Using adaptive surrogate models to accelerate multi-objective design optimization of MEMS

From National Research Council Canada

Download
  1. (PDF, 11.5 MiB)
DOIResolve DOI: https://doi.org/10.3390/mi16070753
AuthorSearch for: ORCID identifier: https://orcid.org/0009-0006-4827-802X; Search for: ; Search for: ; Search for: 1ORCID identifier: https://orcid.org/0000-0003-4493-8343; Search for: 2ORCID identifier: https://orcid.org/0000-0002-2320-954X; Search for: ORCID identifier: https://orcid.org/0000-0003-4499-9250
Affiliation
  1. National Research Council of Canada. Quantum and Nanotechnologies
  2. National Research Council of Canada. Digital Technologies
FormatText, Article
SubjectMEMS; design optimization; surrogate modeling; Lorentz force actuator; thermal actuator; multi-objective optimization; online learning; Gaussian process regression; finite element method
Abstract
Publication date
PublisherMDPI
Licence
In
LanguageEnglish
Peer reviewedYes
Export citationExport as RIS
Report a correctionReport a correction (opens in a new tab)
Record identifierb2ad006e-9fc5-4db2-aa51-2891642459a9
Record created2025-10-15
Record modified2025-10-16
Date modified: