ChemGymRL
An Interactive Framework for Reinforcement Learning for Digital Chemistry

What is ChemGymRL?
Problem: RL is very data intensive, training robotic chemistry agents by taking actions in the real world is infeasible and possibly dangerous.

Benefits for RL: ML researches always need new challenges, and Digital Chemistry involves challenges which are not commonly found in RL benchmarks and therefore offer a rich space to work in.

Our Solution: We introduce a set of highly customizable and open-source RL environments, implementing the standard Gymnasium API.

THE LABORATORY
The laboratory can be thought of as a virtual chemistry laboratory consisting of different benches where a variety of tasks can be completed.

The laboratory is comprised of 3 basic elements: **Vessels, Shelves, Benches**
- Vessels contain materials, in pure or mixed form tracking the hidden internal state of its contents
- Shelves hold any vessels not currently in use or inputs/outputs of experiments.

All Benches Have...
Input: target material given as one-hot vector
State: vessels and contained materials

REACTION BENCH
The reaction bench (RxN) allows the agent to transform available reactants into various products via a chemical reaction.
- The agent has the ability to control:
 - the temperature of the vessel and
 - the amounts of reactants added.

The goal of the agent operating this bench is to modify the reaction parameters, in order to increase and/or decrease the yield of certain desired/undesired materials.
- Actions: The key to the agent’s success in this bench is learning how best to allow certain reactions to occur such that
 - the yield of the desired material is maximized
 - While the yield of the undesired material is minimized
- Rewards: After the 20 steps have elapsed, the agent receives a reward equal to the molar amount of the target material produced.

DISTILLATION BENCH
The distillation bench (DiT) allows the agent to separate out undesired products from the outputs of chemical reactions.
- Actions: Transferring materials between different vessels and utilizing specifically selected solvents to separate materials from each other.

EXTRACTION BENCH
Extraction is a method to separate out undesired products from the outputs of chemical reactions.
- The extraction bench (ExT) allows to isolate and extract certain dissolved materials from the input vessels.

CHARACTERIZATION BENCH
The characterization bench is the primary method to obtain insight as to what the vessel contains. The purpose of the characterization bench is not to manipulate the input vessel, but to subject it to analysis techniques that observe the state of the vessel, possibly including the materials inside it and their relative quantities. This does not mean that the contents of the input vessel cannot be modified by the characterization bench. This allows an agent or user to observe vessels, determine their contents, and allocate the vessel to the necessary bench for further experimentation.

Why RL for Chemistry?
Reinforcement Learning (RL) is a class of Machine Learning algorithms that learn by taking actions, making observations, viewing the results, and updating its model (or hypothesis is you like) policy/beliefs.

In other words... RL is a perfect analogy for the experimental scientist!

Experiments
- To test and demonstrate the framework, we trained RL agents were trained for 200K time steps across 10 environments in parallel (for a total of 1M time steps).
- Samples: 250 time steps of experience (in each environment) to update policies/Value-functions.
- Replay buffer: 1M experiences for DQN, SAC, and TD3.
- Exploration: first 30K steps of DQN used linear schedule from 1.0 down to 0.01, then fixed.
- Implementations: Stable Baselines 3

AFFILIATIONS
1) Department of Mathematics and Statistics, University of Ottawa
2) Department of Electrical and Computer Engineering, University of Waterloo
3) Digital Technologies, National Research Council of Canada
4) Vector Institute for Artificial Intelligence, Toronto
5) Department of Physics, University of Ottawa

Fig 9 The five curves in each box represents the sequence of actions for the five different target materials. Comparing the same curve across a single column outlines how a single policy acts for a single target material. Comparing different curves within a single box outlines how a single policy acts differently between different target materials. Comparing the same curve across a single row outlines how different policies act for the same target material.