Abstract | Poly(lactic acid) (PLA) stereocomplex formation in isothermal conditions in the absence and presence of a nucleating agent was studied from a rheological point of view due to sensitivity of viscoelastic properties to structural changes during this process. PDLA was melt blended in low concentrations with PLLA to produce a stereocomplex. Amorphous samples were prepared and crystallization was carried out in a rheometer at high temperatures to simulate melt processing conditions. Stereocomplexation was explored over time by measuring rheological parameters in small deformation oscillatory shear mode at a low frequency using parallel plate geometry. Kinetic data obtained by this means was compared to data from calorimetric studies, showing a different trend depending on the characterization method. Moreover, after the completion of crystallization, final crystalline structure was probed over a wide range of frequencies to investigate the rheological modification role of PDLA on PLLA major component. Differences in rheological characteristics of asymmetric PLLA/PDLA blends as compared to neat PLLA were associated to the structural changes happening because of the formation of the stereocomplex. |
---|