Abstract | The influence of plasma gas composition on the operating and analytical characteristics of a furnace atomization plasma emission source (FAPES) is presented. He I and Ar I excitation temperatures increase 30% in the mixed gas plasmas whereas argon ion excitation temperatures decrease from 33 000 K to 26 000 K in the presence of He. Collisional exchange of internal energy between excited states of Ar and He accounts for these changes. Average analyte ionization temperatures (for Cr, Mn, Mg, Co, Fe, Cd and Zn), derived from the relative emission intensities of their ionic and atomic lines in a 40-MHz 50-W plasma, increase from 5270 K to 6740 K with the addition of Ar to He. Ionic line intensities increase from 10-fold (Mn) to 40-fold (Cd, Zn) with addition of Ar to the plasma while atomic line intensities increase only twofold. Limits of detection remain substantially unaltered for atomic transitions due to increased noise but are improved twofold (Cd) to 24-fold (Mn) for ionic transitions. The analytical advantages and disadvantages of mixed gas plasmas are discussed. The Ne I excitation temperature at 40 MHz and 50 W was determined to be 4330±80 K. |
---|