Automated porosity segmentation in laser powder bed fusion part using computed tomography: a validity study

From National Research Council Canada

DOIResolve DOI: https://doi.org/10.1007/s10845-023-02296-w
AuthorSearch for: ORCID identifier: https://orcid.org/0000-0003-2630-1576; Search for: ; Search for: 1ORCID identifier: https://orcid.org/0000-0001-5729-8045; Search for: ; Search for: ORCID identifier: https://orcid.org/0000-0001-6953-3495; Search for: ; Search for: ORCID identifier: https://orcid.org/0000-0002-3934-4631; Search for:
Affiliation
  1. National Research Council of Canada. Automotive and Surface Transportation
FunderSearch for: Consortium de Recherche et d’innovation en Aérospatiale au Québec; Search for: Natural Sciences and Engineering Research Council of Canada
FormatText, Article
Subjectporosity segmentation; powder bed fusion; X-ray computed tomography; deep learning; laser confocal microscopy
Abstract
Publication date
PublisherSpringer
In
LanguageEnglish
Peer reviewedYes
Export citationExport as RIS
Report a correctionReport a correction (opens in a new tab)
Record identifier8bb29f24-3664-4a71-a789-26f7d8d99609
Record created2024-12-11
Record modified2024-12-11
Date modified: