
https://doi.org/10.4224/8914200

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien

DOI ci-dessous.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Empirical Evaluation of Four Tensor Decomposition Algorithms
Turney, Peter

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=cec52f79-4832-4d46-9142-e68b71a777e9

https://publications-cnrc.canada.ca/fra/voir/objet/?id=cec52f79-4832-4d46-9142-e68b71a777e9

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Empirical Evaluation of Four Tensor

Decomposition Algorithms *

Turney, P.
November 2007

* published as NRC/ERB-1152. 30 pages. November 8, 2007. NRC 49877.

Copyright 2007 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables

from this report, provided that the source of such material is fully acknowledged.

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Empirical Evaluat ion of Four

Tensor Decomposit ion

Algorithms

Turney, P.
November 2007

Copyright 2007 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

ERB-1152

NRC 49877

Empirical Evaluation of Four Tensor Decomposition Algorithms
Peter D. Turney

Institute for Information Technology
National Research Council of Canada

M-50 Montreal Road
Ottawa, Ontario, Canada

K1A 0R6
peter.turney@nrc-cnrc.gc.ca

Technical Report ERB-1152, NRC-49877
November 12, 2007

Abstract

Higher-order tensor decompositions are
analogous to the familiar Singular Value De-

composition (SVD), but they transcend the

limitations of matrices (second-order ten-

sors). SVD is a powerful tool that has
achieved impressive results in information

retrieval, collaborative filtering, computa-

tional linguistics, computational vision, and

other fields. However, SVD is limited to
two-dimensional arrays of data (two modes),

and many potential applications have three

or more modes, which require higher-order

tensor decompositions. This paper evalu-
ates four algorithms for higher-order ten-

sor decomposition: Higher-Order Singular

Value Decomposition (HO-SVD), Higher-

Order Orthogonal Iteration (HOOI), Slice
Projection (SP), and Multislice Projection

(MP). We measure the time (elapsed run

time), space (RAM and disk space require-

ments), and fit (tensor reconstruction accu-
racy) of the four algorithms, under a vari-

ety of conditions. We find that standard im-

plementations of HO-SVD and HOOI do not

scale up to larger tensors, due to increasing
RAM requirements. We recommend HOOI

for tensors that are small enough for the

available RAM and MP for larger tensors.

1 Introduction

Singular Value Decomposition (SVD) is growing
increasingly popular as a tool for the analysis of

two-dimensional arrays of data, due to its success

in a wide variety of applications, such as informa-

tion retrieval (Deerwester et al., 1990), collabora-
tive filtering (Billsus and Pazzani, 1998), compu-

tational linguistics (Schütze, 1998), computational

vision (Brand, 2002), and genomics (Alter et al.,

2000). SVD is limited to two-dimensional arrays

(matrices or second-order tensors), but many appli-

cations require higher-dimensional arrays, known as
higher-order tensors.

There are several higher-order tensor decompo-

sitions, analogous to SVD, that are able to cap-
ture higher-order structure that cannot be modeled

with two dimensions (two modes). Higher-order

generalizations of SVD include Higher-Order Sin-

gular Value Decomposition (HO-SVD) (De Lath-
auwer et al., 2000a), Tucker decomposition (Tucker,

1966), and PARAFAC (parallel factor analysis)

(Harshman, 1970), which is also known as CAN-

DECOMP (canonical decomposition) (Carroll and
Chang, 1970).

Higher-order tensors quickly become unwieldy.

The number of elements in a matrix increases
quadratically, as the product of the number of rows

and columns, but the number of elements in a third-

order tensor increases cubically, as a product of the

number of rows, columns, and tubes. Thus there is
a need for tensor decomposition algorithms that can

handle large tensors.

In this paper, we evaluate four algorithms

for higher-order tensor decomposition: Higher-
Order Singular Value Decomposition (HO-SVD)

(De Lathauwer et al., 2000a), Higher-Order Orthog-

onal Iteration (HOOI) (De Lathauwer et al., 2000b),

Slice Projection (SP) (Wang and Ahuja, 2005), and
Multislice Projection (MP) (introduced here). Our

main concern is the ability of the four algorithms to

scale up to large tensors.

In Section 2, we motivate this work by listing

some of the applications for higher-order tensors. In

any field where SVD has been useful, there is likely

to be a third or fourth mode that has been ignored,
because SVD only handles two modes.

The tensor notation we use in this paper is pre-

sented in Section 3. We follow the notational con-

ventions of Kolda (2006).

Section 4 presents the four algorithms, HO-SVD,
HOOI, SP, and MP. For HO-SVD and HOOI, we

used the implementations given in the MATLAB

Tensor Toolbox (Bader and Kolda, 2007a; Bader and

Kolda, 2007b). For SP and MP, we created our own
MATLAB implementations. Our implementation of

MP for third-order tensors is given in the Appendix.

Section 5 presents our empirical evaluation of the
four tensor decomposition algorithms. In the ex-

periments, we measure the time (elapsed run time),

space (RAM and disk space requirements), and fit

(tensor reconstruction accuracy) of the four algo-
rithms, under a variety of conditions.

The first group of experiments looks at how the

algorithms scale as the input tensors grow increas-
ingly larger. We test the algorithms with random

sparse third-order tensors as input. HO-SVD and

HOOI exceed the available RAM when given larger

tensors as input, but SP and MP are able to process
large tensors with low RAM usage and good speed.

HOOI provides the best fit, followed by MP, then SP,

and lastly HO-SVD.

The second group of experiments examines the

sensitivity of the fit to the balance in the ratios of

the core sizes (defined in Section 3). The algorithms

are tested with random sparse third-order tensors as
input. In general, the fit of the four algorithms fol-

lows the same pattern as in the first group of exper-

iments (HOOI gives the best fit, then MP, SP, and

HO-SVD), but we observe that SP is particularly
sensitive to unbalanced ratios of the core sizes.

The third group explores the fit with varying ratios

between the size of the input tensor and the size of
the core tensor. For this group, we move from third-

order tensors to fourth-order tensors. The algorithms

are tested with random fourth-order tensors, with the

input tensor size fixed while the core sizes vary. The
fit of the algorithms follows the same pattern as in

the previous two groups of experiments, in spite of

the move to fourth-order tensors.

The final group measures the performance with

a real (nonrandom) tensor that was generated for a

task in computational linguistics. The fit follows the

same pattern as in the previous three groups of ex-
periments. Furthermore, the differences in fit are re-

flected in the performance on the given task. This

experiment validates the use of random tensors in

the previous three groups of experiments.

We conclude in Section 6. There are tradeoffs

in time, space, and fit for the four algorithms, such

that there is no absolute winner among the four algo-

rithms. The choice will depend on the time, space,

and fit requirements of the given application. If good

fit is the primary concern, we recommend HOOI for
smaller tensors that can fit in the available RAM, and

MP for larger tensors.

2 Applications

A good survey of applications for tensor decompo-
sitions for data analysis is Acar and Yener (2007),

which lists several applications, including electroen-

cephalogram (EEG) data analysis, spectral analysis

of chemical mixtures, computer vision, and social
network analysis. Kolda (2006) also lists various

applications, such as psychometrics, image analysis,

graph analysis, and signal processing.

We believe that a natural place to look for appli-

cations for tensor decompositions is wherever SVD

has proven useful. We have grown accustomed to
thinking of data in terms of two-dimensional tables

and matrices; in terms of what we can handle with

SVD. However, real applications often have many

more modes, which we have been ignoring.

In information retrieval (Deerwester et al., 1990),

SVD is typically applied to a term × document ma-

trix, where each row represents a word and each col-
umn represents a document in the collection. An

element in the matrix is a weight that represents the

importance of the given word in the given document.
SVD smoothes the weights, so that a document d
will have a nonzero weight for a word w if d is simi-

lar to other documents that contain the word w, even

if d does not contain actually contain w. Thus a
search for w will return the document d, thanks to

the smoothing effect of SVD.

To extend the term-document matrix to a third-
order tensor, it would be natural to add information

such as author, date of publication, citations, and

venue (e.g., the name of the conference or journal).
For example, Dunlavy et al. (2006) used a tensor

to combine information from abstracts, titles, key-

words, authors, and citations. Chew et al. (2007) ap-

plied a tensor decomposition to a term × document
× language tensor, for cross-language information

retrieval. Sun et al. (2006) analyzed an author ×
keyword × date tensor.

In collaborative filtering (Billsus and Pazzani,

1998), SVD is usually applied to a user × item ma-

trix, in which each row represents a person and each

column represent an item, such as a movie or a book.
An element in the matrix is a rating by the given user

for the given item. Most of the elements in the ma-

2

trix are missing, because each user has only rated a

few items. When a zero element represents a miss-

ing rating, SVD can be used to guess the missing

ratings, based on the nonzero elements.

The user-item matrix could be extended to a third-
order tensor by adding a variety of information, such

as the words used to describe an item, the words

used to describe the interests of a user, the price of

an item, the geographical location of a user, and the
age of a user. For example, Mahoney et al. (2006)

and Xu et al. (2006) applied tensor decompositions

to collaborative filtering.

In computational linguistics, SVD is often applied

in semantic space models of word meaning. For ex-
ample, Landauer and Dumais (1997) applied SVD to

a word × document matrix, achieving human-level

scores on multiple-choice synonym questions from

the TOEFL test. Turney (2006) applied SVD to a
word-pair × pattern matrix, reaching human-level

scores on multiple-choice analogy questions from

the SAT test.

In our recent work, we have begun exploring ten-

sor decompositions for semantic space models. We
are currently developing a word × pattern × word

tensor that can used for both synonyms and analo-

gies. The experiments in Section 5.4 evaluate the

four tensor decomposition algorithms using this ten-
sor to answer multiple-choice TOEFL questions.

In computational vision, SVD is often applied to

image analysis (Brand, 2002). To work with the

two-mode constraint of SVD, an image, which is

naturally two-dimensional, is mapped to a vector.
For example, in face recognition, SVD is applied to

a face × image-vector matrix, in which each row is

a vector that encodes an image of a person’s face.

Wang and Ahuja (2005) pointed out that this two-
mode approach to image analysis is ignoring essen-

tial higher-mode structure in the data. The experi-

ments in Wang and Ahuja (2005) demonstrate that

higher-order tensor decompositions can be much
more effective than SVD.

In summary, wherever SVD has been useful, we

expect there are higher-order modes that have been

ignored. With algorithms that can decompose large

tensors, it is no longer necessary to ignore these
modes.

3 Notation

This paper follows the notational conventions of

Kolda (2006). Tensors of order three or higher
are represented by bold script letters, X. Matrices

(second-order tensors) are denoted by bold capital

letters, A. Vectors (first-order tensors) are denoted

by bold lowercase letters, b. Scalars (zero-order ten-

sors) are represented by lowercase italic letters, i.
The i-th element in a vector b is indicated by bi.

The i-th row in a matrix A is denoted by ai:, the j-th

column is given by a:j , and the element in row i and
column j is represented by aij .

A third-order tensor X has rows, columns, and
tubes. The element in row i, column j, and tube

k is represented by xijk. The row vector that con-

tains xijk is denoted by xi:k, the column vector is

x:jk, and the tube vector is xij:. In general, the vec-
tors in a tensor (e.g., the rows, columns, and tubes

in a third-order tensor) are called fibers. There are

no special names (beyond rows, columns, and tubes)

for fibers in tensors of order four and higher.

A third-order tensor X contains matrices, called

slices. The horizontal, lateral, and frontal slices of X

are represented by Xi::, X:j:, and X::k, respectively.

The concept of slices also applies to tensors of order

four and higher.

An index i ranges from 1 to I; that is, the upper

bound on the range of an index is given by the upper-

case form of the index letter. Thus the size of a ten-
sor X is denoted by uppercase scalars, I1 × I2 × I3.

There are several kinds of tensor products, but we
only need the n-mode product in this paper. The

n-mode product of a tensor X and a matrix A is

written as X ×n A. Let X be of size I1 × I2 × I3

and let A be of size J1 × J2. The n-mode prod-
uct X ×n A multiplies fibers in mode n of X with

row vectors in A. Therefore n-mode multiplication

requires that In = J2. The result of X ×n A is a

tensor with the same order (same number of modes)
as X, but with the size In replaced by J1. For ex-

ample, the result of X×3 A is of size I1 × I2 × J1,

assuming I3 = J2.

Let X be an N -th order tensor of size I1×. . .×IN

and let A be a matrix of size J × In. Suppose that

Y = X ×n A. Thus Y is of size I1 × . . . × In−1 ×
J × In+1× . . .× IN . The elements of Y are defined

as follows:

yi1...in−1jin+1...iN =

In
∑

in=1

xi1...iN ajin (1)

The transpose of a matrix A is written as A
T. We

may think of the classical matrix product AB as a
special case of n-mode product:

AB = A×2 B
T = B×1 A (2)

3

Fibers in mode two of A (row vectors) are multi-

plied with row vectors in B
T, which are column vec-

tors (mode one) in B.

A tensor X can be unfolded into a matrix, which
is called matricization. The n-mode matricization of

X is written X(n), and is formed by taking the mode

n fibers of X and making them column vectors in

X(n). Let X be a tensor of size I1 × I2 × I3. The

one-mode matricization X(1) is of size I1× (I2 I3):

X(1) = [x:11 x:21 . . . x:I2I3] (3)

= [X::1 X::2 . . . X::I3] (4)

Similarly, the two-mode matricization X(2) is of size

I2 × (I1 I3):

X(2) = [x1:1 x2:1 . . . xI1:I3] (5)

= [XT

::1 X
T

::2 . . . X
T

::I3] (6)

Note that Y = X×nA if and only if Y(n) = AX(n).

Thus n-mode matricization relates the classical ma-
trix product to the n-mode tensor product. In the

special case of second-order tensors, C(1) = C and

C(2) = C
T, hence C = B ×1 A if and only if

C = AB. Likewise C = B ×2 A if and only if
C

T = AB
T.

Let G be a tensor of size J1 × . . . × JN . Let

A
(1), . . . ,A(N) be matrices such that A(n) is of size

In × Jn. The Tucker operator is defined as follows
(Kolda, 2006):

JG ;A(1),A(2), . . . ,A(N)K

≡ G×1 A
(1) ×2 A

(2) . . . ×N A
(N) (7)

The resulting tensor is of size I1 × . . . × IN .

Let X be a tensor of size I1×. . .×IN . The Tucker
decomposition of X has the following form (Tucker,

1966; Kolda, 2006):

X ≈ JG ;A(1), . . . ,A(N)K (8)

The tensor G is called the core of the decomposition.

Let G be of size J1× . . .× JN . Each matrix A
(n) is

of size In × Jn.

The n-rank of a tensor X is the rank of the ma-

trix X(n). For a second-order tensor, the one-rank

necessarily equals the two-rank, but this is not true
for higher-order tensors. If Jn is equal to the n-rank

of X for each n, then it is possible for the Tucker

decomposition to exactly equal X. In general, we

want Jn less than the n-rank of X for each n, yield-

ing a core G that has lower n-ranks than X, analo-

gous to a truncated (thin) SVD. In the special case
of a second-order tensor, the Tucker decomposition

X ≈ JS ;U,VK is equivalent to the thin SVD,

X ≈ USV
T.

Suppose we have a tensor X and its Tucker de-

composition X̂ = JG ;A(1), . . . ,A(N)K, such that

X ≈ X̂. In the experiments in Section 5, we mea-

sure the fit of the decomposition X̂ to the original X

as follows:

fit(X, X̂) = 1−

∥

∥

∥

X− X̂

∥

∥

∥

F

‖X‖F
(9)

The Frobenius norm of a tensor X, ‖X‖F , is the
square root of the sum of the absolute squares of

its elements. The fit is a normalized measure of the

error in reconstructing X from its Tucker decompo-

sition X̂. When X = X̂, the fit is 1; otherwise, it

is less than 1, and it may be negative when the fit is
particularly poor.

The equivalence between the n-mode tensor prod-

uct and the classical matrix product with n-mode

matricization suggests that tensors might be merely
a new notation; that there may be no advantage to

using the Tucker decomposition with tensors instead

of using SVD with unfolded (matricized) tensors.

Perhaps the different layers (slices) of the tensor do
not actually interact with each other in any interest-

ing way. This criticism would be appropriate if the

Tucker decomposition used only one mode, but the

decomposition uses all N modes of X. Because all
modes are used, the layers of the tensor are thor-

oughly mixed together.

For example, suppose X ≈ JG ;A,B,CK. Let

Xi:: be a slice of X. There is no slice of G, say
Gj::, such that we can reconstruct Xi:: from Gj::,

using A, B, and C. We need all of G in order to

reconstruct Xi::.

All four of the algorithms that we examine in
this paper perform the Tucker decomposition. One

reason for our focus on the Tucker decomposition

is that Bro and Andersson (1998) showed that the

Tucker decomposition can be combined with other
tensor decompositions, such as PARAFAC (Harsh-

man, 1970; Carroll and Chang, 1970). In general,

algorithms for the Tucker decomposition scale to

large tensors better than most other tensor decom-
position algorithms; therefore it is possible to im-

prove the speed of other algorithms by first com-

4

pressing the tensor with the Tucker decomposition.

The slower algorithm (such as PARAFAC) is then

applied to the (relatively small) Tucker core, instead

of the whole (large) input tensor (Bro and Ander-
sson, 1998). Thus an algorithm that can perform

the Tucker decomposition with large tensors makes

it possible for other kinds of tensor decompositions

to be applied to large tensors.

4 Algorithms

This section introduces the four tensor decompo-
sition algorithms. All four algorithms take as in-

put an arbitrary tensor X and a desired core size

J1 × . . . × JN and generate as output a Tucker de-

composition X̂ = JG ;A(1), . . . ,A(N)K, in which

the matrices A
(n) are orthonormal.

For HO-SVD (Higher-Order Singular Value De-

composition) and HOOI (Higher-Order Orthogonal

Iteration), we show the algorithms specialized for
third-order tensors and generalized for arbitrary ten-

sors. For SP (Slice Projection) and MP (Multislice

Projection), we present the algorithms for third-

order and fourth-order tensors and leave the gen-
eralization for arbitrary tensors as an excercise for

the reader. (There is a need for a better notation, to

write the generalization of SP and MP to arbitrary

tensors.)

4.1 Higher-Order SVD

Figure 1 presents the HO-SVD algorithm for third-
order tensors. Figure 2 gives the generalization of

HO-SVD for tensors of arbitrary order (De Lath-

auwer et al., 2000a; Kolda, 2006). In the follow-

ing experiments, we used the implementation of
HO-SVD in the MATLAB Tensor Toolbox (Bader

and Kolda, 2007b). HO-SVD is not a distinct func-

tion in the Toolbox, but it is easily extracted from the

Tucker Alternating Least Squares function, where it
is a component.

HO-SVD does not attempt to optimize the fit,

fit(X, X̂) (Kolda, 2006). That is, HO-SVD does

not produce an optimal rank-J1, . . . , JN approxi-
mation to X, because it optimizes for each mode

separately, without considering interactions among

the modes. However, we will see in Section 5 that

HO-SVD often produces a reasonable approxima-
tion, and it is relatively fast. For more information

about HO-SVD, see De Lathauwer et al. (2000a).

4.2 Higher-Order Orthogonal Iteration

Figure 3 presents the HOOI algorithm for third-

order tensors. Figure 4 gives the generalization of

HOOI for tensors of arbitrary order (De Lathauwer

et al., 2000b; Kolda, 2006). HOOI is implemented

in the MATLAB Tensor Toolbox (Bader and Kolda,

2007b), in the Tucker Alternating Least Squares
function.

HOOI uses HO-SVD to initialize the matrices, be-

fore entering the main loop. The implementation in

the MATLAB Tensor Toolbox gives the option of
using a random initialization, but initialization with

HO-SVD usually results in a better fit.

In the main loop, each matrix is optimized in-
dividually, while the other matrices are held fixed.

This general method is called Alternating Least

Squares (ALS). HOOI, SP, and MP all use ALS.

The main loop terminates when the change in fit
drops below a threshold or when the number of itera-

tions reaches a maximum, whichever comes first. To

calculate the fit for each iteration, HOOI first calcu-

lates the core G using JX ;A(1)T, . . . ,A(N)TK, and

then calculates X̂ from JG ;A(1), . . . ,A(N)K. The
change in fit is the fit of the Tucker decomposition

after the t-th iteration of the main loop minus the fit

from the previous iteration:

∆fit(t) = fit(X, X̂
(t)

)− fit(X, X̂
(t−1)

) (10)

In the experiments, we set the threshold for ∆fit(t) at

10−4 and we set the maximum number of iterations

at 50. (These are the default values in the MATLAB

Tensor Toolbox.) The main loop usually terminated
after half a dozen iterations or fewer, with ∆fit(t)
less than 10−4.

As implemented in the MATLAB Tensor Tool-

box, calculating the HO-SVD initialization, the in-
termediate tensor Z, and the change in fit, ∆fit(t),
requires bringing the entire input tensor X into

RAM. Although sparse representations are used, this

requirement limits the size of the tensors that we can
process, as we see in Section 5.1. For more informa-

tion about HOOI, see De Lathauwer et al. (2000b)

and Kolda (2006).

4.3 Slice Projection

Figure 5 presents the SP algorithm for third-order

tensors (Wang and Ahuja, 2005). Although Wang
and Ahuja (2005) do not discuss tensors beyond the

third-order, the SP algorithm generalizes to tensors

of arbitrary order. For example, Figure 6 shows SP

for fourth-order tensors.

Instead of using HO-SVD, Wang and Ahuja

(2005) initialize SP randomly, to avoid bringing X

5

in: Tensor X of size I1 × I2 × I3.

in: Desired rank of core: J1 × J2 × J3.

A← J1 leading eigenvectors of X(1)X
T

(1) – X(1) is the unfolding of X on mode 1

B← J2 leading eigenvectors of X(2)X
T

(2)

C← J3 leading eigenvectors of X(3)X
T

(3)

G← JX ;AT,BT,CTK

out: G of size J1 × J2 × J3 and orthonormal matrices A of
size I1 × J1, B of size I2 × J2, and C of size I3 × J3,

such that X ≈ JG ;A,B,CK.

Figure 1: Higher-Order Singular Value Decomposition for third-order tensors (De Lathauwer et al., 2000a).

in: Tensor X of size I1 × I2 × · · · × IN .

in: Desired rank of core: J1 × J2 × · · · × JN .

for n = 1, . . . , N do
A

(n) ← Jn leading eigenvectors of X(n)X
T

(n) – X(n) is the unfolding of X on mode n

end for

G← JX ;A(1)T, . . . ,A(N)TK

out: G of size J1 × J2 × · · · × JN and orthonormal matrices

A
(n) of size In × Jn such that X ≈ JG ;A(1), . . . ,A(N)K.

Figure 2: Higher-Order Singular Value Decomposition for tensors of arbitrary order (De Lathauwer et al.,

2000a).

6

in: Tensor X of size I1 × I2 × I3.

in: Desired rank of core: J1 × J2 × J3.

B← J2 leading eigenvectors of X(2)X
T

(2) – initialization via HO-SVD

C← J3 leading eigenvectors of X(3)X
T

(3)

while not converged do – main loop

U← JX ; I1,B
T,CTK

A← J1 leading eigenvectors of U(1)U
T

(1)

V← JX ;AT, I2,C
TK

B← J2 leading eigenvectors of V(2)V
T

(2)

W← JX ;AT,BT, I3K
C← J3 leading eigenvectors of W(3)W

T

(3)

end while

G← JX ;AT,BT,CTK

out: G of size J1 × J2 × J3 and orthonormal matrices A of

size I1 × J1, B of size I2 × J2, and C of size I3 × J3,

such that X ≈ JG ;A,B,CK.

Figure 3: Higher-Order Orthogonal Iteration for third-order tensors (De Lathauwer et al., 2000b; Kolda,

2006). Note that it is not necessary to initialize A, since the while loop sets A using B and C. Ii is the

identity matrix of size Ii × Ii.

in: Tensor X of size I1 × I2 × · · · × IN .

in: Desired rank of core: J1 × J2 × · · · × JN .

for n = 2, . . . , N do – initialization via HO-SVD

A
(n) ← Jn leading eigenvectors of X(n)X

T

(n)

end for

while not converged do – main loop

for n = 1, . . . , N do
Z← JX ;A(1)T, . . . ,A(n−1)T, In,A(n+1)T, . . . ,A(N)TK
A

(n) ← Jn leading eigenvectors of Z(n)Z
T

(n)

end for
end while

G← JX ;A(1)T, . . . ,A(N)TK

out: G of size J1 × J2 × · · · × JN and orthonormal matrices

A
(n) of size In × Jn such that X ≈ JG ;A(1), . . . ,A(N)K.

Figure 4: Higher-Order Orthogonal Iteration for tensors of arbitrary order (De Lathauwer et al., 2000b;

Kolda, 2006). In is the identity matrix of size In × In.

7

in: Tensor X of size I1 × I2 × I3.
in: Desired rank of core: J1 × J2 × J3.

C← random matrix of size I3 × J3 – normalize columns to unit length

while not converged do – main loop

M13 ←

I2
∑

i=1

X:i:CC
T
X

T

:i:
– slices on mode 2

A← J1 leading eigenvectors of M13M
T

13

M21 ←

I3
∑

i=1

X
T

::iAA
T
X::i

– slices on mode 3

B← J2 leading eigenvectors of M21M
T

21

M32 ←

I1
∑

i=1

X
T

i::BB
T
Xi::

– slices on mode 1

C← J3 leading eigenvectors of M32M
T

32
end while

G← JX ;AT,BT,CTK

out: G of size J1 × J2 × J3 and orthonormal matrices A of

size I1 × J1, B of size I2 × J2, and C of size I3 × J3,

such that X ≈ JG ;A,B,CK.

Figure 5: Slice Projection for third-order tensors (Wang and Ahuja, 2005). Note that it is not necessary to

initialize A and B.

8

in: Tensor X of size I1 × I2 × I3 × I4.

in: Desired rank of core: J1 × J2 × J3 × J4.

D← random matrix of size I4 × J4 – normalize columns to unit length

while not converged do – main loop

M14 ←

I2
∑

i=1

I3
∑

j=1

X:ij:DD
T
X

T

:ij:
– slices on modes 2 and 3

A← J1 leading eigenvectors of M14M
T
14

M21 ←

I3
∑

i=1

I4
∑

j=1

X
T

::ijAA
T
X::ij

– slices on modes 3 and 4

B← J2 leading eigenvectors of M21M
T
21

M32 ←

I1
∑

i=1

I4
∑

j=1

X
T

i::jBB
T
Xi::j

– slices on modes 1 and 4

C← J3 leading eigenvectors of M32M
T
32

M43 ←

I1
∑

i=1

I2
∑

j=1

X
T

ij::CC
T
Xij::

– slices on modes 1 and 2

D← J4 leading eigenvectors of M43M
T
43

end while

G← JX ;AT,BT,CT,DTK

out: G of size J1 × J2 × J3 × J4 and orthonormal matrices
A of size I1 × J1, B of size I2 × J2, C of size I3 × J3,

and D of size I4 × J4, such that X ≈ JG ;A,B,C,DK.

Figure 6: Slice Projection for fourth-order tensors.

9

into RAM. In Figure 5, the matrix C is is filled with

random numbers from the uniform distribution over

[0, 1] and then the columns are normalized.

Note that HO-SVD calculates each matrix from X

alone, whereas HOOI calculates each matrix from

X and all of the other matrices. SP lies between

HO-SVD and HOOI, in that it calculates each matrix
from X and one other matrix.

In the main loop, the input tensor X is processed
one slice at a time, again to avoid bringing the whole

tensor into RAM. Before entering the main loop, the

first step is to calculate the slices and store each slice

in a file. MP requires this same first step. The MAT-
LAB source code for MP, given in the Appendix,

shows how we calculate the slices of X without

bringing all of X into RAM.

Our approach to constructing the slice files as-

sumes that the input tensor is given in a sparse rep-

resentation, in which each nonzero element of the

tensor is described by one line in a file. The descrip-
tion consists of the indices that specify the location

of the nonzero element, followed by the value of the

nonzero element. For example, the element xijk of

a third-order tensor X is described as 〈i, j, k, xijk〉.
To calculate the n-mode slices, we first sort the in-

put tensor file by mode n. For example, we generate

two-mode slices by sorting on j, the second column

of the input file. This puts all of the elements of an
n-mode slice together consecutively in the file. Af-

ter sorting on mode n, we can read the sorted file

one slice at a time, writing each mode n slice to its

own unique file.

To sort the input file, we use the Unix sort com-

mand. This command allows the user to specify the

amount of RAM used by the sort buffer. In the fol-
lowing experiments, we arbitrarily set the buffer to

4 GiB, half the available RAM. (For Windows, the

Unix sort command is included in Cygwin.)

The main loop terminates after a maximum num-

ber of iterations or when the core stops growing,

whichever comes first. The growth of the core is
measured as follows:

∆G(t) = 1−

∥

∥

∥
G(t−1)

∥

∥

∥

F
∥

∥

∥

G(t)
∥

∥

∥

F

(11)

In this equation, G(t) is the core after the t-th iter-

ation. We set the threshold for ∆G(t) at 10−4 and

we set the maximum number of iterations at 50. The
main loop usually terminated after half a dozen iter-

ations or fewer, with ∆G(t) less than 10−4.

SP uses ∆G(t) as a proxy for ∆fit(t), to avoid

bringing X into RAM. With each iteration, as the

estimates for the matrices improve, the core captures

more of the variation in X, resulting in growth of the
core. It is not necessary to bring X into RAM in or-

der to calculate G(t); we can calculate G(t) one slice
at a time, as given in the Appendix.

For more information about SP, see Wang and

Ahuja (2005). Wang et al. (2005) introduced another

low RAM algorithm for higher-order tensors, based

on blocks instead of slices.

4.4 Multislice Projection

Figure 7 presents the MP algorithm for third-order

tensors. The MP algorithm generalizes to arbitrary

order. Figure 8 shows MP for fourth-order tensors.

The basic structure of MP is taken from SP, but

MP takes three ideas from HOOI: (1) use HO-SVD

to initialize, instead of random initialization, (2) use

fit to determine convergence, instead of using the
growth of the core, (3) use all of the other matri-

ces to calculate a given matrix, instead of using only

one other matrix. Like SP, MP begins by calculating

all of the slices of the input tensor and storing each
slice in a file. See the Appendix for details.

We call the initialization pseudo HO-SVD initial-

ization, because it is not exactly HO-SVD, as can be

seen by comparing the initialization in Figure 3 with

the initialization in Figure 7. Note that X(2) in Fig-

ure 3 is of size I2× (I1 I3), whereas M2 in Figure 7

is of size I2 × I2, which is usually much smaller.

HO-SVD brings the whole tensor into RAM, but
pseudo HO-SVD processes one slice at a time.

The main loop terminates when the change in fit

drops below a threshold or when the number of it-

erations reaches a maximum, whichever comes first.

We calculate the fit one slice at a time, as given in
the Appendix; it is not necessary to bring the whole

input tensor into RAM in order to calculate the fit.

We set the threshold for ∆fit(t) at 10−4 and we set

the maximum number of iterations at 50. The main
loop usually terminated after half a dozen iterations

or fewer, with ∆fit(t) less than 10−4.

The most significant difference between SP and

MP is that MP uses all of the other matrices to cal-

culate a given matrix. For example, M13 in Figure 5
is based on X and C, whereas the corresponding M1

in Figure 7 is based on X, B, and C. In this respect,

MP is like HOOI, as we can see with the correspond-

ing U in Figure 3. By slicing on two modes, instead
of only one, we improve the fit of the tensor, as we

shall see in the next section.

10

in: Tensor X of size I1 × I2 × I3.
in: Desired rank of core: J1 × J2 × J3.

M2 ←

I1
∑

i=1

Xi::X
T

i:: +

I3
∑

i=1

X
T

::iX::i
– pseudo HO-SVD initialization

B← J2 leading eigenvectors of M2M
T
2

M3 ←

I1
∑

i=1

X
T

i::Xi:: +

I2
∑

i=1

X
T

:i:X:i:

C← J3 leading eigenvectors of M3M
T
3

while not converged do – main loop

M1 ←

I3
∑

i=1

X::iBB
T
X

T

::i +

I2
∑

i=1

X:i:CC
T
X

T

:i:
– slices on modes 2 and 3

A← J1 leading eigenvectors of M1M
T
1

M2 ←

I3
∑

i=1

X
T

::iAA
T
X::i +

I1
∑

i=1

Xi::CC
T
X

T

i::
– slices on modes 1 and 3

B← J2 leading eigenvectors of M2M
T
2

M3 ←

I2
∑

i=1

X
T

:i:AA
T
X:i: +

I1
∑

i=1

X
T

i::BB
T
Xi::

– slices on modes 1 and 2

C← J3 leading eigenvectors of M3M
T

3
end while

G← JX ;AT,BT,CTK

out: G of size J1 × J2 × J3 and orthonormal matrices A of

size I1 × J1, B of size I2 × J2, and C of size I3 × J3,

such that X ≈ JG ;A,B,CK.

Figure 7: Multislice Projection for third-order tensors. MATLAB source code for this algorithm is provided
in the Appendix.

11

in: Tensor X of size I1 × I2 × I3 × I4.

in: Desired rank of core: J1 × J2 × J3 × J4.

M2 ←

I3
∑

i=1

I4
∑

j=1

X
T

::ijX::ij +

I1
∑

i=1

I4
∑

j=1

Xi::jX
T

i::j +

I1
∑

i=1

I3
∑

j=1

Xi:j:X
T

i:j:

B← J2 leading eigenvectors of M2M
T

2

M3 ←

I2
∑

i=1

I4
∑

j=1

X
T

:i:jX:i:j +

I1
∑

i=1

I4
∑

j=1

X
T

i::jXi::j +

I1
∑

i=1

I2
∑

j=1

Xij::X
T

ij::

C← J3 leading eigenvectors of M3M
T
3

M4 ←

I2
∑

i=1

I3
∑

j=1

X
T

:ij:X:ij:+

I1
∑

i=1

I3
∑

j=1

X
T

i:j:Xi:j:+

I1
∑

i=1

I2
∑

j=1

X
T

ij::Xij::

D← J4 leading eigenvectors of M4M
T
4

while not converged do

M1 ←

I3
∑

i=1

I4
∑

j=1

X::ijBB
T
X

T

::ij +

I2
∑

i=1

I4
∑

j=1

X:i:jCC
T
X

T

:i:j +

I2
∑

i=1

I3
∑

j=1

X:ij:DD
T
X

T

:ij:

A← J1 leading eigenvectors of M1M
T

1

M2 ←

I3
∑

i=1

I4
∑

j=1

X
T

::ijAA
T
X::ij +

I1
∑

i=1

I4
∑

j=1

Xi::jCC
T
X

T

i::j +

I1
∑

i=1

I3
∑

j=1

Xi:j:DD
T
X

T

i:j:

B← J2 leading eigenvectors of M2M
T

2

M3 ←

I2
∑

i=1

I4
∑

j=1

X
T

:i:jAA
T
X:i:j +

I1
∑

i=1

I4
∑

j=1

X
T

i::jBB
T
Xi::j +

I1
∑

i=1

I2
∑

j=1

Xij::DD
T
X

T

ij::

C← J3 leading eigenvectors of M3M
T
3

M4 ←

I2
∑

i=1

I3
∑

j=1

X
T

:ij:AA
T
X:ij: +

I1
∑

i=1

I3
∑

j=1

X
T

i:j:BB
T
Xi:j: +

I1
∑

i=1

I2
∑

j=1

X
T

ij::CC
T
Xij::

D← J4 leading eigenvectors of M4M
T
4

end while

G← JX ;AT,BT,CT,DTK

out: G of size J1 × J2 × J3 × J4 and orthonormal matrices

A of size I1 × J1, B of size I2 × J2, C of size I3 × J3,
and D of size I4 × J4, such that X ≈ JG ;A,B,C,DK.

Figure 8: Multislice Projection for fourth-order tensors.

12

5 Experiments

This section presents the four groups of experiments.

The hardware for these experiments was a computer

with two dual-core AMD Opteron 64 processors, 8
GiB of RAM, and a 16 GiB swap file. The software

was 64 bit Suse Linux 10.0, MATLAB R2007a, and

MATLAB Tensor Toolbox Version 2.2 (Bader and

Kolda, 2007b). The algorithms only used one of
the four cores; we did not attempt to perform par-

allel processing, although SP and MP could be par-

allelized readily.

The input files are plain text files with one line for

each nonzero value in the tensor. Each line consists
of integers that give the location of the nonzero value

in the tensor, followed by a single real number that

gives the nonzero value itself. The input files are

in text format, rather than binary format, in order to
facilitate sorting the files.

The output files are binary MATLAB files, con-

taining the tensor decompositions of the input files.

The four algorithms generate tensor decompositions

that are numerically different but structurally identi-
cal. That is, the numerical values are different, but,

for a given input tensor, the four algorithms generate

core tensors and matrices of the same size. There-

fore the output file size does not depend on which
algorithm was used.

5.1 Varying Tensor Sizes

The goal of this group of experiments was to eval-

uate the four algorithms on increasingly larger ten-
sors, to discover how their performance scales with

size. HO-SVD and HOOI assume that the input ten-

sor fits in RAM, whereas SP and MP assume that

the input tensor file must be read in blocks. We ex-
pected that HO-SVD and HOOI would eventually

run out of RAM, but we could not predict precisely

how the four algorithms would scale, in terms of fit,

time, and space.

Table 1 summarizes the input test tensors for the
first group of experiments. The test tensors are ran-

dom sparse third-order tensors, varying in size from

2503 to 20003. The number of nonzeros in the ten-

sors varies from 1.6 million to 800 million. The
nonzero values are random samples from a uniform

distribution between zero and one.

Table 2 shows the results of the first group of ex-

periments. HO-SVD and HOOI were only able to

process the first four tensors, with sizes from 2503 to

10003. The 10003 tensor required almost 16 GiB of
RAM. The next tensor, 12503, required more RAM

than was available (24 GiB; 8 GiB of actual RAM

plus a 16 GiB swap file). On the other hand, SP

and MP were able to process all eight tensors, up

to 20003. Larger tensors are possible with SP and

MP; the limiting factor becomes run time, rather
than available RAM.

Figure 9 shows the fit of the four algorithms.

HOOI has the best fit, followed by MP, then SP,
and finally HO-SVD. The curves for HO-SVD and

HOOI stop at 100 million nonzeros (the 10003 ten-

sor), but it seems likely that the same trend would

continue, if sufficient RAM were available to apply
HO-SVD and HOOI to the larger tensors.

The fit is somewhat low, at about 4%, due to the
difficulty of fitting a random tensor with a core size

that is 0.1% of the size of the input tensor. However,

we are interested in the relative ranking of the four

algorithms, rather than the absolute fit. The results
in Section 5.4 show that the ranking we see here, in

Figure 9, is predictive of the relative performance on

a real (nonrandom) task.

Figure 10 shows the RAM use of the algorithms.

As we can see in Table 2, there are two components

to the RAM use of SP and MP, the RAM used by

sort and the RAM used by MATLAB. We arbitrarily
set the sorting buffer to 4 GiB, which sets an upper

bound on the RAM used by sort. A machine with

less RAM could use a smaller sorting buffer. We

have not experimented with the buffer size, but we
expect that the buffer could be made much smaller,

with only a slight increase in run time. The growth

of the MATLAB component of RAM use of SP and

MP is slow, especially in comparison to HO-SVD
and HOOI.

Figure 11 gives the run time. For the smallest ten-

sors, SP and MP take longer to run than HO-SVD
and HOOI, because SP and MP make more use of

files and less use of RAM. With a tensor size of

10003, both HO-SVD and HOOI use up the avail-

able hardware RAM (8 GiB) and need to use the vir-
tual RAM (the 16 GiB swap file), which explains

the sudden upward surge in Figure 11 at 100 million

nonzeros. In general, the run time of SP and MP is

competitive with HO-SVD and HOOI.

The results show that SP and MP can handle much

larger tensors than HO-SVD and HOOI (800 million

nonzeros versus 100 million nonzeros), with only a
small penalty in run time for smaller tensors. How-

ever, HOOI yields a better fit than MP. If fit is impor-

tant, we recommend HOOI for smaller tensors and

MP for larger tensors. If speed is more important,
we recommend HO-SVD for smaller tensors and SP

for larger tensors.

13

Input tensor size Core size Density Nonzeros Input file Output file
(I1 × I2 × I3) (J1 × J2 × J3) (% Nonzero) (Millions) (GiB) (MiB)

250 × 250× 250 25× 25× 25 10 1.6 0.03 0.3

500 × 500× 500 50× 50× 50 10 12.5 0.24 1.5
750 × 750× 750 75× 75× 75 10 42.2 0.81 4.3

1000 × 1000 × 1000 100 × 100× 100 10 100.0 1.93 9.5

1250 × 1250 × 1250 125 × 125× 125 10 195.3 3.88 17.7

1500 × 1500 × 1500 150 × 150× 150 10 337.5 6.85 29.7
1750 × 1750 × 1750 175 × 175× 175 10 535.9 11.03 46.0

2000 × 2000 × 2000 200 × 200× 200 10 800.0 16.64 67.4

Table 1: Random sparse third-order tensors of varying size.

Algorithm Tensor Nonzeros Fit Run time Matlab RAM Sort RAM Total RAM
(Millions) (%) (HH:MM:SS) (GiB) (GiB) (GiB)

HO-SVD 2503 1.6 3.890 00:00:24 0.21 0.00 0.21

HO-SVD 5003 12.5 3.883 00:03:44 1.96 0.00 1.96

HO-SVD 7503 42.2 3.880 00:14:42 6.61 0.00 6.61

HO-SVD 10003 100.0 3.880 01:10:13 15.66 0.00 15.66

HOOI 2503 1.6 4.053 00:01:06 0.26 0.00 0.26

HOOI 5003 12.5 3.982 00:09:52 1.98 0.00 1.98

HOOI 7503 42.2 3.955 00:42:45 6.65 0.00 6.65

HOOI 10003 100.0 3.942 04:01:36 15.74 0.00 15.74

SP 2503 1.6 3.934 00:01:21 0.01 1.41 1.42

SP 5003 12.5 3.906 00:10:21 0.02 4.00 4.03

SP 7503 42.2 3.896 00:34:39 0.06 4.00 4.06

SP 10003 100.0 3.893 01:43:20 0.11 4.00 4.12

SP 12503 195.3 3.890 03:16:32 0.21 4.00 4.22

SP 15003 337.5 3.888 06:01:47 0.33 4.00 4.33

SP 17503 535.9 3.886 09:58:36 0.54 4.00 4.54

SP 20003 800.0 3.885 15:35:21 0.78 4.00 4.79

MP 2503 1.6 3.979 00:01:45 0.01 1.41 1.42

MP 5003 12.5 3.930 00:13:55 0.03 4.00 4.03

MP 7503 42.2 3.914 00:51:33 0.06 4.00 4.07

MP 10003 100.0 3.907 02:21:30 0.12 4.00 4.12

MP 12503 195.3 3.902 05:05:11 0.22 4.00 4.23

MP 15003 337.5 3.899 09:28:49 0.37 4.00 4.37

MP 17503 535.9 3.896 16:14:01 0.56 4.00 4.56

MP 20003 800.0 3.894 25:43:17 0.81 4.00 4.82

Table 2: Performance of the four algorithms with tensors of varying size.

14

1 10 100 1,000
3.86%

3.88%

3.90%

3.92%

3.94%

3.96%

3.98%

4.00%

4.02%

4.04%

4.06%

HOOI
MP
SP

HO-SVD

Nonzeros (millions)

F
it

(p
er

ce
nt

)

Figure 9: The fit of the four algorithms as a function of the number of nonzeros.

1 10 100 1,000
0.1

1.0

10.0

100.0

HOOI

MP

SP
HO-SVD

Nonzeros (millions)

T
ot

al
 R

A
M

 (G
iB

)

Figure 10: The RAM use of the four algorithms as a function of the number of nonzeros. Note that the size

of the sorting buffer for SP and MP was arbitrarily set to 4 GiB.

15

1 10 100 1,000
10

100

1,000

10,000

100,000

HOOI
MP

SP
HO-SVD

Nonzeros (millions)

T
im

e
(s

ec
on

ds
)

Figure 11: The run time of the four algorithms as a function of the number of nonzeros.

5.2 Varying Core Size Ratios

SP is somewhat different from the other three algo-

rithms, in that it has a kind of asymmetry. Compare

M13 in Figure 5 with M1 in Figure 7. We could

have used B instead of C, to calculate A in Fig-
ure 5, but we arbitrarily chose C. We hypothesized

that this asymmetry would make SP sensitive to vari-

ation in the ratios of the core sizes.

In this group of experiments, we vary the ratios

between the sizes of the core in each mode, as listed
in Table 3. The effect of the ratio on the performance

is shown in Table 4. Figure 12 illustrates the effect

of the ratio on the fit. It is clear from the figure that

SP is asymmetrical, whereas HO-SVD, HOOI, and
MP are symmetrical.

This asymmetry of SP might be viewed as a flaw,

and thus a reason for preferring MP over SP, but it

could also be seen as an advantage for SP. In the

case where the ratio is 0.2, SP has a better fit than
MP. This suggests that we might use SP instead of

MP when the ratios between the sizes of the core in

each mode are highly skewed; however, we must be

careful to make sure that SP processes the matrices
in the optimal order for the given core sizes.

Note that the relative ranking of the fit of the

four algorithms is the same as in the previous group

of experiments (best fit to worst: HOOI, MP, SP,
HO-SVD), except in the case of extreme skew. Thus

Figure 12 shows the robustness of the relative rank-

ing.

5.3 Fourth-Order Tensors

This group of experiments demonstrates that the pre-

vious observations regarding the relative ranking of

the fit also apply to fourth-order tensors. The exper-
iments also investigate the effect of varying the size

of the core, with a fixed input tensor size.

Table 5 lists the core sizes that we investigated.
The effect of the core sizes on the performance is

shown in Table 6. Figure 13 shows the impact of

core size on fit.

The fit varies from about 4% with a core of 104

to about 44% with a core of 904. To make the dif-

ferences among the algorithms clearer, we normal-

ized the fit by using HO-SVD as a baseline. The

fit relative to HO-SVD is defined as the percentage
improvement in the fit of the given algorithm, com-

pared to the fit of HO-SVD.

Figure 13 shows that the differences among the

four algorithms are largest when the core is about
504; that is, the size of one mode of the core (50) is

about half of the size of one mode of the input tensor

16

Input tensor size Core size Ratio Density Nonzeros Input file Output file
(I1 × I2 × I3) (J1 × J2 × J3) (J1/J2 = J2/J3) (%) (Millions) (GiB) (MiB)

500 × 500 × 500 250 × 50× 10 5.00 10 12.5 0.24 2.05

500 × 500 × 500 125 × 50× 20 2.50 10 12.5 0.24 1.63
500 × 500 × 500 83× 50× 30 1.66 10 12.5 0.24 1.51

500 × 500 × 500 63× 50× 40 1.26 10 12.5 0.24 1.48

500 × 500 × 500 50× 50× 50 1.00 10 12.5 0.24 1.46

500 × 500 × 500 40× 50× 63 0.80 10 12.5 0.24 1.48
500 × 500 × 500 30× 50× 83 0.60 10 12.5 0.24 1.51

500 × 500 × 500 20 × 50 × 125 0.40 10 12.5 0.24 1.63

500 × 500 × 500 10 × 50 × 250 0.20 10 12.5 0.24 2.05

Table 3: Random sparse third-order tensors with varying ratios between the sizes of the core in each mode.

0.1 1 10
3.88%

3.89%

3.90%

3.91%

3.92%

3.93%

3.94%

3.95%

3.96%

3.97%

3.98%

3.99%

HOOI

MP

SP

HO-SVD

Ratio of edge sizes of the core

F
it

(p
er

ce
nt

)

Figure 12: The fit of the four algorithms as a function of the ratios between the sizes of the core in each

mode.

17

Algorithm Ratio Fit Run time Matlab RAM Sort RAM Total RAM

(J1/J2 = J2/J3) (%) (HH:MM:SS) (GiB) (GiB) (GiB)

HO-SVD 5.00 3.881 00:06:54 2.71 0.00 2.71

HO-SVD 2.50 3.883 00:04:53 1.96 0.00 1.96

HO-SVD 1.66 3.883 00:04:15 1.78 0.00 1.78
HO-SVD 1.26 3.884 00:03:53 1.96 0.00 1.96

HO-SVD 1.00 3.883 00:03:48 1.96 0.00 1.96

HO-SVD 0.80 3.884 00:03:33 1.96 0.00 1.96

HO-SVD 0.60 3.883 00:03:24 1.96 0.00 1.96
HO-SVD 0.40 3.883 00:03:15 1.96 0.00 1.96

HO-SVD 0.20 3.881 00:03:06 1.96 0.00 1.96

HOOI 5.00 3.969 00:27:24 2.72 0.00 2.72
HOOI 2.50 3.983 00:16:23 2.02 0.00 2.02

HOOI 1.66 3.982 00:12:53 1.98 0.00 1.98

HOOI 1.26 3.982 00:11:06 1.98 0.00 1.98

HOOI 1.00 3.982 00:09:53 1.98 0.00 1.98
HOOI 0.80 3.982 00:09:02 1.98 0.00 1.98

HOOI 0.60 3.982 00:08:11 1.98 0.00 1.98

HOOI 0.40 3.982 00:07:26 1.99 0.00 1.99

HOOI 0.20 3.965 00:05:32 2.02 0.00 2.02

SP 5.00 3.896 00:11:18 0.02 4.00 4.02

SP 2.50 3.900 00:09:36 0.02 4.00 4.02

SP 1.66 3.902 00:09:30 0.02 4.00 4.02
SP 1.26 3.905 00:10:12 0.02 4.00 4.03

SP 1.00 3.906 00:10:13 0.02 4.00 4.03

SP 0.80 3.908 00:10:12 0.03 4.00 4.03

SP 0.60 3.910 00:10:23 0.03 4.00 4.03
SP 0.40 3.914 00:10:32 0.04 4.00 4.04

SP 0.20 3.920 00:12:43 0.06 4.00 4.07

MP 5.00 3.901 00:15:01 0.02 4.00 4.03
MP 2.50 3.917 00:14:05 0.02 4.00 4.02

MP 1.66 3.925 00:13:46 0.02 4.00 4.03

MP 1.26 3.929 00:13:47 0.02 4.00 4.03

MP 1.00 3.930 00:13:51 0.03 4.00 4.03
MP 0.80 3.930 00:13:45 0.03 4.00 4.03

MP 0.60 3.927 00:14:17 0.03 4.00 4.04

MP 0.40 3.922 00:14:37 0.04 4.00 4.04

MP 0.20 3.905 00:16:33 0.06 4.00 4.07

Table 4: Performance of the four algorithms with varying ratios between the sizes of the core in each mode.

18

Input tensor size Core size Density Nonzeros Input file Output file

(I1 × I2 × I3 × I4) (J1 × J2 × J3 × J4) (%) (Millions) (MiB) (MiB)

1004 904 10 10 197.13 480.68

1004 804 10 10 197.13 300.16

1004 704 10 10 197.13 176.02

1004 604 10 10 197.13 95.08

1004 504 10 10 197.13 45.91

1004 404 10 10 197.13 18.86

1004 304 10 10 197.13 6.02

1004 204 10 10 197.13 1.23

1004 104 10 10 197.13 0.10

Table 5: Random sparse fourth-order tensors with varying core sizes.

10 20 30 40 50 60 70 80 90
-0.2%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

2.0%

2.2%

HOOI

MP
SP

HO-SVD

Size of one edge of the core

F
it

re
la

tiv
e

to
 H

O
-S

V
D

 (
pe

rc
en

t)

Figure 13: The fit of the four algorithms as a function of the core sizes, given fourth-order tensors.

19

Algorithm Core Size Fit Relative fit Run time Matlab RAM Sort RAM Total RAM

(%) (%) (HH:MM:SS) (GiB) (GiB) (GiB)

HO-SVD 904 44.007 0.00 00:05:35 3.56 0.00 3.56

HO-SVD 804 26.477 0.00 00:05:03 3.10 0.00 3.10

HO-SVD 704 16.449 0.00 00:04:20 3.02 0.00 3.02

HO-SVD 604 10.463 0.00 00:03:52 2.62 0.00 2.62

HO-SVD 504 6.988 0.00 00:03:27 2.07 0.00 2.07

HO-SVD 404 5.116 0.00 00:03:13 1.89 0.00 1.89

HO-SVD 304 4.232 0.00 00:02:57 1.80 0.00 1.80

HO-SVD 204 3.903 0.00 00:02:48 1.75 0.00 1.75

HO-SVD 104 3.827 0.00 00:02:34 1.80 0.00 1.80

HOOI 904 44.065 0.13 00:18:35 4.32 0.00 4.32

HOOI 804 26.600 0.47 00:21:16 3.75 0.00 3.75

HOOI 704 16.609 0.97 00:17:50 3.28 0.00 3.28

HOOI 604 10.629 1.59 00:15:00 2.88 0.00 2.88

HOOI 504 7.135 2.10 00:12:44 2.53 0.00 2.53

HOOI 404 5.227 2.17 00:10:19 2.24 0.00 2.24

HOOI 304 4.301 1.63 00:08:42 1.97 0.00 1.97

HOOI 204 3.933 0.75 00:05:25 1.81 0.00 1.81

HOOI 104 3.834 0.18 00:04:34 1.80 0.00 1.80

SP 904 44.029 0.05 01:45:07 2.19 4.00 6.19

SP 804 26.517 0.15 01:31:50 1.55 4.00 5.56

SP 704 16.499 0.30 01:17:53 1.06 4.00 5.07

SP 604 10.511 0.46 01:09:49 0.44 4.00 4.44

SP 504 7.026 0.54 01:04:21 0.38 4.00 4.38

SP 404 5.140 0.47 01:02:37 0.13 4.00 4.13

SP 304 4.247 0.35 01:01:09 0.07 4.00 4.08

SP 204 3.908 0.11 00:59:02 0.04 4.00 4.04

SP 104 3.828 0.01 00:57:56 0.01 4.00 4.02

MP 904 44.039 0.07 03:16:44 2.19 4.00 6.19

MP 804 26.544 0.25 02:31:07 1.55 4.00 5.56

MP 704 16.532 0.50 01:57:17 1.06 4.00 5.07

MP 604 10.547 0.80 01:36:45 0.69 4.00 4.70

MP 504 7.057 0.98 01:23:33 0.38 4.00 4.38

MP 404 5.163 0.91 01:14:23 0.17 4.00 4.18

MP 304 4.259 0.63 01:07:01 0.07 4.00 4.08

MP 204 3.911 0.20 01:04:29 0.04 4.00 4.04

MP 104 3.828 0.03 01:05:26 0.01 4.00 4.02

Table 6: Performance of the four algorithms with fourth-order tensors and varying core sizes. Relative fit is

the percentage increase in fit relative to HO-SVD.

20

(100). When the core is very small or very large,

compared to the input tensor, there is little difference

in fit among the algorithms.

The fit follows the same trend here as in the pre-

vious two groups of experiments (best to worst:
HOOI, MP, SP, HO-SVD), in spite of the switch

from third-order tensors to fourth-order tensors.

This further confirms the robustness of the results.

Table 6 shows that SP and MP are slow with
fourth-order tensors, compared to HO-SVD and

HOOI. This is a change from what we observered

with third-order tensors, which did not yield such

large differences in run time. This is because a
fourth-order tensor has many more slices than a

third-order tensor with the same number of ele-

ments, and each slice is smaller. There is a much

larger overhead associated with opening and clos-
ing many small files, compared to a few large files.

This could be ameliorated by storing several adja-

cent slices together in one file, instead of using a

separate file for each slice.

Even with third-order tensors, grouping slices to-
gether in one file would improve the speed of SP

and MP. Ideally, the user would specify the maxi-

mum RAM available and SP and MP would group

as many slices together as would fit in the available
RAM.

5.4 Performance with Real Data

So far, all our experiments have used random ten-

sors. Our purpose with this last group of experi-

ments is to show that the previous observations ap-
ply to nonrandom tensors. In particular, the differ-

ences in fit that we have seen so far are somewhat

small. It seems possible that the differences might

not matter in a real application of tensors. This
group of experiments shows that the differences in

fit result in differences in performance on a real task.

The task we examine here is answering multiple-

choice synonym questions from the TOEFL test.

This task was first investigated in Landauer and Du-
mais (1997). In ongoing work, we are exploring the

application of third-order tensors to this task, com-

bining ideas from Landauer and Dumais (1997) and

Turney (2006).

Table 7 describes the input data and the output
tensor decomposition. The first mode of the tensor

consists of all of the 391 unique words that occur

in the TOEFL questions. The second mode is a set

of 849 words from Basic English, which is an artifi-
cial language that reduces English to a small, easily

learned core vocabulary (Ogden, 1930). The third

mode consists of 1020 patterns that join the words

in the first two modes. These patterns were gener-

ated using the approach of Turney (2006). The value

of an element in the tensor is derived from the fre-
quency of the corresponding word pair and pattern

in a large corpus.

A TOEFL question consists of a stem word (the

target word) and four choice words. The task is to

select the choice word that is most similar in mean-

ing to the stem word. Our approach is to measure the
similarity of two TOEFL words by the average sim-

ilarity of their relations to the Basic English words.

Let X be our input tensor. Suppose we wish to

measure the similarity of two TOEFL words. Let

Xi:: and Xj:: be the slices of X that correspond to

the two TOEFL words. Each slice gives the weights
for all of the patterns that join the given TOEFL

word to all of the Basic English words. Our mea-

sure of similarity between the TOEFL words is cal-

culated by comparing the two slices.

Table 8 presents the performance of the four algo-

rithms. We see that the fit follows the familiar pat-
tern: HOOI has the best fit, then MP, next SP, and

lastly HO-SVD. Note that MP and SP have similar

fits. The final column of the table gives the TOEFL

scores for the four algorithms. HOOI has the best
TOEFL score, MP and SP have the same score, and

HO-SVD has the lowest score. The bottom row of

the table gives the TOEFL score for the raw input

tensor, without the benefit of any smoothing from
the Tucker decomposition. The results validate the

previous experiments with random tensors and illus-

trate the value of the Tucker decomposition on a real

task.

6 Conclusions

The Tucker decomposition has been with us since

1966, but it seems that it has only recently started

to become popular. We believe that this is because
only recently has computer hardware reached the

point where large tensor decompositions are becom-

ing feasible.

SVD started to attract interest in the field of in-

formation retrieval when it was applied to “prob-

lems of reasonable size (1000-2000 document ab-

stracts; and 5000-7000 index terms)” (Deerwester et
al., 1990). In collaborative filtering, SVD attracted

interest when it achieved good results on the Net-

flix Prize, a dataset with a sparse matrix of 17,000

movies rated by 500,000 users. In realistic applica-
tions, size matters. The MATLAB Tensor Toolbox

(Bader and Kolda, 2007a; Bader and Kolda, 2007b)

21

Input tensor size (I1 × I2 × I3) 391× 849 × 1020
Core size (J1 × J2 × J3) 250 × 250× 250
Input file (MiB) 345

Output file (MiB) 119

Density (% Nonzero) 5.27
Nonzeros (Millions) 18

Table 7: Description of the input data and the output decomposition.

Algorithm Fit Relative fit Run time Matlab RAM Sort RAM Total RAM TOEFL
(%) (%) (HH:MM:SS) (GiB) (GiB) (GiB) (%)

HO-SVD 21.716 0.00 00:10:28 5.29 0.00 5.29 80.00

HOOI 22.597 4.05 00:56:08 5.77 0.00 5.77 83.75
SP 22.321 2.78 00:30:02 0.33 4.00 4.33 81.25

MP 22.371 3.01 00:43:52 0.33 4.00 4.34 81.25

Raw tensor - - - - - - 67.50

Table 8: Performance of the four algorithms with actual data. Relative fit is the percentage increase in fit
relative to HO-SVD.

has done much to make tensor decompositions more

accessible and easier to experiment with, but, as we

have seen here, RAM requirements become prob-
lematic with tensors larger than 10003.

The aim of this paper has been to empirically eval-

uate four tensor decompositions, to study their fit
and their time and space requirements. Our primary

concern was the ability of the algorithms to scale up

to large tensors. The implementations of HO-SVD

and HOOI, taken from the MATLAB Tensor Tool-
box, assumed that the input tensor could fit in RAM,

which limited them to tensors of size 10003. On the

other hand, SP and MP were able to process tensors

of size 20003, with eight times more elements.

The experiments in Section 5.4 suggest that the

differences in fit among the four algorithms corre-

spond to differences in performance on real tasks.
It seems likely that good fit will be important for

many applications; therefore, we recommend HOOI

for those tensors that can fit in the available RAM,

and MP for larger tensors.

Acknowledgements

Thanks to Brandyn Webb, Tamara Kolda, and

Hongcheng Wang for helpful comments. Thanks
to Tamara Kolda and Brett Bader for the MATLAB

Tensor Toolbox.

References

E. Acar and B. Yener. 2007. Unsupervised multiway
data analysis: A literature survey. Technical report,
Computer Science Department, Rensselaer Polytech-
nic Institute, Troy, NY. http://www.cs.rpi.edu/∼acare/
Acar07 Multiway.pdf.

O. Alter, P.O. Brown, and D. Botstein. 2000. Singular
value decomposition for genome-wide expression data
processing and modeling. Proceedings of the National
Academy of Sciences, 97(18):10101–10106.

B.W. Bader and T.G. Kolda. 2007a. Efficient MATLAB
computations with sparse and factored tensors. SIAM
Journal on Scientific Computing.

B.W. Bader and T.G. Kolda. 2007b. MATLAB Ten-
sor Toolbox version 2.2. http://csmr.ca.sandia.gov/
∼tgkolda/TensorToolbox/.

D. Billsus and M.J. Pazzani. 1998. Learning collabora-
tive information filters. Proceedings of the Fifteenth
International Conference on Machine Learning, pages
46–54.

M. Brand. 2002. Incremental singular value decompo-
sition of uncertain data with missing values. Proceed-
ings of the 7th European Conference on Computer Vi-
sion, pages 707–720.

R. Bro and C.A. Andersson. 1998. Improving the
speed of multiway algorithms – Part II: Compres-
sion. Chemometrics and Intelligent Laboratory Sys-
tems, 42(1):105–113.

22

J.D. Carroll and J.J. Chang. 1970. Analysis of indi-
vidual differences in multidimensional scaling via an
n-way generalization of “Eckart-Young” decomposi-
tion. Psychometrika, 35(3):283–319.

P.A. Chew, B.W. Bader, T.G. Kolda, and A. Abde-
lali. 2007. Cross-language information retrieval using
PARAFAC2. Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, pages 143–152.

L. De Lathauwer, B. De Moor, and J. Vandewalle.
2000a. A multilinear singular value decomposition.
SIAM Journal on Matrix Analysis and Applications,
21:1253–1278.

L. De Lathauwer, B. De Moor, and J. Vandewalle. 2000b.
On the best rank-1 and rank-(R1, R2, . . . , RN) ap-
proximation of higher-order tensors. SIAM Journal on
Matrix Analysis and Applications, 21:1324–1342.

S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer,
and R. Harshman. 1990. Indexing by latent semantic
analysis. Journal of the American Society for Informa-
tion Science, 41(6):391–407.

D.M. Dunlavy, T.G. Kolda, and W.P. Kegelmeyer.
2006. Multilinear algebra for analyzing data with
multiple linkages. Technical Report SAND2006-
2079, Sandia National Laboratories, Livermore, CA.
http://csmr.ca.sandia.gov/∼tgkolda/pubs/SAND2006-
2079.pdf.

R.A. Harshman. 1970. Foundations of the PARAFAC
procedure: Models and conditions for an “explana-
tory” multi-modal factor analysis. UCLA Working Pa-
pers in Phonetics, 16:1–84.

T.G. Kolda. 2006. Multilinear operators for higher-order
decompositions. Technical Report SAND2006-
2081, Sandia National Laboratories, Livermore, CA.
http://csmr.ca.sandia.gov/∼tgkolda/pubs/SAND2006-
2081.pdf.

T.K. Landauer and S.T. Dumais. 1997. A solution to
Plato’s problem: The latent semantic analysis theory
of acquisition, induction, and representation of knowl-
edge. Psychological Review, 104(2):211–240.

M.W. Mahoney, M. Maggioni, and P. Drineas. 2006.
Tensor-CUR decompositions for tensor-based data.
Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, pages 327–336.

C.K. Ogden. 1930. Basic English: A general in-
troduction with rules and grammar. Kegan Paul,
Trench, Trubner and Co., London. http://ogden.basic-
english.org/.

H. Schütze. 1998. Automatic word sense discrimination.
Computational Linguistics, 24(1):97–123.

J. Sun, D. Tao, and C. Faloutsos. 2006. Beyond streams
and graphs: Dynamic tensor analysis. Proceedings of
the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 374–
383.

L.R. Tucker. 1966. Some mathematical notes on three-
mode factor analysis. Psychometrika, 31(3):279–311.

P.D. Turney. 2006. Similarity of semantic relations.
Computational Linguistics, 32(3):379–416.

H. Wang and N. Ahuja. 2005. Rank-R approximation of
tensors: Using image-as-matrix representation. Pro-
ceedings of the 2005 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition
(CVPR’05), 2:346–353.

H. Wang, Q. Wu, L. Shi, Y. Yu, and N. Ahuja. 2005. Out-
of-core tensor approximation of multi-dimensional
matrices of visual data. International Conference on
Computer Graphics and Interactive Techniques, SIG-
GRAPH 2005, 24:527–535.

Y. Xu, L. Zhang, and W. Liu. 2006. Cubic analysis
of social bookmarking for personalized recommenda-
tion. Lecture Notes in Computer Science: Frontiers
of WWW Research and Development – APWeb 2006,
3841:733–738.

23

Appendix: MATLAB Source for Multislice Projection

function fit = multislice(data_dir,sparse_file,tucker_file,I,J)
%MULTISLICE is a low RAM Tucker decomposition
%
% Peter Turney
% October 26, 2007
%
% Copyright 2007, National Research Council of Canada
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
%% set parameters
%
fprintf(’MULTISLICE is running ...\n’);
%
maxloops = 50; % maximum number of iterations
eigopts.disp = 0; % suppress messages from eigs()
minfitchange = 1e-4; % minimum change in fit of tensor
%
%% make slices of input data file
%
fprintf(’ preparing slices\n’);
%
mode1_dir = ’slice1’;
mode2_dir = ’slice2’;
mode3_dir = ’slice3’;
%
slice(data_dir,sparse_file,mode1_dir,1,I);
slice(data_dir,sparse_file,mode2_dir,2,I);
slice(data_dir,sparse_file,mode3_dir,3,I);
%
%% pseudo HO-SVD initialization
%
% initialize B
%
M2 = zeros(I(2),I(2));
for i = 1:I(3)

X3_slice = load_slice(data_dir,mode3_dir,i);
M2 = M2 + (X3_slice’ * X3_slice);

end
for i = 1:I(1)

X1_slice = load_slice(data_dir,mode1_dir,i);
M2 = M2 + (X1_slice * X1_slice’);

end
[B,D] = eigs(M2*M2’,J(2),’lm’,eigopts);
%
% initialize C
%
M3 = zeros(I(3),I(3));
for i = 1:I(1)

X1_slice = load_slice(data_dir,mode1_dir,i);
M3 = M3 + (X1_slice’ * X1_slice);

end
for i = 1:I(2)

X2_slice = load_slice(data_dir,mode2_dir,i);
M3 = M3 + (X2_slice’ * X2_slice);

end

24

[C,D] = eigs(M3*M3’,J(3),’lm’,eigopts);
%
%% main loop
%
old_fit = 0;
%
fprintf(’ entering main loop of MULTISLICE\n’);
%
for loop_num = 1:maxloops

%
% update A
%
M1 = zeros(I(1),I(1));
for i = 1:I(2)

X2_slice = load_slice(data_dir,mode2_dir,i);
M1 = M1 + ((X2_slice * C) * (C’ * X2_slice’));

end
for i = 1:I(3)

X3_slice = load_slice(data_dir,mode3_dir,i);
M1 = M1 + ((X3_slice * B) * (B’ * X3_slice’));

end
[A,D] = eigs(M1*M1’,J(1),’lm’,eigopts);
%
% update B
%
M2 = zeros(I(2),I(2));
for i = 1:I(3)

X3_slice = load_slice(data_dir,mode3_dir,i);
M2 = M2 + ((X3_slice’ * A) * (A’ * X3_slice));

end
for i = 1:I(1)

X1_slice = load_slice(data_dir,mode1_dir,i);
M2 = M2 + ((X1_slice * C) * (C’ * X1_slice’));

end
[B,D] = eigs(M2*M2’,J(2),’lm’,eigopts);
%
% update C
%
M3 = zeros(I(3),I(3));
for i = 1:I(1)

X1_slice = load_slice(data_dir,mode1_dir,i);
M3 = M3 + ((X1_slice’ * B) * (B’ * X1_slice));

end
for i = 1:I(2)

X2_slice = load_slice(data_dir,mode2_dir,i);
M3 = M3 + ((X2_slice’ * A) * (A’ * X2_slice));

end
[C,D] = eigs(M3*M3’,J(3),’lm’,eigopts);
%
% build the core
%
G = zeros(I(1)*J(2)*J(3),1);
G = reshape(G,[I(1) J(2) J(3)]);
for i = 1:I(1)

X1_slice = load_slice(data_dir,mode1_dir,i);
G(i,:,:) = B’ * X1_slice * C;

end
G = reshape(G,[I(1) (J(2)*J(3))]);
G = A’ * G;
G = reshape(G,[J(1) J(2) J(3)]);
%
% measure fit
%
normX = 0;
sqerr = 0;
for i = 1:I(1)

X1_slice = load_slice(data_dir,mode1_dir,i);
X1_approx = reshape(G,[J(1) (J(2)*J(3))]);
X1_approx = A(i,:) * X1_approx;
X1_approx = reshape(X1_approx,[J(2) J(3)]);
X1_approx = B * X1_approx * C’;

25

sqerr = sqerr + norm(X1_slice-X1_approx,’fro’)ˆ2;
normX = normX + norm(X1_slice,’fro’)ˆ2;

end
fit = 1 - sqrt(sqerr) / sqrt(normX);
%
fprintf(’ loop %d: fit = %f\n’, loop_num, fit);
%
% stop if fit is not increasing fast enough
%
if ((fit - old_fit) < minfitchange)

break;
end
%
old_fit = fit;
%

end
%
fprintf(’ total loops = %d\n’, loop_num);
%
%% save tensor
%
output_file = [data_dir, ’/’, tucker_file];
save(output_file,’G’,’A’,’B’,’C’);
%
fprintf(’ tucker tensor is in %s\n’,tucker_file);
%
fprintf(’MULTISLICE is done\n’);
%

function slice(data_dir,sparse_file,mode_slice_dir,mode,I)
%SLICE chops a tensor into slices along the given mode
%
% Peter Turney
% October 20, 2007
%
% Copyright 2007, National Research Council of Canada
%
%% initialize
%
% set the secondary modes
%
if (mode == 1)

r_mode = 2;
c_mode = 3;

elseif (mode == 2)
r_mode = 1;
c_mode = 3;

else
r_mode = 1;
c_mode = 2;

end
%
% get sizes
%
Ns = I(mode); % number of slices
Nr = I(r_mode); % number of rows in each slice
Nc = I(c_mode); % number of columns in each slice
%
%% sort the index
%
fprintf(’SLICE is running ...\n’);
%
% file names
%
sub_dir = [data_dir, ’/’, mode_slice_dir];
sorted_file = [sub_dir, ’/’, ’sorted.txt’];
%
% make sure the directories exist
%

26

if (isdir(data_dir) == 0)
mkdir(data_dir);

end
if (isdir(sub_dir) == 0)

mkdir(sub_dir);
end
%
% sort
%
sort_index(data_dir,sparse_file,mode_slice_dir,mode);
%
%% count nonzeros in each slice
%
fprintf(’ counting nonzeros in each slice for mode %d\n’,mode);
%
% vector for storing nonzero count
%
nonzeros = zeros(Ns,1);
%
% read sorted file in blocks
%
% - read in blocks because file may be too big to fit in RAM
% - textscan will create one cell for each field
% - each cell will contain a column vector of the values in
% the given field
% - the number of elements in each column vector is the number
% of lines that were read
%
desired_lines = 100000;
actual_lines = desired_lines;
%
sorted_file_id = fopen(sorted_file, ’r’);
while (actual_lines > 0)

block = textscan(sorted_file_id,’%d %d %d %*f’,desired_lines);
mode_subs = block{mode};
actual_lines = size(mode_subs,1);
for i = 1:actual_lines

nonzeros(mode_subs(i)) = nonzeros(mode_subs(i)) + 1;
end

end
fclose(sorted_file_id);
%
%% make slices
%
fprintf(’ saving slices for mode %d\n’,mode);
%
sorted_file_id = fopen(sorted_file, ’r’);
for i = 1:Ns

slice_file = sprintf(’%s/slice%d.mat’, sub_dir, i);
nonz = nonzeros(i);
block = textscan(sorted_file_id,’%d %d %d %f’,nonz);
slice_rows = double(block{r_mode});
slice_cols = double(block{c_mode});
slice_vals = block{4};
slice = sparse(slice_rows,slice_cols,slice_vals,Nr,Nc,nonz);
save(slice_file,’slice’);

end
fclose(sorted_file_id);
%
fprintf(’SLICE is done\n’);
%

function sort_index(data_dir,sparse_file,mode_slice_dir,mode)
%SORT_INDEX sorts a sparse tensor index file along the given mode
%
% Peter Turney
% October 20, 2007
%
% Copyright 2007, National Research Council of Canada

27

%
%% sort the index
%
fprintf(’SORT_INDEX is running ...\n’);
%
% file names
%
input_file = [data_dir, ’/’, sparse_file];
sub_dir = [data_dir, ’/’, mode_slice_dir];
sorted_file = [sub_dir, ’/’, ’sorted.txt’];
%
% call Unix ’sort’ command
%
% -n = numerical sorting
% -k = key to sort on
% -s = stable sorting
% -S = memory for sorting buffer
% -o = output file
%
% - the ’sort’ command is a standard part of Unix and Linux
% - if you are running Windows, you can get ’sort’ by
% installing Cygwin
% - the sort buffer is set here to 1 GiB; you can set it
% to some other value, based on how much RAM you have
%
command = sprintf(’sort -n -s -S 1G -k %d,%d -o %s %s’, ...

mode, mode, sorted_file, input_file);
%
fprintf(’ calling Unix sort for mode %d\n’, mode);
unix(command);
%
fprintf(’SORT_INDEX is done\n’);
%

function slice = load_slice(data_dir,mode_dir,i)
%LOAD_SLICE loads a sparse slice file
%
% Peter Turney
% October 20, 2007
%
% Copyright 2007, National Research Council of Canada
%
% file name
%
slice_file = sprintf(’%s/%s/slice%d.mat’, data_dir, mode_dir, i);
%
% load the file
%
data = load(slice_file);
%
% return the slice
%
slice = data.slice;
%

function test
%TEST illustrates how to use multislice.m
%
% Peter Turney
% October 26, 2007
%
% Copyright 2007, National Research Council of Canada
%
% test multislice.m
%
% set random seed for repeatable experiments
%

28

rand(’seed’,5678);
%
% set parameters
%
I = [100 110 120]; % input sparse tensor size
J = [10 11 12]; % desired core tensor size
density = 0.1; % percent nonzero
%
data_dir = ’test’; % directory for storing tensor
sparse_file = ’spten.txt’; % file for storing raw data tensor
tucker_file = ’tucker.mat’; % file for storing Tucker tensor
%
% make a sparse random tensor and store it in a file
%
sparse_random_tensor(data_dir,sparse_file,I,density);
%
% call multislice
%
tic;
fit = multislice(data_dir,sparse_file,tucker_file,I,J);
time = toc;
%
% show results
%
fprintf(’\n’);
fprintf(’Multislice:\n’);
fprintf(’I = [%d %d %d]\n’, I(1), I(2), I(3));
fprintf(’J = [%d %d %d]\n’, J(1), J(2), J(3));
fprintf(’density = %f\n’, density);
fprintf(’fit = %f\n’, fit);
fprintf(’time = %.1f\n’, time);
fprintf(’\n’);
%

function sparse_random_tensor(data_dir,sparse_file,I,density)
%SPARSE_RANDOM_TENSOR makes a sparse uniformly distributed random tensor
%
% Peter Turney
% October 20, 2007
%
% Copyright 2007, National Research Council of Canada
%
% assume a third-order tensor is desired
%
%% initialize
%
fprintf(’SPARSE_RANDOM_TENSOR is running ...\n’);
%
% make sure the directory exists
%
if (isdir(data_dir) == 0)

mkdir(data_dir);
end
%
file_name = [data_dir, ’/’, sparse_file];
%
fprintf(’ generating tensor of size %d x %d x %d with density %f\n’, ...

I(1), I(2), I(3), density);
%
%% main loop
%
file_id = fopen(file_name, ’w’);
fprintf(’ slice: ’);
for i1 = 1:I(1)

fprintf(’%d ’,i1); % show progress
if ((mod(i1,10) == 0) && (i1 ˜= I(1)))

fprintf(’\n ’); % time for new line
end
for i2 = 1:I(2)

29

for i3 = 1:I(3)
if (rand < density)

fprintf(file_id,’%d %d %d %f\n’,i1,i2,i3,rand);
end

end
end

end
fprintf(’\n’);
fclose(file_id);
%
fprintf(’SPARSE_RANDOM_TENSOR is done\n’);
%

30

