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Abstract We provide supporting information on the calculation of the effective index tensor, the derivation of the beat length, and
details on the fabrication tolerance analysis.
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1. Calculating the effective indices nxx, nzz

To calculate the effective indices of the sub-wavelength
structure we consider the geometry shown in Fig. 1, corre-
sponding to the lateral cross-section of the sub-wavelength
structure. Note that this structure extends periodically along
the z-axis; this periodicity is included in the simulation tools
by defining periodic boundary conditions as shown in Fig.
1.

For the calculation of nzz we use a conventional mode
solver [1], and obtain the effective index of the fundamental
TE mode traveling along the x-direction and polarized along
the z axis.

For the calculation of nxx a Bloch-Floquet mode solver
is required [2]. In this case we calculate the effective index
of the fundamental TE mode travelling along the z-direction
and polarized along the x axis.
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Figure 1 Cross-section of the sub-wavelength structure. The
dimensions are given in table 1 of the main manuscript.

2. Derivation of the beat length in an
anisotropic medium

In the main manuscript we state that the beat length of a
multimode interference coupler in an anisotropic medium is

given by:

Laniso
π ≈ 4W 2

e

3λ

n2
zz

nxx
. (1)

The derivation of (1) is analogous to the derivation for
isotropic media presented in [3]. Consider the 2D effective
index model of a multimode waveguide shown in Fig. 2,
with z the direction of propagation. The dispersion equation
in the anisotropic medium is given by [4]:

(kx/nzz)
2 +(kz/nxx)

2 = k2
0, (2)

where kx is the wave-vector component in the x direction,
kz = β is the propagation constant, and k0 = 2π/λ [4]. As-
suming that the guided modes ϕm(x) are well confined in
the waveguide, i.e. ϕm(x) = sin(mπx/We), the x component
of the wave-vector of the m-th mode is given by [3]:

kx,m =
mπ

We
. (3)

Inserting (3) into (2), solving for kz,m and using a first order
Taylor expansion of the resulting square root (i.e. assuming
paraxiality), we arrive at the propagation constant of the
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Figure 2 Multimode waveguide composed of an anisotropic
medium. We indicates the effective width that takes into the ac-
count the Goos-Hänchen shift at the waveguide walls.
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m-th mode:

kz,m = βm ≈ nxx
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)
. (4)

From (4) we find

β1 −β2 = π
3λ

4W 2
e

nxx

n2
zz
, (5)

which upon application of the definition of beat length, Lπ =
π/(β1 −β2), yields (1).

3. Fabrication tolerance analysis

We used full 3D-FDTD simulations to study the fabrica-
tion tolerances of the device. We independently varied the
duty-cycle, width of the multimode section and length of the
multimode section (number or periods), leaving the remain-
ing parameters at their nominal values. For each variation
the wavelength response in the 1250nm - 1750nm range
was recorded. The worst value of excess loss, imbalance
and phase error in that wavelength range was obtained for
each geometry. Figure 3 summarizes the performance of the
device for variations in duty-cycle, MMI width and number
of periods. From figure 3 we observe that the nominal de-
sign (50% duty-cycle, WMMI = 3.25µm and 74 periods of
length) provides that best overall performance. In order to
keep excess losses and imbalance below 1dB, and the phase
error below 5◦ in the complete 500nm bandwidth around
the 1500nm central wavelength the duty-cycle should be
controlled to ±7%, the width of the device should vary in
less than ±50nm, and the optimum number of periods can
vary in about ±2. Careful calibration of lithography and
etching are required to meet these duty-cycle and width
specifications.
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Figure 3 Simulated worst performance in the 1250nm to 1750nm
wavelength range, for variations in a) the duty-cycle b) MMI width
c) and number of periods, with all other parameters nominal.
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