC-ALE

Figure 11: Vorticity contours: Comparison of IB (left) and BC-ALE (right) solutions.
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Figure 12: Computational domain and mesh for the falling sphere.
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Figure 13: Sedimentation velocity of a sphere.

First, computations were carried out to determine the sedimentation ve-
locity of the sphere in an infinite medium delimited by a square 0.1 x 0.1m?.
For this, the sphere was considered fixed and a uniform velocity was im-
posed on the inlet of the domain as well as on the solid walls. Because the
computational domain in this case does not change with time, both the IB
method and a standard finite element method using a body conforming grid
were used. The BC mesh had 2,869, 849 tetrahedral elements and 484, 714
nodes, whereas the mesh for the IB simulation had 3,147,473 elements and
533,022 nodes. For each one of the cases of Table 3 the inflow velocity was
varied until the drag force on the sphere was equal to the gravity force, thus
obtaining the sedimentation velocity. The resulting sedimentation velocity
is compared with the velocity determined by ten Cate et al. [29] in Figure
13(a). As can be seen, the present finite element solutions for BC and IB
conditions results in almost the same sedimentation velocity. The agreement
with the measured values is also excellent, except for the smallest Reynolds
number case. For Re = 1.5 the difference between the computed and mea-
sured sedimentation velocity is however less than 5% thus remaining in the
accuracy limits of the experimental setup.

The IB method was then used to determine the movement of the falling
sphere inside the rectangular enclosure until it reaches the bottom wall. The
mesh used for this simulation has 2,545, 928 elements and 533,022 node. A
detail of the mesh in near the sphere is shown in Figure 12(b). The maxi-
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Figure 14: Evolution with time of the position and velocity of the sphere.

mum settling velocity reached for the four test cases is compared in Figure
13(b) with the sedimentation velocity computed previously by considering
the sphere as being fixed. The IB method applied to the falling sphere case
produces almost the same sedimentation velocity as the one obtained con-
sidering the fixed sphere placed in an uniform flow. This indicates that the
IB method applied on the moving fluid/solid interface performs well.

The evolution with time of the sphere position and velocity is compared
with the measured values of ten Cate et al. [29] in Figure 14. In the experi-
ment it is indicated that the sphere is released at an initial height of 0.12m
which is eight times the diameter of the sphere. However, by integrating the
measured velocities we obtain that the actual initial position of the sphere
is close to 0.123m or 8.2 times the sphere diameter. This difference may be
determined by the procedure to release the sphere in the experimental setup.
Therefore we considered that the sphere is released at A = 8.2d instead of
h = 8d. This modification does not affect the velocity of the sphere except for
the very last part of the falling trajectory, but results in a better consistency
with the measured position. The results indicate an excellent agreement with
the measured data for all cases considered. Without the above mentioned
correction the sphere would have reached the bottom wall faster than in the
experiment for Re = 1.5 even if the computed velocity is slightly smaller
than measured.

Figure 15 shows the position of the falling sphere at various times as well
as the velocity distribution in a section across the sphere center for the case
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E3. At t =0 (Figure 15(c)) the sphere is standing still and there is no flow
around it. Once the sphere is released, it accelerates gradually and the fluid
flow in the box evolves accordingly. At ¢ = 1.0s the sphere almost reached
the maximum sedimentation velocity and then at ¢ = 1.5s the deceleration
caused by the proximity of the bottom wall has started as confirmed by the
results presented in Figure 14.

4. CONCLUSIONS

An accurate IB finite element method for computing the fluid/solid in-
teraction forces is presented. The boundary conditions are imposed on the
immersed interface by incorporating into the grid the points where the mesh
intersects the fluid/solid boundary. The degrees of freedom associated with
the additional grid points are eliminated either because the velocity is known
or by static condensation in the case of the pressure. The velocity and pres-
sure solution on interface sub-elements are then used to determine the forces
acting on the solid surface.

Application of the proposed method to the flow in an obstructed channel
shows an excellent agreement with body-conforming grid solutions. The
agreement improves when the mesh is refined. The IB method applied for
different values of the obstruction size (cylinder diameter) shows the ability
of the method to accurately tackle very small changes in solid shape and
dimensions and to deal with very small or distorted elements.

For the flow around a steady cylinder the IB and BC methods provide
results very close to each other. The computed forces acting on the cylinder
are in good agreement with previous numerical results for both steady-state
and transient periodic flows.

For the application to transient flow past a circular cylinder oscillating in-
line with the free-stream the results compare well with experimental data and
with numerical results on body-conforming mesh. The IB solution develops
first an anti-symmetric A-II flow pattern which is unstable, thus evolving into
the A-III flow pattern. This anti-symmetric vortex shedding was observed
experimentally for a frequency of the cylinder oscillation near twice that of
the vortex shedding behind the stationary cylinder.

The three-dimensional IB finite element method was also used to solve the
settling of a single sphere in a viscous fluid. The IB solution is accurate as the
resulting sedimentation velocity is close to the measured value. Simulations
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for different flow regimes indicate an excellent agreement with the experiment
for both the position and velocity of the sphere.
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