Download | - View accepted manuscript: Mapping attosecond electron wave packet motion (PDF, 566 KiB)
|
---|
DOI | Resolve DOI: https://doi.org/10.1103/PhysRevLett.94.083003 |
---|
Author | Search for: Niikura, Hiromichi1; Search for: Villeneuve, D. M.1; Search for: Corkum, P. B.1 |
---|
Affiliation | - National Research Council of Canada. NRC Steacie Institute for Molecular Sciences
|
---|
Format | Text, Article |
---|
Subject | bound states; molecule-photon collisions; optical harmonic generation; optical pulse generation; photoionisation; Schrodinger equation |
---|
Abstract | Attosecond pulses are produced when an intense infrared laser pulse induces a dipole interaction between a sublaser cycle recollision electron wave packet and the remaining coherently related bound-state population. By solving the time-dependent Schrödinger equation we show that, if the recollision electron is extracted from one or more electronic states that contribute to the bound-state wave packet, then the spectrum of the attosecond pulse is modulated depending on the relative motion of the continuum and bound wave packets. When the internal electron and recollision electron wave packet counterpropagate, the radiation intensity is lower. We show that we can fully characterize the attosecond bound-state wave packet dynamics. We demonstrate that electron motion from a two-level molecule with an energy difference of 14 eV, corresponding to a period of 290 asec, can be resolved. |
---|
Publication date | 2005-03-02 |
---|
In | |
---|
Language | English |
---|
Peer reviewed | Yes |
---|
NPARC number | 12327083 |
---|
Export citation | Export as RIS |
---|
Report a correction | Report a correction (opens in a new tab) |
---|
Record identifier | bb206e60-e88f-4121-ad30-44edaa7a3e75 |
---|
Record created | 2009-09-10 |
---|
Record modified | 2020-04-07 |
---|