An attention-based convlstm autoencoder with dynamic thresholding for unsupervised anomaly detection in multivariate time series

From National Research Council Canada

Download
  1. (PDF, 1.7 MiB)
DOIResolve DOI: https://doi.org/10.3390/make4020015
AuthorSearch for: ORCID identifier: https://orcid.org/0000-0002-2254-2797; Search for: ORCID identifier: https://orcid.org/0000-0003-4082-6352; Search for: 1; Search for: ORCID identifier: https://orcid.org/0000-0003-2887-0350
Affiliation
  1. National Research Council of Canada. Automotive and Surface Transportation
FormatText, Article
Subjectanomaly detection; deep learning; unsupervised learning; Industrial Internet of Things; time series
Abstract
Publication date
PublisherMDPI
Licence
In
LanguageEnglish
Peer reviewedYes
Identifiermake4020015
Export citationExport as RIS
Report a correctionReport a correction (opens in a new tab)
Record identifier461045f5-fe06-4b2e-8b65-5b0d166c8252
Record created2023-09-26
Record modified2023-09-26
Date modified: