Download | - View final version: 27Al nuclear-spin dephasing in the ruby frozen core and Cr3+ spin-flip-time measurements (PDF, 1.9 MiB)
|
---|
DOI | Resolve DOI: https://doi.org/10.1103/PhysRevB.42.7769 |
---|
Author | Search for: Szabo, A.1; Search for: Muramoto, T.; Search for: Kaarli, R. |
---|
Affiliation | - National Research Council of Canada
|
---|
Format | Text, Article |
---|
Abstract | Nuclear-spin-echo decay has been measured in the 27Al frozen core surrounding Cr3+ in ruby using optical Raman heterodyne detection. Bloembergen’s frozen-core model was directly verified by the observation of ∼1-msec dephasing times in the core compared with 60 μsec in the bulk. Observation of echoes in the ground and optically excited states of 52Cr and 53Cr allowed separation of direct and indirect Cr3+ spin-flip contributions to dephasing and hence measurement of the Cr-Cr spin-flip time. The direct dephasing time follows a square-law dependence on concentration, in accord with theory. Indirect dephasing has a square-root dependence on concentration, similar to that observed for optical echoes. Contrary to earlier studies, it is concluded that optical dephasing in ruby, in the concentration range 0.0034 to 0.05 wt. % Cr2O3, is primarily due to magnetic fluctuations produced by Cr3+ spin flipping; i.e., that indirect rather than direct dephasing is dominant. |
---|
Publication date | 1990-11 |
---|
Publisher | American Physical Society |
---|
In | |
---|
Note | Mr. Szabo was affiliated with the National Research Council of Canada, Division of Physics when they authored this article. |
---|
Language | English |
---|
Peer reviewed | Yes |
---|
NPARC number | 23002914 |
---|
Export citation | Export as RIS |
---|
Report a correction | Report a correction (opens in a new tab) |
---|
Record identifier | 474de7ea-a7aa-4ccd-9093-8b3b17d4c6b8 |
---|
Record created | 2018-03-23 |
---|
Record modified | 2020-05-30 |
---|