Abstract | Little information is available on the systemic effects ofBacillus thuringiensis toxins in the hemocoel of insects. In order to test whether B. thuringiensis-activated toxins elicit a toxic response in the hemocoel, we measured the effect of intrahemocoelic injections of several Cry1 toxins on the food intake, growth, and survival ofLymantria dispar (Lepidoptera) and Neobellieria bullata (Diptera) larvae. Injection of Cry1C was highly toxic to the Lymantria larvae and resulted in the complete inhibition of food intake, growth arrest, and death in a dose-dependent manner. Cry1Aa and Cry1Ab (5 μg/0.2 g [fresh weight] [g fresh wt]) also affected growth and food intake but were less toxic than Cry1C (0.5 μg/0.2 g fresh wt). Cry1E and Cry1Ac (5 μg/0.2 g fresh wt) had no toxic effect upon injection. Cry1C was also highly toxic toN. bullata larvae upon injection. Injection of 5 μg/0.2 g fresh wt resulted in rapid paralysis, followed by hemocytic melanization and death. Lower concentrations delayed pupariation or gave rise to malformation of the puparium. Finally, Cry1C was toxic to brain cells of Lymantria in vitro. The addition of Cry1C (20 μg/ml) to primary cultures of Lymantria brain cells resulted in rapid lysis of the cultured neurons. |
---|