Wheat spike localization and counting via hybrid UNet architectures

From National Research Council Canada

DOIResolve DOI: https://doi.org/10.1016/j.compag.2022.107439
AuthorSearch for: ORCID identifier: https://orcid.org/0000-0003-0017-4433; Search for: ORCID identifier: https://orcid.org/0000-0002-7241-3483; Search for: 1; Search for: 2; Search for: ; Search for:
Name affiliation
  1. National Research Council of Canada. Advanced Electronics and Photonics
  2. National Research Council of Canada. Aquatic and Crop Resource Development
FormatText, Article
Physical description17 p.
Subjectdeep learning; transfer learning; unet architecture; wheat spike counting; wheat spike localization; yield estimation
Abstract
Publication date
PublisherElsevier
In
LanguageEnglish
Peer reviewedYes
IdentifierS0168169922007475
Export citationExport as RIS
Report a correctionReport a correction (opens in a new tab)
Record identifiera902ae85-f339-407b-ab76-27a9188b44af
Record created2022-12-06
Record modified2022-12-06
Date modified: