Download | - Will be available here on December 21, 2024
|
---|
DOI | Resolve DOI: https://doi.org/10.1016/j.cej.2022.141067 |
---|
Author | Search for: Alam, Kazi M.; Search for: Chaulagain, Narendra; Search for: Shahini, Ehsan; Search for: Masud Rana, Md; Search for: Garcia, John; Search for: Kumar, Navneet; Search for: Kobryn, Alexander E.1; Search for: Gusarov, Sergey2; Search for: Tang, Tian; Search for: Shankar, Karthik |
---|
Name affiliation | - National Research Council of Canada. Nanotechnology
- National Research Council of Canada. Digital Technologies
|
---|
Format | Text, Article |
---|
Subject | earth abundant semiconductors; CO₂ reduction; solar energy utilization; photocatalysis; computational modeling |
---|
Abstract | We report an in situ electrophoretic anodization process to realize a binary semiconductor heterojunction photocatalyst comprising green-emitting, water-soluble carbon nitride (CN) nanoparticles (NPs) embedded in TiO₂ nanotube (TNT) arrays. Embedding CN inside a TiO₂ matrix eliminates the possibility of the CNNPs leaching away during photocatalysis or photoelectrochemistry. The synthesized CN exhibits visible light absorption down to 600 nm and an unusually redshifted green emission peak at 527 nm, which are attributed to a carbon rich g-C₃N₄ composition with a C:N ratio of ∼ 1.9 at the surface. Spectroscopy revealed the excess carbon to be both amorphous and graphitic while the structural features characteristic of g-C₃N₄ were preserved. Raman spectroscopy, transmission electron microscopy (TEM), electron energy-loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) analysis verified the formation of the heterostructure as well as indicated strong interaction between the CN and TiO₂ in the hybrid. The CNNP@TNT hybrid demonstrated superior performance in sunlight driven photocatalytic CO₂ reduction without the need for a sacrificial agent. The CO yield of photoreduction showed a more than threefold improvement for the CNNP@TNT hybrid compared to the stand-alone TNT photocatalyst. The synergistic enhancement of photocatalytic performance emerged due to the formation of a high-quality interface between the constituent semiconductors (TiO₂ and CN) that facilitated efficient charge carrier separation. Density functional theory (DFT) calculations showed the feasibility of efficient photogenerated electron-hole pair separation at the heterointerface. Molecular dynamics (MD) simulations validated the facile dispersibility of CNNPs in water and polar solvents. |
---|
Publication date | 2022-12-21 |
---|
Publisher | Elsevier |
---|
In | |
---|
Language | English |
---|
Peer reviewed | Yes |
---|
Identifier | S1385894722065482 |
---|
NRC number | NRC-NANO-243 |
---|
Export citation | Export as RIS |
---|
Report a correction | Report a correction (opens in a new tab) |
---|
Record identifier | 45a46e7d-ce1b-4e99-ad50-0f2715b84546 |
---|
Record created | 2023-02-03 |
---|
Record modified | 2023-02-10 |
---|