

NRC Publications Archive Archives des publications du CNRC

System integration and grid simulation for ancillary services in V2X (Vehicle-to X: X=home, buildings and grid) applications Yoo, Yeong; Liang, Qi; Tchagang, Alain

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=b9c26422-461e-48a8-9a4b-c83a948fcb84 https://publications-cnrc.canada.ca/fra/voir/objet/?id=b9c26422-461e-48a8-9a4b-c83a948fcb84

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at <u>https://nrc-publications.canada.ca/eng/copyright</u> READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site <u>https://publications-cnrc.canada.ca/fra/droits</u> LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

NRC CNRC

System integration and grid simulation for ancillary services in V2X (Vehicle-to X: X=home, buildings and grid) applications

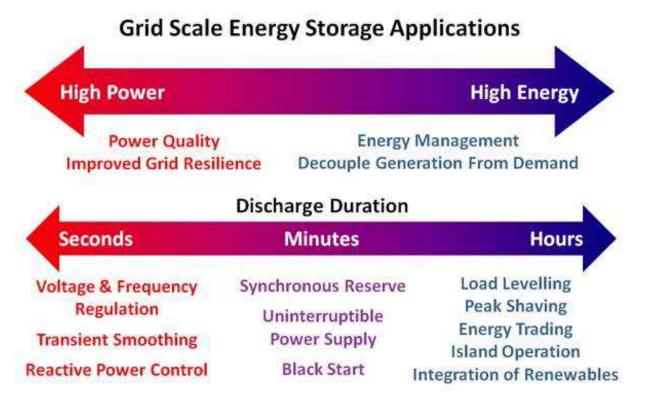
<u>Yeong Yoo</u>*, Qi Liang* and Alain Tchagang** *National Research Council Canada (NRC)-EME **National Research Council Canada (NRC)-DT

For Grid Modernization Workshop for Utilities 2018 Ottawa, November 29, 2018

National Research Conseil national de Council Canada recherches Canada

Contents

- 1. Introduction
- 2. System Integration
- 3. Simulation for V2H and V2B/V2G
- 4. Conclusions
- 5. Acknowledgments

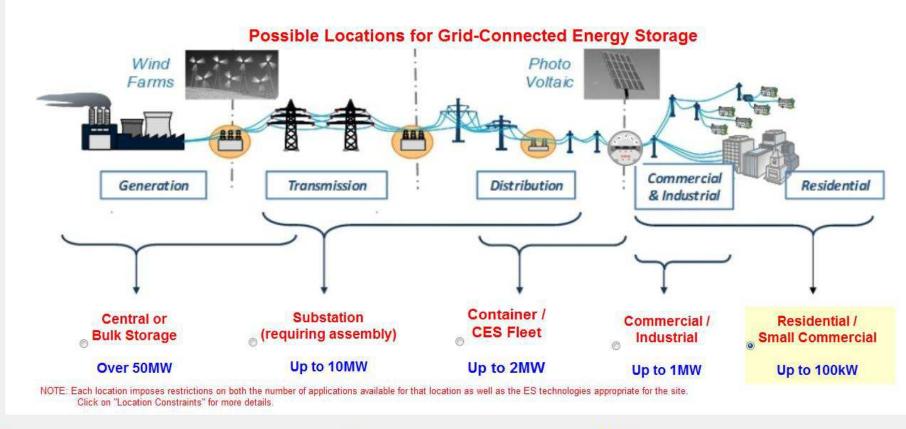


Introduction

- ➤The Canadian Government has set a target of reducing Greenhouse Gas (GHG) emissions by 30% in 2030 compared to emission levels in 2005.
- ➤The transportation sector is responsible for 23% of energy related GHG emissions.
- > EVs can significantly reduce transportation emissions in Canada.
- > The global EV market share is expected to be 54% of new car sales and 33% of the global car fleet by 2040.
- V2X (X=home, buildings and grid) may create an additional stream of revenue for EV owners, enabling much faster adoption of EVs and earlier realization of large environmental benefits in Canada.

Introduction: Why is Energy Storage needed?

Ref.: Electropaedia, Battery and Energy Technologies


Energy storage has been successfully deployed to improve the technical and economic performance and the flexibility and resilience of the electricity grid.

NRC·CNRC

Introduction: Grid-Connected Energy Storage

L& KEMA≰ ES-Select™: Location and Size of Grid Storage.

Choose a storage location. It impacts available options and installation costs.

NRC·CNRC

ENERGY

Introduction: Grid Applications

INPUT Select up to six (6) grid applications to be bundled for increased value					OUTPUT List of feasible storage options for selected location and applications							
ation = Residential / Small Commercial			Sort				tarih (Uderdila ikan di Direched	i den far far de refere fille den i far fan st		<u>d aðsteðstötötötö</u>		
Grid Applications	Present Value of 10-year Benefits, \$/kW				Storage Options & Feasibility Score (%)				Total Feasibility Score (Based on \$/kW)			
Energy Time Shift (Arbitrage)				1	Advanced Lead Acid	LA-adv	58%		1			
Supply Capacity				2	Lithium Ion - High Energy	LIB-e	56%					
Load Following				3	Valve Regulated Lead Acid	VRLA	55%					
Area Regulation			1	4	Hybrid LA & DL-CAP	Hybrid	52%					
Fast Regulation				5	Sodium Nickel Chloride	NaNiCI	46%	1 1 1				
Supply Spinning Reserve			1	6	Ni batt. (NiCd, NiZn, NiMH)	Ni-batt	45%					
Voltage Support		1	1	7	Zinc Bromide	ZnBr	36%					
Transmission Support		[]]		8	Lithium-lon - High Power	LIB-p	0%	1 1				
Transmission Congestion Relief				9	Vanadium Redox Battery	VRFB	0%					
Dist. Upgrade Deferral (top 10%)				10	Adv. Vanadium Red. Flow Batt.	A-VRFB	0%					
Trans. Upgrade Deferral (top 10%)				11	Sodium Sulfur	NaS	0%					
Retail TOU Energy Charges				12	Thermal Storage (Cold)	/ce	0%	1				
Retail Demand Charges				13	Thermal Storage (Hot)	Heat	0%					
Service Reliability (Utility Backup)				14	Zinc- Air Battery	ZnAir	0%					
Service Reliability (Customer Backup)				15	Flywheel	FlyWl	0%					
Power Quality (Utility)				16	Double Layer Capacitors	DL-CAP	0%	1				
Power Quality (Customer)				17	Compressed-Air ES, cavern	CAES-c	0%					
Wind Energy Time Shift (Arbitrage)		1		18	Compressed-Air ES, small	CAES-s	0%					
Solar Energy Time Shift (Arbitrage)		·····		19	Pumped Hydro	P-Hydro	0%					
Renewable Capacity Firming		····		-	Essecibility Criteria 9 14	Inighta	0%	20%	40%	60%	80%	
Wind Energy Smoothing		·····			Feasibility Criteria & W	veignts	0,0	2010	10.0	00.0	00.0	
Solar Energy Smoothing		1										
Black Start		· · · · · · · · · · · · · · · · · · ·			Feasibility Score	0	Discharge	e Duration	C	Maturity		
Set Priority of Bundled Applications	0 1000	2000 300	0 4000		Score for Installed Cost	in CILAN	-	Score for Ir	otallad Ca	ot in Clink	/h	
Set Filonty of Bundled Applications		\$/kW			 Score for installed Cost 	111 D/KVV	0	Score for in	istalled Co	SUIT D/KV	ni -	
Benefits Market Potentials	Required Disch	arge Duration										
Benefits Market Potentials ()	Required Dischard	arge Duration										

Applications Database

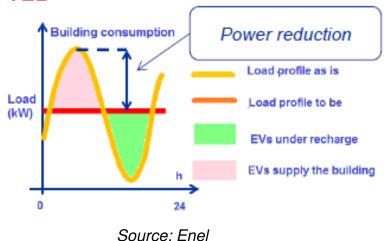
Ref.: ES-Select, DNV KEMA

Storage Database

General Comparisons

Selected ES Comparisons

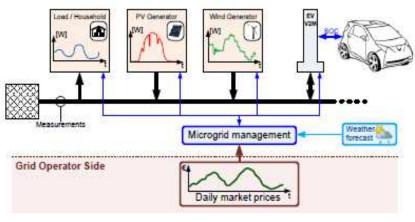
Help


Print

About ES-Select

Introduction: Vehicle-to-X (X= Home, Buildings and Grid)

EVSE	Power Flow	kW	Operation	Purpose	V2H
Electric Vehicle Supply		5-10	Vehicle to Home (V2H)	 Emergency power RE storage TOU rate arbitrage 	2 - Solar
Equipment: Bi-directional		10-15	Vehicle to Building (V2B)	Demand charge avoidanceEmergency power	Mome 1 eonsumption Solar→EV
		15-30	Vehicle to Grid (V2G)	 Wholesale power market participation 	0 2 4 6 8 10 12 14 16 18 20 2


V2B

Source: Nissan Motor Company

Source: Nissan Motor Company

Source: IREC

NC CNRC

System Integration: Field Trial at CCHT facilities

- The Canadian Centre for Housing Technology features twin research houses to evaluate the whole-house performance of new technologies in side-by-side testing
- ✓ New leading-edge low-rise multi-unit residential building to be *smart-homes* to respond to client needs for R&D services and testing in the following areas: mechanical equipment, renewable energy & control systems, and intelligent building and smart grid integration technologies

CCHT Twin-House

CCHT Renewal

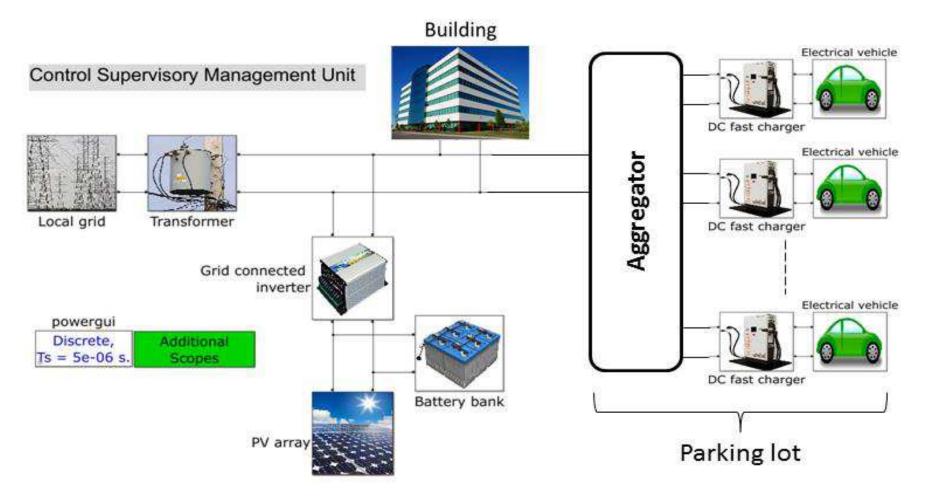
NCCNC

System Integration: Nissan Leaf 2018 for V2X at CCHT Flexhouse

Conceptual design of a validation system based on PHIL simulation for V2X

System Integration: V2X Testing Protocols

- 1. Grid interconnection tests
- Unintentional islanding and Harmonics etc.
- 2. Grid support or function tests
- Frequency regulation and Volt-VAR regulation etc.
- 3. V2G performance tests
- Conversion efficiency (roundtrip efficiency) and available energy capacity etc.
- 4. V2H/V2B tests
- Load back-up (DCFC) and PV charging test etc.
- 5. Measurements
- Power analyzer, grid simulator, load simulator, and DCFC


Modeling and Simulation for V2H

Simulink model for V2H simulation

Modeling and Simulation for V2B/V2G

Simulink model for V2B/V2G simulation

NCCNCC

Vehicle-to-building/Grid (V2B/V2G)

- Proactively manage energy consumption and costs of buildings using the energy stored in EVs
- Potential benefits to both vehicle and building owners by offsetting some of the higher cost of EVs, lowering buildings' energy costs, and providing reliable emergency backup services
- Part of microgrid and smart grid technologies
- Being integrated with renewable energy generation, smart buildings, EV bidirectional charging, and in some cases, stationary backup storage
- Market opportunities including demand charge avoidance, peak shaving, time-of-use pricing, ancillary services, and other utility energy pricing schemes, reducing the cost of building operations and providing emergency backup power

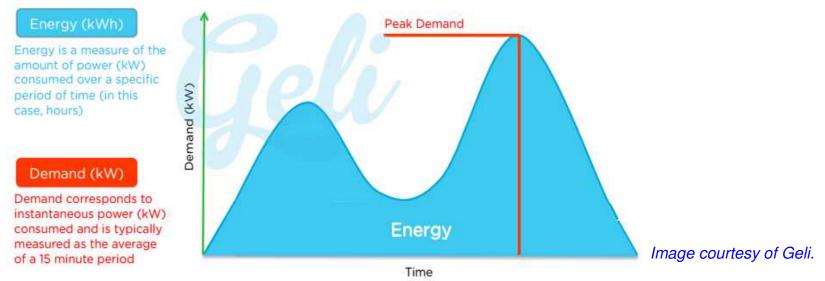
Simulation for V2B/V2G with ancillary services: Objectives and Methodologies

- Goal: To use electrical energies from EV batteries for peak shaving and frequency regulation in a vehicle-tobuilding/grid (V2B/V2G) technology
- Proposed Approach: Multi-objective optimization framework for EV batteries to perform 1) load management (building load and driving), 2) peak shaving, and 3) frequency regulation services
- This framework accounts for 1) battery degradation, 2) operational constraints, and 3) uncertainties in customer loads, driving profiles and regulation signals.

Simulation for V2B/V2G with ancillary services: Objectives and Methodologies

- Utilization of published models on stationary battery storage for V2B/V2G simulation application:
- ➔Y. Shi, B. Xu, D. Wang, B. Zhang, "Using battery storage for peak shaving and frequency regulation: joint optimization for super linear gains" arXiv: 1702.08065v3, 2017.
- ➔ Published models: Electricity bill calculation, peak shaving, frequency regulation, and battery degradation

Simulation for V2B/V2G: Electricity Bill Calculation


Bill calculation for an industrial building or a commercial unit

$$H = H^{elec} + H^{peak} = \alpha_{elec} \sum_{t=1}^{I} r(t) + \alpha_{peak} r_{peak}(t)$$

where, α_{elec} (\$/MWh): energy price, r(t): power consumed at t,

 α_{peak} (\$/MW): peak demand price, $r_{peak}(t)$: power consumed at t over 15 or 30 minutes → Electricity Bill: Summation of energy charge and peak demand charge

Energy vs. Power Demand

NRC·CNRC

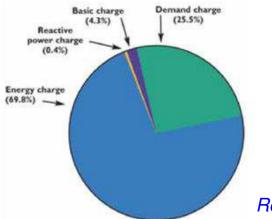
Electricity Bill Calculation: Peak Shaving

$$\Box \text{ Peak shaving} \qquad H = H^{elec} + H^{peak} = \alpha_{elec} \sum_{t=1}^{T} r_a(t) + \alpha_{peak} r_{peak}^a(t) + \sum_{n=N}^{N} f(\mathbf{b}_n)$$

$$r_a(t) = r(t) - \sum_{n=0}^{N} b_n(t) \qquad r_{peak}^a(t) = r_{peak}(t) - \sum_{n=0}^{N} \overline{b}_n(t)$$

where, b_n(t): power injected by nth MBESS (i.e. batteries of the nth EV; stationary batteries power in case of n=0),

 $b_n(t) > 0$ for discharging, $b_n(t) < 0$ for charging,


 $r_{\alpha}(t)$: actual power drawn from the grid at a given time t,

 $r_{peak}^{a}(t)$: residual peak demand power

 $\overline{b}_n(t)$: averaged power injected by nth MBESS,

 $f(\mathbf{b_n})$: operating cost of nth MBESS.

→ Demand charges make up a significant portion of commercial and industrial customers' total electricity costs, typically between 20 and 70 percent.

Ref.: SunnyCal Solar

NRC CNRC

Electricity Bill Calculation: Frequency Regulation

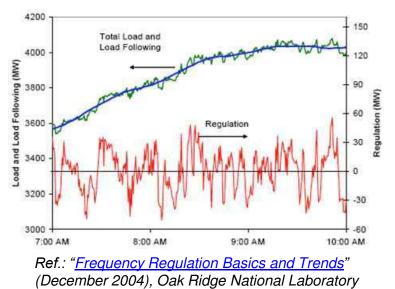
□ Frequency regulation

$$= \alpha_{c}C.T - \alpha_{\min}\sum_{t=1}^{T} |\sum_{n=0}^{N} b_{n}(t) - Cs(t)| - \sum_{n=0}^{N} f(\mathbf{b}_{n}),$$

where, S: revenue to provide frequency regulation service over time T (in PJM market),

S

s(t): normalized frequency regulation signal,


 α_c : benefit from frequency regulation in \$/MW,

 α_{min} : penalty cost for frequency regulation in \$/MWh,

C: total battery power capacity,

Cs(t): demand frequency regulation energy

f(**b**_n): operating cost of nth MBESS.

- Smooth blue line: Load ramp up from 3,600 MW to 4,000 MW over a three-hour period from 7 to 10 a.m.
- Jagged green line: Actual demand during the same time period
- Very jagged red line at the bottom: Scaled up representation of the minute-to-minute differences between the blue supply line and the green demand line

→ The 60 MW slice of highly variable demand is the domain of frequency regulation.

NRC·CNRC

Electricity Bill Calculation: Battery Degradation

□ Battery degradation/cost

$$f(\mathbf{n}) = \frac{\alpha_{cell}^n \cdot 10^6}{2K_n \cdot (SoC_{max}^n - SoC_{min}^n)} |b_n(t)|$$

where, f(**b**_n): operating cost of nth MBESS mainly resulting from battery degradation, α_{cell}^{n} : nth MBESS cell price (\$/Wh), K_{n} : number of cycles of nth MBESS, SoC_{max}^{n} : max. state of charge of nth MBESS, SoC_{max}^{n} : min. state of charge of nth MBESS.

Optimization Scheme and Control Algorithm: Multi-Objective Optimization Model

$$\begin{split} H^{multi} &= \min_{C, b^{ch}(t), b^{dc}(t), y(t)} \alpha_{elec} \sum_{t=1}^{T} E_{s} [r(t) - \sum_{n=0}^{N} b_{n}(t)] \\ &+ \alpha_{peak} \max_{t=1...T} E_{s} [\overline{r}(t) - \sum_{n=0}^{N} \overline{b}_{n}(t)] + \sum_{t=1}^{T} \sum_{n=0}^{N} f(b_{n}(t)) \\ &- E_{rs} [\lambda_{c} T.C - \lambda_{\min} \sum_{t=1}^{T} |-r(t) + \sum_{n=0}^{N} b_{n}(t) + y(t) - Cs(t)|] \\ \text{s.t.} \quad b_{n}(t) = b_{n}^{dc}(t) - b_{n}^{ch}(t), \\ &C \ge 0, \\ SoC_{\min}^{n} \le \frac{SoC_{ini}^{n}}{E} + \sum_{\tau=1}^{t} [b_{n}^{ch}(\tau)\eta_{c} - \frac{b_{n}^{dc}(\tau)}{\eta_{d}}]t_{s} \\ SoC_{\max}^{n} \le \frac{SoC_{\max}^{n}}{E} \le SoC_{\max}^{n}, \\ &0 \le b_{n}^{ch}(t) \le P_{\max}, \\ &0 \le b_{n}^{dc}(t) \le P_{\max}, \text{ for n = 0 to N,} \\ &f \bigoplus = \frac{\alpha_{cell}^{n} \cdot 10^{6}}{2K_{n} \cdot (SoC_{\max}^{n} - SoC_{\min}^{n})} |b_{n}(t)| \end{split}$$

 \rightarrow C: frequency regulation capacity; y(t): frequency regulation load baseline

NRC·CNRC

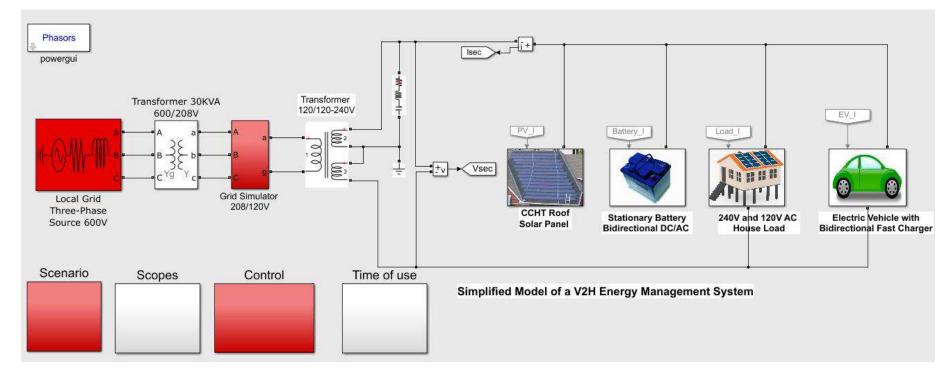
Simulation for V2B/V2G: Problem Formulation

- Assumption: A small residential building or commercial unit with an electricity consumption of 70 kWh/day and 5 EVs having a battery storage capacity of 24 kWh per EV
- Simulation: Battery degradation and electricity bill estimation
- Objectives of this work:
 - 1) To reduce the total energy cost H,
 - 2) To find the SoC optimal range to reduce battery degradation rate,
 - 3) To provide building load supply when necessary,
 - 4) To utilize EV batteries for EV powertrain, peak shaving and frequency regulation simultaneously.

Optimization Scheme and Control Algorithm: Multi-Objective Optimization

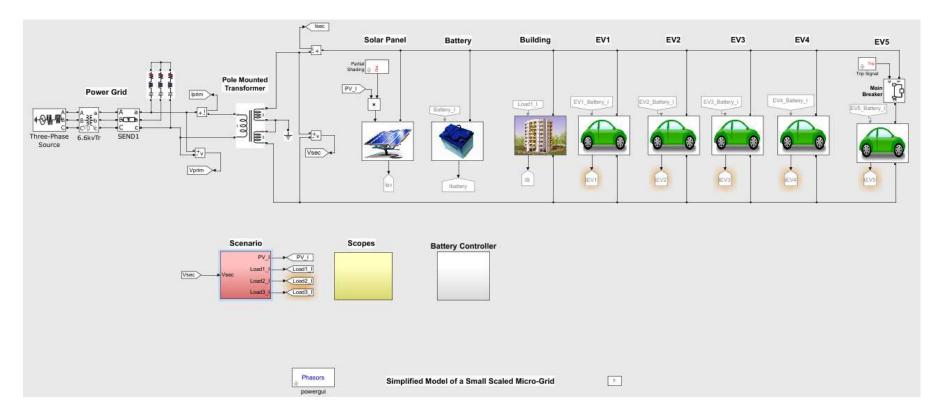
\Box Goals \rightarrow use EV battery to provide

- Peak Shaving for building owner
- Frequency regulation as an ancillary service for building owner
- Load management (house load and driving) for EV owner


While

- Minimizing the electricity bill of building owner
- Minimizing the electricity bill of EV owner
- Minimizing the degradation of EV battery for EV owner

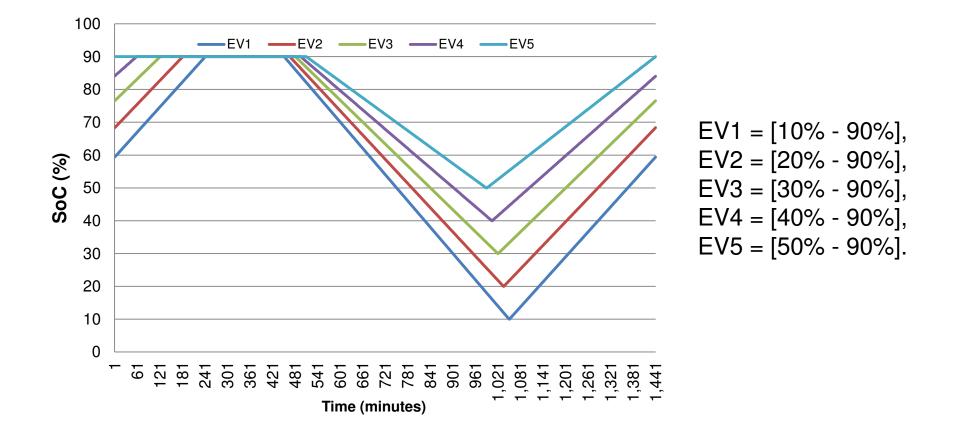
→ Minimizing total electricity cost, including energy cost, peak demand charge, EV battery degradation cost and frequency regulation service revenue


Modeling and Simulation for V2H

Connection: EV owner side

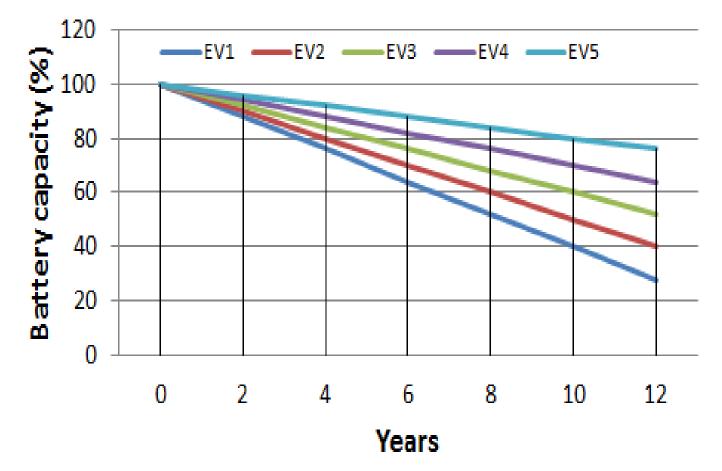
Modeling and Simulation for V2B/V2G

Connection: Building owner side



Simulation for V2B/V2G: SoC usage per EV for a Commercial Unit with 70kWh/day

	SoC (%)						
	EV1	EV2	EV3	EV4	EV5		
Min SoC	10	20	30	40	50		
Max SoC	90	90	90	90	90		
Available daily SoC range	80	70	60	50	40		
Driving to work and errands		20	15	10	5		
Driving home and errands		20	15	10	5		
Peak Shaving (work)		15	15	15	15		
Frequency regulation (work)	15	15	15	15	15		



Control Strategy for V2B/V2G simulation: 5 different EV Driving and SoC Profiles for a Commercial Unit with 70kWh/day

Simulation for V2B/V2G: Battery degradation and electricity bill estimation for V2B/V2G (Commercial Unit with 70kWh/day)

Battery degradation depending on SoC limits: EV1 = [10% - 90 %], EV2 = [20% - 90%], EV3 = [30% - 90%], EV4 = [40% - 90%], and EV5 = [50% - 90%].

NRC·CNRC

Simulation for V2B/V2G: Battery degradation and electricity bill estimation for V2B/V2G (Commercial Unit with 70kWh/day)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Bill

Electricity bills to be paid by **EV owners** after reflecting reimbursement for ancillary service

Electricity bill for building owner

Peak Shaving

Frequency

Regulation

Comparative analysis of the original bill normalized to 1 with bills after peak shaving, frequency regulation, and combination of peak shaving and frequency regulation, under different SoC limits

NRC CNRC

ioint

Conclusions

- V2X validation testing facility has been built at CCHT Flexhouse at NRC Montreal Rd. campus in Ottawa ON, including grid simulation, renewable power generation, load simulator and bidirectional DC fast charger.
- 2. This V2X test facility will be utilized for determining the effect of bidirectional charging on V2X-capable EVs and performing the simulation and validation of energy management and control strategies to verify potential benefits of V2X.
- 3. NRC's V2X testing protocols include V2X interconnection tests, grid support tests, and V2G performance tests.
- 4. In order to verify the proposed control algorithm for V2B/V2G application, a small residential building or commercial unit with an electricity consumption of 70kWh/day and 5 EVs having a battery storage capacity of 24 kWh per EV has been utilized for simulation on battery degradation and electricity bill estimation.

Conclusions

- 5. A multi-objective strategy using EV batteries was presented not only for V2B (building load and powertrain) application, but also for reducing the peak demand charge and gaining revenue from participating in frequency regulation market as V2G.
- 6. The results can be applicable to any larger buildings with a fleet of EVs by multiplication and additional detailed adjustment.
- The deeper the depth of battery discharge is used, the higher the battery degradation is pronounced. Among five EVs with short and different commute driving profiles, 5th EV with SoC within [50% - 90%] showed the lowest battery degradation.
- 8. Comparative analysis with previous works that used battery storage systems for either peak shaving or frequency regulation showed that EV batteries for V2B/V2G can achieve superior economic benefits under controlled SOC limits.

Acknowledgments

 This work was financially supported by the NRC's Vehicle Propulsion Technologies (VPT) Program, Natural Resources Canada (NRCan) through the Program of Energy Research and Development (PERD), and Transport Canada (TC).

NRC·CNRC

Thank you

Yeong Yoo Senior Research Officer Battery Testing and Optimization NRC Energy, Mining and Environment Research Centre National Research Council Canada Tel: 613-993-5331 yeong.yoo@nrc-cnrc.gc.ca

National Research Council Canada Conseil national de recherches Canada

