Abstract | Al-substituted α-type nickel hydroxides (α-Ni(OH)2) containing different interlayer anions (NO3 -, SO4 2-, Cl-, CO32-, OH-) are synthesized via a polyacrylamide (PAM) assisted two-step drying method. The effects of interlayer anions on the microstructure, morphology and electrochemical performance of Al-substituted α-Ni(OH)2 are investigated by X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscope (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge/discharge tests. The results demonstrate that the intercalated anions have a critical effect on the basal plane spacing, degree of crystallinity, and electrochemical properties of the end products. Especially, the intercalated anions have a marked impact on the activation process of the nickel electrodes. The Cl- intercalated α-Ni(OH)2 sample exhibits better high-rate discharge ability and cycle stability than samples with other interlayer anions. This is attributed to the higher crystallinity, better exchange ability and smaller anion size of Cl-. The anion exchange ability and the size of anions also play an important role in the proton diffusion rate, which directly affects the electrochemical properties of α-Ni(OH)2. The relationships between the specific capacity and basal spacing are also discussed in details for the five samples. |
---|