Abstract | The cell envelope of Aeromonas salmonicida contains a lipopolysaccharide (LPS) essential for the physical integrity and functioning of bacterial cell membrane. Using a recently developed in-source fragmentation technique, we screened 39 typical and atypical isolates of A. salmonicida and established their O-chain polysaccharide structure by capillary electrophoresis–mass spectrometry (CE–MS), compositional and linkage analyses and comparison to the previously determined O-chain polysaccharide structure of A. salmonicida strain A449. These studies have demonstrated that A. salmonicida isolates fall into three distinct structural types, types A–C, based on chemical structures of their respective O-chain polysaccharide components. Subsequent immunoblotting and serological studies with salmon polyclonal antisera produced to formalin-fixed cells of A. salmonicida strains A449, N4705 and 33659 representing three structural types A–C revealed that variations in the O-chain polysaccharide structure have led to significant serological differences between strains belonging to type A and non-type A, where non-type A species include chemically separated structural types B and C. Due to the presence of common antigenic determinants shared by their respective O-chain polysaccharide components, serological cross-reactions were observed between A. salmonicida strains belonging to structural types B and C. These findings suggest the possibility of developing LPS-based classification system of A. salmonicida sub-species consisting of two serologically distinct types, type A and non-type A. |
---|