Download | - View accepted manuscript: Estimate of scattering truncation in the cavity attenuated phase shift PMSSA monitor using the radiative transfer theory (PDF, 4.1 MiB)
|
---|
DOI | Resolve DOI: https://doi.org/10.1080/02786826.2018.1437891 |
---|
Author | Search for: Liu, Fengshan1; Search for: Snelling, David1; Search for: Thomson, Kevin1; Search for: Smallwood, Gregory J.1 |
---|
Affiliation | - National Research Council of Canada. Measurement Science and Standards
|
---|
Format | Text, Article |
---|
Conference | 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018), 8-13 July 2018, Paris, France |
---|
Subject | aerosol optical properties; radiative transfer equation; scattering loss; cavity attenuated phase shift |
---|
Abstract | The recently developed cavity attenuated phase shift particulate matter single scattering albedo (CAPS PMssA) monitor has been shown to be fairly accurate and robust for real-time aerosol optical properties measurements. The scattering component of the measurement undergoes a truncation error due to the loss of scattered light from the sample tube in both the forward and backward directions. Previous studies estimated the loss of scattered light typically using the Mie theory for spherical particles, assuming particles are present only on the sampling tube centerline, and without accounting for the effects of sampling tube surface reflection. This study overcomes these limitations by solving the radiative transfer equation in an axisymmetric absorbing and scattering medium using the discrete ordinates method to estimate the scattering truncation error. The present mode! predicted larger scattering loss than the simplified theoretical estimate in the literature. The effects of absorption coefficient, scattering coefficient, asymmetry parameter of the scattering phase function, and the reflection coefficient at the sampling tube inner surface were investigated . Under typical conditions of CAPS PMssA operation of low extinction coefficients below about 5000 Mm- 1 the scattering loss remains independent of the absorption and scattering coefficients but is dependent on the asymmetry parameter of the scattering phase function and the reflection coefficient of the sampling glass tube inner surface. The scattering loss increases with increasing bath the asymmetry parameter and the surface reflection coefficient. |
---|
Publication date | 2018-02-09 |
---|
Publisher | Taylor & Francis |
---|
In | |
---|
Language | English |
---|
Peer reviewed | Yes |
---|
NPARC number | 23002781 |
---|
Export citation | Export as RIS |
---|
Report a correction | Report a correction (opens in a new tab) |
---|
Record identifier | d485e896-0789-4cbe-a630-a27910ab53a5 |
---|
Record created | 2018-02-26 |
---|
Record modified | 2020-06-04 |
---|