Abstract | Electrodeposition of Zn was conducted in a new electrolyte system composed of an alkaline solution (9 M KOH + 5 wt% ZnO) modified with a small amount (0.5 wt%) of room temperature ionic liquid 1-ethyl-3-methylimidazolium dicyanamide (EMI-DCA). At a high deposition current density of 80 mA cm−2, a porous, dendrite-free Zn film characterized by clusters of small Zn particles was obtained. The mechanism for the modified Zn morphology in the EMI-DCA containing electrolyte was studied by cyclic voltammetry, chronoamperometry, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy. It was found that the addition of EMI-DCA changed the Zn nucleation process and reduced the potential variation during electrodeposition, which suppressed the uneven growth of Zn deposits and the formation of Zn dendrites. EIS results indicated that there was adsorption of EMI+ cations at the Zn film/electrolyte interface, which may have contributed to suppressed dendritic Zn growth. |
---|