DOI | Resolve DOI: https://doi.org/10.1115/GT2014-25409 |
---|
Author | Search for: Gorski, Jan; Search for: Chishty, Wajid Ali1; Search for: Johnson, Matthew |
---|
Affiliation | - National Research Council of Canada. Aerospace
|
---|
Format | Text, Article |
---|
Conference | ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, June 16-20, 2014, Düsseldorf, Germany |
---|
Subject | syngas; flames |
---|
Abstract | The motivation for the work comes from the requirement to assess the feasibility of using alternative fuels in lean-premixed land-based stationary gas turbine combustion systems. Lean-premixed systems are prone to combustion instability issues and the need is to determine how the use of alternative fuels would affect such instabilities.
The paper presents the results of an acoustically-forced laminar flat flame study that was conducted to measure the influence of flow velocity oscillations on the response of syngas flames under various operating conditions and in comparison to natural gas flames.
The results indicate that syngas concentration in a methane-syngas-air mixture significantly affects the flame response. On the other hand, the ratio of hydrogen-to-carbon monoxide in the syngas was found to have a negligible effect on the flame response for a fuel blend made up of 50% methane and 50% syngas. Flame liftoff distance and flame speed were found to be important parameters that govern the flame transfer function magnitude and resonant frequency for a thermally stabilized flat flame. The paper also presents insights into flame transfer function scaling based on a refined Strouhal definition. |
---|
Publication date | 2014-06-16 |
---|
Publisher | ASME |
---|
In | |
---|
Language | English |
---|
Peer reviewed | Yes |
---|
NPARC number | 23000025 |
---|
Export citation | Export as RIS |
---|
Report a correction | Report a correction (opens in a new tab) |
---|
Record identifier | 124c8242-da7f-412c-ad02-fb51814901c1 |
---|
Record created | 2016-05-30 |
---|
Record modified | 2020-04-22 |
---|