An anomaly detection method for satellites using Monte Carlo dropout

From National Research Council Canada

DOIResolve DOI: https://doi.org/10.1109/TAES.2022.3206257
AuthorSearch for: ; Search for: ORCID identifier: https://orcid.org/0000-0002-9019-9716; Search for: 1ORCID identifier: https://orcid.org/0000-0002-9069-0484
Affiliation
  1. National Research Council of Canada. Digital Technologies
FunderSearch for: National Research Council of Canada. High Throughput and Secure Networks Challenge Program
FormatText, Article
Physical description9 p.
Subjectanomaly detection; satellite communications; telemetry time series data; uncertainty estimation; time series analysis; uncertainty; artificial neural networks; satellites; telemetry; bayes methods; prediction algorithms
Abstract
Publication date
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
In
LanguageEnglish
Peer reviewedYes
Export citationExport as RIS
Report a correctionReport a correction (opens in a new tab)
Record identifier7af4cc4c-3c9d-494f-8cf6-5a3dc165e656
Record created2022-10-04
Record modified2023-03-16
Date modified: