Detecting the extent of co-existing anomalies in additively manufactured metal matrix composites through explainable selection and fusion of multi-camera deep learning features

From National Research Council Canada

Download
  1. (PDF, 25.3 MiB)
DOIResolve DOI: https://doi.org/10.1080/17452759.2025.2515240
AuthorSearch for: 1ORCID identifier: https://orcid.org/0000-0003-0961-3404; Search for: ; Search for: ; Search for: 2ORCID identifier: https://orcid.org/0000-0002-9831-8273; Search for: 1ORCID identifier: https://orcid.org/0000-0001-7662-984X; Search for: ORCID identifier: https://orcid.org/0000-0003-4927-0514
Affiliation
  1. National Research Council of Canada. Aerospace
  2. National Research Council of Canada. Digital Technologies
FunderSearch for: National Research Council Canada
FormatText, Article
Subjectdefect extent detection; co-existing anomalies; metal matrix composites; explainable AI; video transformer features
Abstract
Publication date
PublisherTaylor & Franic
Licence
In
LanguageEnglish
Peer reviewedYes
Export citationExport as RIS
Report a correctionReport a correction (opens in a new tab)
Record identifier55d63171-bfff-4aec-915b-c5349cada065
Record created2025-07-31
Record modified2025-11-03
Date modified: