Relevant attribute discovery in high dimensional data based on rough sets and unsupervised classification: application to Leukemia gene expressions

From National Research Council Canada

Alternative titleRelevant attribute discovery in high dimensional data based on rough sets applications to Leukemia gene expressions
Download
  1. (PDF, 280 KB)
DOIResolve DOI: https://doi.org/10.1007/11548706_38
AuthorSearch for: 1; Search for: 1
Name affiliation
  1. National Research Council of Canada. NRC Institute for Information Technology
FormatText, Book chapter
Proceedings titleRough Sets, Fuzzy Sets, Data Mining, and Granular Computing
Series titleLecture Notes in Computer Science; Volume 3642
Lecture Notes in Artificial Intelligence; Volume 3642
ConferenceThe Tenth International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2005), August 31 - September 3, 2005, Regina, Saskatchewan, Canada
ISSN0302-9743
1611-3349
ISBN978-3-540-28660-8
978-3-540-31824-8
Pages362371
Subjectacute myeloid leukemia; acute lymphoblastic leukemia; high dimensional data; decision attribute; remote host
Abstract
PublisherSpringer
LanguageEnglish
Peer reviewedYes
NRC numberNRCC 48122
NPARC number8913287
Export citationExport as RIS
Report a correctionReport a correction
Record identifiered378d76-e02c-49d9-9c9a-4b18c393e1d6
Record created2009-04-22
Record modified2020-09-15
Date modified: