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†Deṕartement de Geńie Chimique, École Polytechnique Montreál, C.P.6079 Succ., Centre-Ville Montreál, Quebec H3C 3A7, Canada
‡Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec H9X 3 V9,
Canada
§National Research Council of Canada, 6100 Royalmount Avenue, Montreál, Quebec H4P 2R2, Canada

ABSTRACT: This study demonstrates degradation of synthetic
wastewater in two MFCs hydraulically connected in series. To
maximize chemical oxygen demand (COD) removal, external
resistance of each MFC is optimized using a perturbation−
observation maximum power point algorithm. Under optimal
operating conditions a removal efficiency over 90% is achieved at
an influent acetate concentration of 750 mg L−1 and organic
loading rates ranging from 0.75 to 3.0 g L−1 day−1. Furthermore,
regression analysis is used to correlate current and power output of
each MFC with the analytically measured COD concentrations,
thus providing a means for online COD estimations. The accuracy
of online COD estimations is further improved by developing a
model-based soft-sensor.

1. INTRODUCTION

Microbial fuel cells (MFCs) are bioelectrochemical devices
designed for direct electricity production from organic
matter.1,2 MFCs are primarily studied for energy generation
from renewable organic wastes, such as wastewater. Although a
number of obstacles, including a relatively low power density,
need to be resolved, significant progress has been recently
achieved in the development of practical MFC-based waste-
water treatment systems.3,4 In particular, wastewater treatment
in a cascade of MFCs (hydraulically connected in series) was
shown to improve effluent quality.5−7 Indeed, such a “reactor-
in-series” approach is often used in biological wastewater
treatment, where low effluent concentration is required to
satisfy treatment norms.
MFC application for measuring chemical oxygen demand

(COD) or biochemical oxygen demand (BOD) concentrations
is another emerging area of MFC applications.8−15 Also, MFC
application for measuring dissolved oxygen was recently
demonstrated.16 Conventional laboratory procedures for
COD and BOD determination carried out off-line are time-
consuming, labor intensive, and costly. Furthermore, these
measurements are prone to inaccuracies due to sample
inhomogeneity, complexity of analytical procedures, and errors
in data analysis.13 Several online sensors were recently
developed, for example, spectroscopy-based sensors;17 however,
most of these sensors require chemicals for operation and are
relatively expensive.18 Thus, development of an MFC-based
biosensor might provide a practical low-cost approach for
online COD as well as BOD measurements.

Real-time MFC-based COD measurement using electrical
performance monitoring has been already demonstra-
ted.8−12,14,15 In these works MFCs were operated at a fixed
(preset) external resistance. Meanwhile, MFC performance can
be optimized by matching the external resistance (electrical
load) with the internal resistance estimated through a
polarization test, for example, manually. Furthermore, in recent
years several online approaches for maximizing MFC power
output were proposed including the perturbation and
observation (P/O)19 and pulse-width modulated (PWM)
algorithms.20 In these and other studies an increase in COD
concentration has been shown to lead to an increase in the
current produced by the MFC as well as to a decrease in MFC
total internal resistance.
This study demonstrates COD removal in a cascade of two

MFCs with optimally controlled external resistances. Moreover,
we hypothesize that optimal resistance selection in each MFC
enables online COD estimations. Accordingly, regression
dependencies are derived based on a comparison of analytical
COD measurements and electrical parameters (current, power
output, and total internal resistance) of each MFC. Also,
improved accuracy of COD estimations is achieved by using a
simple dynamic model as a soft-sensor.
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2. MATERIALS AND METHODS

2.1. MFC Design, Operation, And Monitoring. Experi-
ments were conducted in two continuous flow membrane-less
air-cathode MFCs. Each MFC had an anodic compartment
volume of 50 mL. Electrodes consisted of a 10 × 5 cm carbon
felt anode with a total thickness of 5 mm (SGL Canada,
Kitchener, ON, Canada) and an air cathode made of a 10 × 5
cm manganese-based catalyzed carbon E4 electrode (Electric
Fuel Ltd., Bet Shemesh, Israel). The two MFCs were
hydraulically connected in series; that is, the effluent of the
first MFC (MFC-1) was connected to the influent of the
second MFC (MFC-2) as shown in Figure 1. Mixing in each
anode compartment was provided by an external recirculation
loop. Temperature was maintained at 23 °C using a flow
through heater and a thermocouple connected to a temperature
controller (model JCR-33A, Shinko Technos Co. Ltd., Osaka,
Japan).
Each MFC was inoculated with 5 mL of homogenized

anaerobic sludge (Lassonde Industries, Inc., Rougemont, QC,
Canada) with a volatile suspended solids (VSS) content of
approximately 40−50 g L−1 and 20 mL of effluent from an
actively operating MFC. MFC-1 was fed with a synthetic
wastewater consisting of acetate as described in Woodward et
al.19

The acetate stock solution was combined with dilution water
and maintained at a target influent COD concentration of 750
mg L−1. Acetate and dilution water streams were delivered to
MFC-1 using peristaltic pumps (model L/S, Masterflex, Cole-
Parmer Instrument Company LLC., Chicago, IL, USA).
Dilution water flow varied from 100 to 600 mL d−1 providing
a hydraulic retention time from 12 to 2 h in each MFC. Acetate
concentration in the anodic liquid was analyzed on an Agilent
6890 gas chromatograph (Wilmington, DE, USA) equipped
with a flame ionization detector. Method details are provided in
Tartakovsky et al.21

2.2. Numerical Methods. To maximize power production,
external resistance (Rext) of each MFC was optimized in real
time using a P/O algorithm with a sampling period of 20 s. A
detailed algorithm description of the algorithm can be found
elsewhere.19 A Labjack U3-LV data acquisition board (LabJack
Corp., Lakewood, CO, USA) was used to control a digital

potentiometer (model X9C102 from Intersil, Milpitas, CA,
USA), which provided a resistance variation from 4 to 133 Ω

with a step of 1.3 Ω. The P/O algorithm was implemented in
Matlab R2014a (Mathworks, Natick, MA, USA).
JMP statistical software (SAS, Cary, NC, USA) was used to

carry out regression analysis. The soft-sensor model equation
was solved using finite (backward) difference method in Excel
(Microsoft Corporation, Redmond, WA, USA).

3. RESULTS AND DISCUSSION

3.1. Acetate Removal in a Cascade of Two MFCs.
Reactor connection in series (cascade connection) is often used
to maximize the overall rate of biodegradation in biological
wastewater treatment. For instance, aerobic wastewater treat-
ment can be accomplished in a series of aerated reactors or in a
single reactor divided into several compartments operated at
different aeration rates.22 Here, the first reactor in series
receives the highest organic load and, accordingly, is operated at
the highest aeration rate. The following reactors receive lower
organic loads and are less aerated. This approach provides
sufficient oxygen supply to each reactor, while reducing overall
energy consumption for aeration. Similarly, the overall power
production and COD removal can be maximized by optimally
controlling Rext of each MFC.
Importantly, MFC performance was demonstrated to

strongly depend on the value of Rext at which it operates.23,24

Optimal performance can only be achieved if Rext matches the
MFC’s internal resistance (Rint).

23 Also, optimal selection of
Rext is instrumental in maintaining long-term MFC stability, as
increased Coulombic efficiency associated with the proliferation
of anodophilic microorganisms was demonstrated in an MFC
operated at optimal Rext.

19 Furthermore, voltage reversal was
observed in MFCs operated at Rext < Rint,

25 while operation at
Rext < Rint led to proliferation of methanogenic populations.7

Considering that during wastewater treatment Rint depends on
multiple uncontrollable factors, such as carbon source
composition, concentration, and temperature, which vary over
time, a real-time optimization of Rext, for example, using a P/
O,19 might be required. In a cascade of two MFCs the P/O
algorithm can be used to dynamically select (optimize) Rext

Figure 1. Schematic diagram of the two MFCs connected in series. Asterisks represent the influent and effluent COD sampling ports.
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values at high (first MFC) and low (second MFC) COD
concentrations.
The experimental setup shown in Figure 1 was used to

demonstrate the approach of wastewater treatment in a cascade
of two MFCs. This reactor system was operated at several total
organic loading rates (OLRs) ranging from 0.75 to 4.5 g LR

−1

d−1 (here, OLR was calculated based on a total volume of two
MFCs, that is, 100 mL). Figure 2 shows performance of each
MFC in terms of acetate removal and power production. As it
can be seen from these graphs, at the lowest organic load
acetate was mostly degraded in MFC-1, while MFC-2 was used
for effluent polishing (Figure 2A,B). As a result, the acetate
removal efficiency of MFC-2 was low. Accordingly, power
production in MFC-1 was significantly higher than in MFC-2
(Figure 2C). Importantly, Rext values of both MFC-1 and MFC-
2 were dynamically adjusted using the P/O algorithm. The
resulting values were significantly different, with Rext of MFC-1
significantly lower than that of MFC-2 (Figure 2D). As the flow
rate to MFC-1 increased (leading to higher total OLR), MFC-1
reached its maximal removal rate at an OLR of 2.25 g LR

−1 d−1.
Above this organic load the effluent acetate concentration of
MFC-1 started to increase, while its power output remained
nearly constant. The increase in acetate concentration entering
MFC-2 led to higher power output and lower Rext of this MFC
(Figure 2C,D). At organic loads between 0.75−2.25 g LR

−1 d−1

the overall removal efficiency remained high with MFC-2
effluent acetate concentrations in a range of 11.2 to 27.5 mg
L−1 (Figure 2 A). Finally, at the highest tested organic load of
4.5 g LR

−1 d−1 the effluent acetate concentration of MFC-2
increased to 263 mg L−1, while the power output remained
nearly constant. This behavior indicated organic overload of the
treatment system.
Overall, the cascade treatment system provided robust

acetate removal and demonstrated near constant power
production in a broad range of organic loads, while also
providing low effluent acetate concentration.

3.2. COD Correlation with MFC Current and Power
Output. A comparison of effluent COD concentrations shown
in Figure 2A with the corresponding power outputs in Figure
2C suggests that the MFC electrical performance depends on
the carbon source concentration. If a regression dependence
between the MFC power output (or electrical current) and
carbon source concentration can be inferred, the MFC can be
used as an online COD sensor. Indeed, the concept of an MFC-
based COD/BOD sensor has been already proposed.9−12,14,15

However, in these studies MFCs were used to develop rapid
off-line assays in which carbon source degradation was observed
over a relatively short period of time (e.g., several hours). It
would be beneficial to use the MFC electrical performance for
online COD estimations. To enable such estimations, all
available analytical COD measurements (collected during the
17-day test described in the previous section) were regressed
with the corresponding power outputs and currents of each
MFC. Considering that in both MFCs Rext was optimized in
real time using the P/O algorithm, the optimal external
resistance values (Rext* ) were also included in the regression
analysis.
Several linear and nonlinear regression models were

developed and compared (Table 1). Figure 3A, B, and C
compares COD measurements and best-fitting regression
dependencies obtained using current (Figure 3A), power
(Figure 3B), and Rext* (Figure 3C). This comparison confirms
that COD concentrations can be estimated in real time using
either current or power output measurements of an MFC
operated at a maximal power output with dynamically adjusted
Rext. As shown in Table 1, the highest R2 values of COD
estimations using current and power output are 0.90 and 0.82,
respectively. The COD estimations using Rext values were less
accurate (R2 = 0.75, Table 1). It might be noted that Rext* values
determined by the P/O algorithm oscillated around the actual
optimal resistance19 thus contributing to the inaccuracy of the
estimation.

Figure 2. (A) Effluent acetate concentrations; (B) COD removal efficiencies; (C) power outputs; and (D) optimal external resistances determined
by the P/O algorithm during MFC-1 and MFC-2 operation at several organic loads. Influent acetate concentration was maintained at 750 mg L−1.
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As can be seen from the comparison shown in Table 1 and
Figure 3, the following exponential regression model provided
the best fit:

=S a ebI (1)

where a and b are the regression coefficients, S is the COD
concentration, and I is the MFC current. The estimated
regression coefficients are a = 10.9 mg L−1 and b = 0.09 mA−1.
Notably, eq 1 implies a COD concentration of 11.1 mg L−1 at
zero current. This COD concentration can be considered to be
the low boundary of MFC-based measurements. A linear
regression equation can be also used at low COD
concentrations (e.g., less than 100 mg L−1). However, the
linear dependence results in a lower R2 value (Table 1).
Both influent COD concentration and liquid flow through

anaerobic compartment are expected to influence MFC
performance.26 Accordingly, the regression analysis was
repeated using organic loading rates calculated for each MFC,
which provide a combination of these parameters (here, OLR =
FSin/V, where F is the flow rate, Sin is the influent COD
concentration, and V is the MFC anodic compartment
volume). The regression analysis showed results similar to

COD concentration approximations (Table 1). Figure 3D−F
shows experimental and approximated OLR values obtained
using best-fitting regression equations. Once again, a linear
regression equation can be only used at low OLR values, while
the exponential regression dependence provided a better overall
fit for the estimations based on the MFC power outputs. A
second order polynomial provided a slightly better fit for OLR
estimations (Table 1); however, the difference was statistically
insignificant. The R2 of these OLR estimations using current
(Figure 3D), and power (Figure 3E) are 0.849 and 0.850,
respectively. Online OLR estimations can be useful for
developing real-time control strategies aimed at timely
avoidance of reactor overloads, due to hydraulic or organic
overloads.9

Overall, it was shown that MFC power output and current
observed during wastewater treatment can be conveniently
used to provide online estimations of organic loads and effluent
COD concentrations. Although acetate was used throughout
the tests as a carbon source, a linear dependence of MFC
current on COD concentration was demonstrated in several
studies carried out using a variety of complex organic
substrates, including volatile fatty acids,27 and municipal and
industrial wastewaters.28−30 Importantly, the COD estimations
were made possible due to MFC operation using the P/O
algorithm, which dynamically selected Rext, thus maximizing
power production at all times. The regression eq 1 does not
consider the influence of temperature, pH, nitrogen species,
dissolved oxygen,16,31 and other operating parameters on MFC
current. A more complex regression equation could be
developed if significant variations of these parameters are
expected. Also, the impact of hydraulic retention time on the
MFC current can be accounted for by including organic load
rather than COD concentration in eq 1 (Table 1). Also, an
MFC sensor can be built and operated at a fixed flow rate.
Finally, MFC sensing accuracy and sensitivity can be further
improved through advanced MFC design.32

3.3. MFC Dynamic Model as Soft-Sensor for Enhanced
COD Estimations. In addition to regression dependencies
enabling COD and OLR estimations based on MFC current
and power output, a soft-sensor approach for COD estimations
was also tested. Here, a simple dynamic model was used to
estimate effluent COD concentrations. The soft-sensor was
expected to provide improved estimation accuracy.33

The dynamic model used to develop the soft-sensor was
based on the anodic compartment material balance. Modeling
assumptions included ideal mixing within the compartment and
negligible carbon source consumption by microbial populations
other than anodophilic microorganisms (e.g., contribution of
methanogenic microorganisms to COD removal was assumed
to be negligible). Under these simplifying assumptions a
dynamic mass balance of the carbon source concentration in
the anodic compartment can be written as

= − + −
S

t
qX D S S

d

d
( )in (2)

where S is the effluent carbon source concentration (mg L−1), q
is the carbon source consumption rate (d−1), X is the
concentration of anodophilic microorganisms (mg L−1), D is
the dilution rate (d−1) calculated as D = F/V, Sin is the influent
carbon source concentration (mg L−1).
Carbon source consumption by the anodophilic micro-

organisms in eq 2 is described by the negative term (−qX). For
a mature biofilm with near constant biomass concentration, it

Table 1. Regression Dependencies. Some Experimental
Values Were Discarded When Estimating the Best Set of
Regression Model Parameters

regression equation
measurement

(X) R2

number
of data
points

model
parameters

COD = a + bX I 0.81 21 a = 2.08,
b = 9.39

P 0.65 21 a = 10.8,
b = 8.62

COD = a + bX + cX2 I 0.89 45 a = 29.5,
b = −5.08,
c = 0.38

P 0.69 45 a = 0,
b = −5.36,
c = 11.3

COD = a ebX I 0.90 45 a = 10.9,
b = 0.09

P 0.82 45 a = 8.51,
b = 0.66

COD = aXb I 0.75 45 a = 4.32,
b = 1.04

P 0.62 45 a = 27.6,
b = 1.03

Rext* 0.75 45 a = 662, b=
−0.90

OLR = a + bX I 0.82 34 a = 0,
b = 0.14

P 0.73 34 a = 0,
b = 0.83

OLR = a + bX + cX2 I 0.85 41 a = 0,
b = 0.06,
c = 0.004

P 0.85 41 a = 0,
b = 0.43,
c= −0.62

OLR = a e bX I 0.70 41 a = 0.15,
b = 0.12

P 0.85 41 a = 0.07,
b = 0.99

OLR = aXb I 0.78 41 a = 0.04,
b = 1.34

P 0.74 41 a = 0.42,
b = 1.46

Rext* 0.77 41 a = 33.1, b =
−1.21
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can be assumed that the current produced by the MFC does
not depend on the biomass concentration; therefore, the term
qX in eq 2 can be replaced with the MFC current:

β= − + −
S

t
I D S S

d

d
( )in (3)

where I is the MFC current (mA), and β is the coefficient
defined as a ratio of carbon source consumption to current
production (mg L−1 d−1 mA−1). Notably, β can be shown to be
inversely proportional to Coulombic efficiency.
A value of β in eq 3 can be estimated under steady state

conditions, so that β = D(Sin − S)/I. Once β is estimated, the
online measurements of the electric current can be used for
COD estimations, providing that both the flow rate and the
influent COD concentration are known. The latter requirement
can be challenging at wastewater treatment plants, where
influent COD concentration can significantly vary. Yet, in many
instances an average influent COD concentration is known.
Notably, the accuracy of the estimated effluent COD will
depend on the accuracy of β estimations, which can be
improved by using several COD and the corresponding current
values.
The soft-sensor approach was applied to the experimental

results described in the previous section as follows. First,
parameter β was estimated for each MFC during steady state
operation corresponding to t = 0. Effluents of each MFC were
sampled, and triplicate COD analysis was carried out. The
average COD values were divided by the corresponding current
values averaged over a 3 h period. The following values were

estimated: β1 = 118 and β2 = 85.5 mg L−1 d−1 mA−1, for MFC-1
and MFC-2, respectively. Once β values were estimated, COD
values were predicted using eq 3.
Figure 4 compares the accuracy of the soft-sensor (eq 3) and

regression model (eq 1) COD estimations. The figure also
shows the flow rate profile and the experimentally measured
COD concentrations at the exit of MFC-1 and MFC-2. Also,
current produced by each MFC and Rext* values are shown in
Figure 4B and C, respectively. Note that a technical problem
between days 4 and 6 of the test resulted in a corrupted data
log file (marked as a gray area). Nevertheless, the Rext control
was carried out normally during this period. Oscillations in Rext*

values determined by the P/O algorithm during MFC-2
operation after day 8 can be noticed. These oscillations can
be attributed to MFC-1 operation at a lower influent COD
concentration, which led to low COD concentration in MFC-1
effluent. Accordingly, COD concentration in MFC-2 was even
lower, thus causing the P/O algorithm to adjust the optimal
value of Rext bringing it to the upper limit of the digital resistor
(133 Ω). At the same time, MFC-1, which received higher
organic loads, was operated at relatively low Rext values. Also,
the Coulombic efficiency estimations based on all available
acetate measurements were 83 and 96% for MFC-1 and MFC-
2, respectively. Also, Coulombic efficiency estimations using β

values estimated at t = 0 yielded similar values (75 and 103%
for MFC-1 and MFC-2, respectively). These Coulombic
efficiency estimations confirm the efficiency of optimal Rext

control, which promoted growth of the anodophilic micro-

Figure 3. Statistical correlation fitting the experimental COD concentrations and organic loading rates against the electrical current (A,D), the
optimal external resistance (B,E), and power (C,F).
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organisms both at low and high COD (acetate) concentrations
and minimized methanogenic activity.
Overall, the soft-sensor approach allowed for improved

estimation accuracy, as can be seen from the correlation curves
shown in Figure 5. For this analysis the first 15 experimental
values (days 0 to 8) were used to estimate regression
coefficients in eq 1, while current measurements between
days 9 and 17 were used to validate the regression model
(Figure 4). Importantly, effluent COD concentrations were
considerably higher during the first 8 days of operation as
compared to the rest of the test, due to a high influent COD
concentration. Thus, by estimating regression coefficients
during this high COD period and applying eq 1 to predict
CODs at lower influent COD concentrations (days 9−17), the
regression model was validated with the data outside of the
calibration range, which confirms its predictive capacity.
Not only is the R2 value corresponding to the soft-sensor

prediction higher (0.9 vs 0.7), but also the slope of the curve in
Figure 5B is closer to 1 as compared to the slope in Figure 5A,
which points to a better estimation accuracy. The COD
(acetate) values predicted by the two methods were also

compared to the measured values using the Bland-Altman
analysis. This comparison showed a bias (mean of the
difference) of 0.1 and 6.3 mg L−1 for the regression and the
soft-sensor methods, respectively. Since the differences are
normally distributed (not shown) the standard deviation is used
to determine the limits of agreement. A standard deviation of
33 mg L−1 was obtained for both techniques with the
agreement ranges shown in Figure 5C and Figure 5D for the
regression and the soft-sensor models, respectively.
It should be noted that although the soft-sensor approach

required the knowledge of flow rates and influent COD
concentrations, a practical implementation of this approach can
involve operation of a miniature MFC (essentially a biosensor)
at a high flow rate. Accordingly, a constant dilution term in eq 3
can be assumed thus extending the applicability of the soft-
sensor approach.

4. CONCLUSION

The existing off-line techniques for effluent quality monitoring
in wastewater treatment make it difficult to use advanced

Figure 4. COD degradation performance for the two MFCs in series and online effluent substrate concentration estimation using the simplified mass
balance (eq 2). Applied flow rate, measured and estimated effluent COD concentrations (A), current (B), and applied external resistance (C).
Current values were filtered using an exponential filter.
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control strategies, which rely on real-time measurements.

Wastewater treatment in a cascade of two MFCs offers a dual

advantage of energy-positive COD removal and online

estimation of effluent COD concentration. Importantly, the

approach of MFC-based online COD measurements can be

extended to a single MFC installed in the effluent stream of a

conventional wastewater treatment process.
Our work presents two distinct approaches for COD

estimation using the electrical performance of an MFC. In

one approach, a simple regression model can be used to infer

current produced in the MFC with the COD concentration.

Alternatively, a simple COD mass balance-based dynamic

model representing a soft-sensor can also be used. While online

COD estimations demonstrated in this study are based on

acetate-fed MFCs, a similar approach could be used with more

complex wastewaters, since a linear dependence of MFC

current on COD and BOD wastewater concentrations has been

previously demonstrated in batch tests.27−30 Furthermore,

while this study was focused on current and power correlations

with COD measurements, the MFC-based sensor can also be

used for BOD estimations due to the near constant COD/BOD

ratio of wastewaters. Furthermore, removal of ammonia and

sulfate in an MFC was recently demonstrated34,35 suggesting

the possibility of developing respective MFC sensors.

■ AUTHOR INFORMATION

Corresponding Author

*Tel.: +1-514-496-2664. E-mail: Boris.Tartakovsky@cnrc-nrc.
gc.ca.

ORCID

Boris Tartakovsky: 0000-0002-6588-3276

Notes

The authors declare no competing financial interest.

■ REFERENCES

(1) Chaudhuri, S. K.; Lovley, D. R. Electricity generation by direct
oxidation of glucose in mediatorless microbial fuel cells. Nat.
Biotechnol. 2003, 21 (10), 1229−32.
(2) Rabaey, K.; Verstraete, W. Microbial fuel cells: novel
biotechnology for energy generation. Trends Biotechnol. 2005, 23
(6), 291−8.
(3) Li, W. W.; Yu, H. Q.; He, Z. Towards sustainable wastewater
treatment by using microbial fuel cells-centered technologies. Energy
Environ. Sci. 2014, 7 (3), 911−924.
(4) Du, Z.; Li, H.; Gu, T. A state of the art review on microbial fuel
cells: A promising technology for wastewater treatment and bioenergy.
Biotechnol. Adv. 2007, 25 (5), 464−82.
(5) Ledezma, P.; Greenman, J.; Ieropoulos, I. MFC-cascade stacks
maximise COD reduction and avoid voltage reversal under adverse
conditions. Bioresour. Technol. 2013, 134, 158−65.
(6) Hodgson, D. M.; Smith, A.; Dahale, S.; Stratford, J. P.; Li, J. V.;
Gruning, A.; Bushell, M. E.; Marchesi, J. R.; Avignone Rossa, C.
Segregation of the Anodic Microbial Communities in a Microbial Fuel
Cell Cascade. Front. Microbiol. 2016, 7, 699.

Figure 5. Regression analysis of the exponential model with output current as measurement (A) and the dynamic model as a softsensor (B) for the
online estimation of the effluent acetate concentration. Solid and dashed lines show linear regression and line of agreement (y = x) trendlines,
respectively. Bland and Altman plots for the exponential (C) and softsensor (D) models show the difference between the measured and estimated
values and limits of agreement.

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.7b02586
Ind. Eng. Chem. Res. 2017, 56, 12471−12478

12477

mailto:Boris.Tartakovsky@cnrc-nrc.gc.ca
mailto:Boris.Tartakovsky@cnrc-nrc.gc.ca
http://orcid.org/0000-0002-6588-3276
http://dx.doi.org/10.1021/acs.iecr.7b02586


(7) Pinto, R. P.; Tartakovsky, B.; Perrier, M.; Srinivasan, B.
Optimizing treatment performance of microbial fuel cells by reactor
staging. Ind. Eng. Chem. Res. 2010, 49 (19), 9222−9229.
(8) Jin, X.; Angelidaki, I.; Zhang, Y. Microbial Electrochemical
Monitoring of Volatile Fatty Acids during Anaerobic Digestion.
Environ. Sci. Technol. 2016, 50 (8), 4422−9.
(9) Chang, I. S.; Jang, J. K.; Gil, G. C.; Kim, M.; Kim, H. J.; Cho, B.
W.; Kim, B. H. Continuous determination of biochemical oxygen
demand using microbial fuel cell type biosensor. Biosens. Bioelectron.
2004, 19 (6), 607−613.
(10) Chouler, J.; Di Lorenzo, M. Water Quality Monitoring in
Developing Countries; Can Microbial Fuel Cells be the Answer?
Biosensors 2015, 5 (3), 450−70.
(11) Di Lorenzo, M.; Curtis, T. P.; Head, I. M.; Scott, K. A single-
chamber microbial fuel cell as a biosensor for wastewaters. Water Res.
2009, 43 (13), 3145−3154.
(12) Kim, B. H.; Chang, I. S.; Cheol Gil, G.; Park, H. S.; Kim, H. J.
Novel BOD (biological oxygen demand) sensor using mediator-less
microbial fuel cell. Biotechnol. Lett. 2003, 25 (7), 541−545.
(13) Geerdink, R. B.; van den Hurk, R. S.; Epema, O. J. Chemical
oxygen demand: Historical perspectives and future challenges.
Analytica Chimica Acta. 2017, 961 (18), 1−11.
(14) Pasternak, G.; Greenman, J.; Ieropoulos, I. Self-powered,
autonomous Biological Oxygen Demand biosensor for online water
quality monitoring. Sens. Actuators, B 2017, 244, 815−822.
(15) Sun, J. Z.; Kingori, G. P.; Si, R. W.; Zhai, D. D.; Liao, Z. H.; Sun,
D. Z.; Zheng, T.; Yong, Y. C. Microbial fuel cell-based biosensors for
environmental monitoring: a review. Water Sci. Technol. 2015, 71 (6),
801−9.
(16) Zhang, Y.; Angelidaki, I. A simple and rapid method for
monitoring dissolved oxygen in water with a submersible microbial
fuel cell (SBMFC). Biosens. Bioelectron. 2012, 38, 189−194.
(17) Carstea, E. M.; Bridgeman, J.; Baker, A.; Reynolds, D. M.
Fluorescence spectroscopy for wastewater monitoring: A review.Water
Res. 2016, 95, 205−19.
(18) Geerdink, R. B.; Sebastiaan van den Hurk, R.; Epema, O. J.
Chemical oxygen demand: Historical perspectives and future
challenges. Anal. Chim. Acta 2017, 961, 1−11.
(19) Woodward, L.; Perrier, M.; Srinivasan, B.; Pinto, R. P.;
Tartakovsky, B. Comparison of real-time methods for maximizing
power output in microbial fuel cells. AIChE J. 2010, 56 (10), 2742−
2750.
(20) Coronado, J.; Perrier, M.; Tartakovsky, B. Pulse-width
modulated external resistance increases the microbial fuel cell power
output. Bioresour. Technol. 2013, 147, 65−70.
(21) Tartakovsky, B.; Manuel, M. F.; Neburchilov, V.; Wang, H.;
Guiot, S. R. Biocatalyzed hydrogen production in a continuous flow
microbial fuel cell with a gas phase cathode. J. Power Sources 2008, 182
(1), 291−297.
(22) Åmand, L.; Olsson, G.; Carlsson, B. Aeration control - a review.
Water Sci. Technol. 2013, 67, 2374−2398.
(23) Pinto, R. P.; Srinivasan, B.; Guiot, S. R.; Tartakovsky, B. The
effect of real-time external resistance optimization on microbial fuel
cell performance. Water Res. 2011, 45 (4), 1571−8.
(24) Zhang, L.; Li, J. V.; Zhu, X.; Ye, D.; Fu, Q.; Liao, Q. Startup
Performance and Anodic Biofilm Distribution in Continuous-Flow
Microbial Fuel Cells with Serpentine Flow Fields: Effects of External
Resistance. Ind. Eng. Chem. Res. 2017, 56 (14), 3767−3774.
(25) Sugnaux, M.; Savy, C.; Cachelin, C. P.; Hugenin, G.; Fischer, F.
Simulation and resolution of voltage reversal in microbial fuel cell
stack. Bioresour. Technol. 2017, 238, 519−527.
(26) Liu, B.; Lei, Y.; Li, B. A batch-mode cube microbial fuel cell
based ″shock″ biosensor for wastewater quality monitoring. Biosens.
Bioelectron. 2014, 62, 308−14.
(27) Jin, X.; Angelidaki, I.; Zhang, Y. Microbial Electrochemical
Monitoring of Volatile Fatty Acids during Anaerobic Digestion.
Environ. Sci. Technol. 2016, 50, 4422−4429.

(28) Di Lorenzo, M.; Curtis, T. P.; Head, I. M.; Scott, K. A single-
chamber microbial fuel cell as a biosensor for wastewaters. Water Res.
2009, 43, 3145−3154.
(29) Kim, B. H.; Chang, I. S.; Gil, G. C.; Park, H. S.; Kim, H. J. A
novel bioelectrochemical BOD sensor operating with voltage input.
Biotechnol. Lett. 2003, 25, 541−545.
(30) Chang, I. S.; Jang, J. K.; Gil, G. C.; Kim, M.; Kim, H. J.; Cho, B.
W.; Kim, B. H. Continuous determination of biochemical oxygen
demand using microbial fuel cell type biosensor. Biosens. Bioelectron.
2004, 19, 607−613.
(31) Martin, E.; Savadogo, O.; Guiot, S. R.; Tartakovsky, B. The
influence of operational conditions on the performance of a microbial
fuel cell seeded with mesophilic sludge. Biochem. Eng. J. 2010, 51,
132−139.
(32) Zhang, Y.; Olias, L. G.; Kongjan, P.; Angelidaki, I. Submersible
microbial fuel cell for electricity production from sewage sludge. Water
Sci. Technol. 2011, 64, 50−55.
(33) Luo, S.; Sun, H.; Ping, Q.; Jin, R.; He, Z. A review of modeling
bioelectrochemical systems: engineering and statistical aspects. Energies
2016, 9 (2), 111.
(34) Zhang, Y.; Angelidaki, I. Recovery of ammonia and sulfate from
waste streams and bioenergy production via bipolar bioelectrodialysis.
Water Res. 2015, 85, 177−184.
(35) Zhang, Y.; Angelidaki, I. Submersible microbial desalination cell
for simultaneous ammonia recovery and electricity production from
anaerobic reactors containing high levels of ammonia. Bioresour.
Technol. 2015, 177, 233−239.

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.7b02586
Ind. Eng. Chem. Res. 2017, 56, 12471−12478

12478

http://dx.doi.org/10.1021/acs.iecr.7b02586

