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establishment of the model system 
between phytochemicals and gene 
expression proiles in Macrosclereid 
cells of Medicago truncatula
Fuyou Fu  1, Wentao Zhang2, Yuan-Yuan Li3 & Hong Li Wang1

Macrosclereid cells, which are a layer in the seed coat of Medicago truncatula, accumulate large 

amounts of phytochemicals during their development. But little is known about the complex and 

dynamic changes during macrosclereid cell development. to characterize the phytochemicals and 

the related gene expression during the development of M. truncatula macrosclereid cells, a high 

performance liquid chromatography-mass spectrometry (HPLC-MS) assay and microarray study 
were conducted on transcriptome changes from macrosclereid cell during seed development. A total 

of 16 lavonoids by HPLC-MS and 4861 genes exhibited signiicant diferences at transcript levels 
by microarray analysis were identiied for macrosclerid cells at six diferent time points during seed 
development. 815 abiotic and biotic stress genes, 223 transcriptional factors (TFs), and 155 annotated 
transporter proteins exhibited diferential expression during the development of macrosclereid cells. A 
total of 102 genes were identiied as involved in lavonoid biosynthesis, phenypropanoid biosynthesis, 
and lavone and lavonol biosynthesis. We performed a weighted gene co-regulatory network (WGCNA) 
to analyze the gene-lavonoid association and rebuilt the gene regulatory network during macrosclereid 
cell development. Our studies revealed that macrosclereid cells are, beside as the irst barrier of defense 
against diseases, an excellent model system to investigate the regulatory network that governs 

lavonoid biosynthesis.

Medicago truncatula, a member of the Fabaceae, has garnered considerable attention as a genomic and molecular 
model system for legume biological studies1, due to its small genome size, phenotypic variations, small size, short 
life cycle, and completed genomic DNA sequence (www.medicago.org). To date, M. truncatula has been broadly 
used as a model plant for the study of root-rhizobial interactions, molecular regulation of nodule development2, 3, 
lignin biosynthesis4, 5, seed coat development6, and lavonoid biosynthesis and transport7–9. However, few studies 
have focused on the development of M. truncatula MC (MC), which are a specialized cell layer in the seed coat10.

In angiosperms, a mature seed consists of an embryo, a seed coat, and an endosperm. Many previous studies 
focused on embryo and endosperm development11, 12 and seed coat color control8, 13, 14. In fact, the seed coat plays 
crucial roles in all species, i.e. protecting the embryo, limiting desiccation during dormancy and germination, 
and promoting seed dispersal15. In M. truncatula, the seed coat of M. truncatula is composed of several layers of 
specialized cells, including a uniform palisade layer of MC called the Malpighian layer10. hese MC are radially 
elongated, and are covered by a thick cuticle layer on their outer surface. In order to reveal the development of 
MC and their role in mature seeds, we studied the cell development by light microscope and identiied the phy-
tochemicals present in MC by HPLC-MS.

Arabidopsis thaliana is a widely used model system for genetic analysis, and also has been used to study seed 
coat development. Several key genes involved in seed coat diferentiation and proanthocyanidin (PA) biosynthe-
sis regulation have been identiied and characterized through studies of Arabidopsis seed coat mutants, and the 
PA biosynthetic pathway has been largely elucidated14, 16–18. In M. truncatula, several genes involved in seed coat 
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diferentiation, such as MATE18 and MATE29, have been identiied and characterized. Many genes involved in 
seed coat development, such as TT1, TT3, TT4, TT5, TT6, TT1019, TTG120, TT221, TTG222, TT823, TT724, TT128, 25,  
and TT1926, have been identiied using forward-genetic mutant screens. Although much is known about seed 
coat development in Arabidopsis, M. truncatula, and other plants, many gaps remain in our understanding of 
this process. More over, it is extremely challenging to identify mutants with no visible phenotype, such as those 
with minor changes in metabolic processes. Global gene expression analysis is regarded as a useful alternative 
approach to identify additional genes and gene regulatory networks that are involved in seed coat development.

Although gene expression proiles have been applied to seed coat development studies for Arabidopsis27, 28 and 
M. truncatula13, 29, these studies mainly focused on providing some insights into seed coat development. A global 
analysis of gene expression during seed coat development, particularly during macrosclereid development, has 
not yet been reported in M. truncatula. In the present study, we monitored morphological changes in developing 
MC using light microscopy and tracked the accumulation of lavonoids using HPLC-UV-MS. Furthermore, we 
conducted a comprehensive global analysis of gene expression in developing M. truncatula MC. Our studies indi-
cated that TFs and structural genes involved in regulation the accumulation of lavonoid compounds in MC. he 
results of this study provide some insight into the distinct chemistry of developing MC.

Materials and Methods
Reagents and standards. LC-MS reagents were obtained from Fisher Scientiic (Rockford, IL, USA) and 
ultra-pure water was generated using the model Milli-Q Plus System (Billerica, MA, USA). Flavonoid standards 
were obtained from Indoine (Somerville, NJ, USA), Sigma-Aldrich (St. Louis, MO), and Chromax (Irvine, CA). 
All standards (Table S1) were previously described by Fu et al.30.

plant material. Plants (Medicago truncatula, ecotype A17) were grown in pots containing a mixture of sand 
and perlite (2:8) under controlled growth chamber conditions with an average temperature of 23 °C, 50% humid-
ity, and a 16-h photoperiod. Plants were watered/fertilized using a solution containing one tablespoon of Scotts 
Miracle-Gro per gallon water (Scotts Miracle-Gro Company, Marysville, OH, USA).

Pod harvest and MC isolation. Randomly selected lowers were tagged (using small diferent colored tags 
and strings) on the day ater pollination10. Whole pods were collected at various days post pollination (DPP; from 
6 to 27 DPP). he seeds were immediately extracted from the harvested pods on ice. MC were isolated from the 
seed using an Olympus-SZX16 (10×, Olympus America Inc., Melville, NY, USA) on ice and rapidly placed in 
liquid nitrogen and stored at −80 °C for LC-ESI-MS and gene expression analyses.

tissue preparation and light microscopy observations. Tissues were prepared and light microscopy 
observations were made as previously described10. All sections were stained with Toluidine Blue O at pH 4.4 and 
observed with an Olympus-BH2 microscope (Olympus America Inc., Melville, NY, USA). Digital photomicro-
graphs were acquired using a SPOT Insight Camera (Diagnostic Instruments, Inc., Sterling Heights, MI, USA).

Flavonoid extraction. Frozen MC (100 mg per aliquot in fresh weight) were homogenized in 80% 1 ml 
methanol, and the suspension was placed in an ultrasonic bath for 1 h. he extract was centrifuged at 13000 rpm 
for 20 min at room temperature and the supernatant was iltered using 4.6 µm pore-diameter ilters (Fisher 
Scientiic, St. Louis, USA). he iltered solution was subjected to LC-MS analysis. he insoluble PAs (in-PAs) 
measurement was followed the method as previously described by Liang et al.31.

HPLC-ESI-MS instrumentation. Phytochemical constituents were analyzed using an LC-MS/MS system 
comprised by an Agilent 1100 HPLC system (Hewlett-Packard, Palo Alto, CA, USA) with DAD detector and a 
Bruker Esquire 3000 ion-trap mass spectrometer (Bruker Daltonics, Bremen, Germany). he separation of ana-
lytes was carried out on a C18 column (4.6 × 250 mm, 5 µm) from Grace (Grace, Maryland, USA). he detection 
wavelength for UV signal was acquired at 600 nM, and the scan range was from 200 to 600 nm. he mobile phase 
of HPLC consisted of (A) water containing 0.1% formic acid (v/v), and (B) acetontrile, and the elution gradient 
was set as: 0 to 5 min, isocratic 95% A and 5% B; 5 to 10 min, isocratic 10% B; 10 to 17 min, isocratic 17% B; 17 to 
25 min, isocratic 25% B; 25 to 30 min, isocratic 30% B; 30 to 55 min, isocratic 55% B; 55 to 65 min, isocratic 70% 
B; 65 to 70 min, isocratic 5% B; and 70 to 75 min, isocratic 95% A and 5% B. he low rate was at 0.8 ml min−1 and 
the column temperature was maintained at 25 °C. LC-MS data was acquired in negative mode with mass range 
from 50 to 2200 m/z. he key parameters for ion-trap mass spectrometer (ITMS) were set as follows: ion source 
voltage, 3.5 kV; capillary temperature, 350 °C; and ion current control (ICC), 10,000 with a maximum acquisition 
time of 100 ms. he MS/MS data was obtained in a manual mode for targeted mass using an isolation width of 2.0, 
a fragmentation amplitude of 2.2, and a threshold set at 6000.

RNA isolation and qRT-PCR. RNA was extracted from frozen MC using the Spectrum™ Plant Total RNA 
Kit with on-column DNaseI digestion (Sigma-Aldrich, St. Louis, USA). For cDNA synthesis, 1 µg of total RNA 
was reverse transcribed using the iScript cDNA Synthesis Kit (Bio-Rad Laboratories, USA), which contains 
MMLV-derived reverse transcriptase and is primed with random primers. Diluted fractions were used for PCR 
analysis (S1000™ hermal Cycler, Bio-Rad Laboratories, USA). Medicago UBQ10 was ampliied for 25 cycles 
(94 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 min).

Transcript levels of genes were measured by real-time PCR using SYBR® Green PCR Master Mix (Applied 
Biosystems, USA) and a CFX 96 Real-Time System (Bio-Rad Laboratories, USA). Reactions contained 5 µL of 
SYBR Green Master Mix reagent (Applied Biosystems, USA), 1 µL of cDNA, and 200 nM of each gene-speciic 
primer in a inal volume of 10 µL, and were subjected to 40 cycles of ampliication. he primers were designed 
from the 3′-UTR to avoid any unspeciic ampliication (Table S2). he transcript levels were determined by 
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relative quantification32 using Medicago UBQ10 and Medtr7g089600 as references. Gene expression was 
expressed as mean and standard error calculated based on three biological replicates with three technical repli-
cates for each biological replicate.

Microarray data processing and analysis. Twenty-two macrosclereid RNA samples underwent microar-
ray analysis using the GeneChip Medicago Genome Array33. he Bioconductor R package34 was used for gene 
expression analysis. Briely, raw microarray data in CEL iles were imported into Bioconductor using the R pack-
age afy and background correction was performed using the RMA (Robust Multi-Array Average) method35. 
Genes that were diferentially expressed throughout seed development were identiied by ANOVA of the RMA 
expression values using the Limma R package36. Multiple testing correction was applied to the p-values of the 
F-statistics to adjust the false discovery rate. All genes with adjusted p-values of <0.001 were identiied for fur-
ther analysis. In this study, we only identiied the signiicantly diferentially expressed genes (DEGs) during MC 
development of M. truncatula. Hence, the genes with a fold-change of ≥3.0 were analyzed further. Furthermore, 
to identify the putative function of the genes exhibited signiicant expression changes during MC development, 
their sequences were BLASTN-searched againist Medicago genome sequences (Mt 4.0V1, http://jcvi.org/medi-
cago/)37 using BLAST+ 2.6.038 (E-value = 1e −10) to acquire a Genoscope ID number. he latest annotations 
for all Genoscope IDs and relational Network IDs, InterPro domain IDs, Gene Ontology IDs, Uniprot IDs and 
functions were published37, and were used as the reference for functional category and annotation.

Bioinformatic analysis. Gene Ontology (GO) analysis was performed using agriGo39. Gene function ontol-
ogy terms were characterized with Mapman40, 41 ontology terms and mapped into diferent biological pathways 
with tools embedded in the Mapman sotware40, 41. Gene function enrichment analysis within the detected mod-
ules was performed using the chi-square test (p-value < 0.05 ater Benjamini-Hochberg correction). Transcripts 
found to be signiicantly diferentially expressed during MC development were used to construct a weighted 
gene co-regulatory network (WGCNA) using a step-by-step method implemented in the WGCNA R package42. 
Firstly, a pairwise gene correlation matrix was calculated with a Pearson correlation analysis and transformed 
into a weighted matrix (called the adjacency matrix) with a scaling factor beta (β = 13) under the assumption that 
biological networks are scale free. Weights indicate the connection strength between gene pairs. hen, a dendro-
gram was generated with a hierarchical clustering method from the adjacency matrix. Consequently, modules 
(a cluster of genes with similar expression pattern) were identiied by a dynamic tree-cut algorithm with a mini-
mum module size of 30 genes and a high cutof value at 0.3. he module eigengenes (irst principal component) 
were estimated with principal component analysis (PCA). Finally, modules and their relationship to external 
traits were also identiied using tools in this package42 by Pearson correlation analysis between the modules and 
external traits. he lavonoid pathway network in MC was generated with a hard cut-of value of |r| = 0.85, which 
made the network follow a roughly power-law distribution43, 44. Identiied gene interactions were imported into 
Cytoscape45 version 3.0.2 for visualization and additional analysis.

Results and Discussion
Development of MC in M. truncatula. In previous studies, we characterized cellular structures and devel-
opmental processes for the pods and seeds of M. truncatula. Also, we investigated and described the development 
of MC in M. truncatula10, and found polyphenolic phytochemical accumulation (e.g., lavonoids) in MC during 
seed developing stages of M. truncatula are changed spatially and timely. In this study, to determine the distribu-
tion of polyphenolic compounds in seeds of M. truncatula, we performed a histochemical analysis of the seeds 
during six developmental stages (3 DPP, 6 DPP, 13 DPP, 20 DPP, 27 DPP, and 39 DPP) using Toluidine Blue O 
at pH 4.4 (Fig. 1) with wheat seeds at 24 DPP as positive control. Polyphenolic compounds were stained with 
Toluidine Blue O showing blue-green color. No polyphenolic compounds were detected on 3 DPP (Fig. 1A). 
Ployphenolic compounds were accumulated at 6 DPP when seed coat starts to form (Fig. 1B). he accumulation 
of polyphenolic compounds progress rapidly during seed development (Fig. 1C–H). In Fig. 1, we found that 
polyphenolic compounds were only accumulated in the seed coat of M. truncatula. Under 500x magniication, 
we found that the seed coat epidermis, which will develop into MC in the later developmental stages, is the major 
site of phenolic compound biosynthesis and accumulation (Fig. 2). Phenolic compounds were observed in small 
vacuoles (Fig. 2A) of epidermis cells from the seed coats of developing M. truncatula pods at 6 DPP. Starting at 13 
DPP, vacuoles were found to enlarge signiicantly with darker staining color observed compared to 6 DPP. hese 
changes further intensiied with seed development until maturation. Due to the observed dependence of vacuole 
size and the amount of polyphenolic compounds during MC development, and the fact that phenolic compounds 
do not accumulate in other cells of the seed coat, we considered that the cellular processes, speciically the vacuole 
development in MC, should be crucial to the phenolic compound metabolism of M. truncatula seed.

Characterization of phytochemicals in MC. PA and polyphenolic compounds in M. truncatula MC 
samples collected at six time points of seed development were characterized using LC-MS (Fig. S1 and Table 1). 
We identiied twenty peaks as lavonoid and lavonoid derivatives using LC-MS and UV spectrometry. According 
to the MS (n) fragment characteristics and the match of standard references based on our previous experiments30, 
the 16 lavonoids further conirmed in MC (Fig. 3A and Table 1), mainly were divided into three types accord-
ing to lavonoid aglycones: quercetins, myricetins, and anthocyanin. Least signiicant diference (LSD) analysis 
indicated that the concentration of these lavonoids signiicantly changed during macrosclereid development. 
he concentration of anthocyanins peaked at 10 DPP. However, the concentration of quercetins and myrice-
tins kept increasing throughout the development period and the time of peak was not observed in the current 
study (Fig. 3B). Furthermore, the levels of in-PAs were measured by subjecting the pellet remaining ater solvent 
extraction directly to oxidative cleavage under hot acidic butanol. he seed coat began to accumulate in-PAs at 
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10 DPP (Fig. 3C). he concentration of in-PAs increased during the development of MC. he concentration of 
anthocyanins decreased ater 10 DPP.

Identiication DEGs during MC development. In order to investigate the genes responsible for develop-
ment of MC in M. truncatula, we perfomed microarray analysis on these samples isolated from the same plants at 
six time points in our LC-MS analysis. Four replicates were included for each sample point with two independent 
biological experiments. he expression values of 61278 probe sets were extracted from 22 chips, except that one 
chip of 10 DPP and 20 DPP were not successful when manipulated in GeneChip Array experiments. hese bio-
logical replicates are quite consistent as shown by the fact that biological replicated samples were clustered tightly 
together with hierarchical cluster analysis of the 22 chips (Fig. S2). To identify the signiicantly changed genes, 
pair-wise comparisons of gene expression in the six developmental stages were performed. A total of 4681 genes 

Figure 1. Localization of Phenolic compounds in the pods and seeds of M. truncatula at 3, 6, 13, 20, 27 and 39 
DPP. (A) Pod at 3 DPP (134X), (B) Pod at 6 DPP (134X), (C) Pod wall, seed coat & cotyledon at 13 DPP (134X), 
(D) Pod wall, seed coat & cotyledon at 20 DPP (268X), (E) Pod wall, seed coat & cotyledon at 27 DPP (268X), 
(F) Pod wall, seed coat & cotyledon at 39 DPP (268X), (G) Wheat at 24 DPP as positive control (268X), (H) 
Seed coat at 39 DPP (538X). Al, Aleurone cell; Cot, Cotyledon; Ma, Macrosclereids; Nu, Nucellus; Ovule; Pa, 
Parenchyma; PW, Pod wall; SC, Seed coat; TB, Trachid bar.
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were identiied as signiicantly changes genes with an absolute fold-change of ≥3.0 and a LogRatio P-value of 
≤0.001 between at least two time points during MC development (Table S4). We selected these most signiicantly 
expressed genes for subsequent analysis. To validate the microarray results, we selected twenty-ive of the DEGs 
for independent validation using qRT-PCR (Tables S2 and S3). he trends in gene expression observed in our 
qRT-PCR analysis were in highly consistent with our microarray data. hese results indicate that the microarray 
data in the present study are an accurate representation of changes in gene expression during MC development.

Figure 2. Light micrographs of developing M. truncatula MC stained with Toluidine Blue O. Ma presents MC 
of the seed coat. (A–D) Cross-sections through seed coats at (A) 3 DPP, (B) 6 DPP, (C) 13 DPP, (D) 20 DPP, and 
(E) 27 DPP, respectively. Phenolic compounds stain blue-green.
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# code

RT 
[min]a

Max 

m/z b UV d Namec 6 DPP 10 DPP 13 DPP 16 DPP 20 DPP 27 DPP

1 A1 11.4 321 232, 284 Leucodelphinidin 1.97 ± 0.21f 2.42 ± 0.15 2.96 ± 0.23 3.26 ± 0.31 1.74 ± 0.17 0.15 ± 0.02

2, 3 A2 20.8 467 237, 293 Leucodelphinidin-glucoside 13.76 ± 1.05 22.81 ± 1.17 20.56 ± 0.61 19 ± 0.63 18.54 ± 0.79 17.54 ± 0.51

4 A3 23.3 305 225, 323 Leucodelphinidin 2.93 ± 0.17 2.97 ± 0.28 0.47 ± 0.08 0.12 ± 0.01 NDf ND

5 A4 25.4 387 229, 288 Chalocone glucoside 1.66 ± 0.06 1.54 ± 0.22 1.85 ± 0.24 2.23 ± 0.28 1.5 ± 0.23 0.2 ± 0.03

6 A5 27.5 451 275 Epicatechin 3-O-glucoside 21.12 ± 3.17 15.00 ± 0.77 13.73 ± 1.18 10.7 ± 0.37 10.85 ± 0.82 8.47 ± 0.69

7 A6 29.6 449 230, 291 Luteolin 3-O-glucoside 0.36 ± 0.08 0.37 ± 0.05 0.69 ± 0.05 0.86 ± 0.09 1.37 ± 0.16 1.6 ± 0.13

8 A7 30.6 289 279 Epicatechin 1.89 ± 0.36 0.75 ± 0.17 0.09 ± 0.02 ND ND ND

9 A8 32.7 289 279 Catechin 3.72 ± 0.22 3.73 ± 0.48 3.55 ± 0.55 1.45 ± 0.15 ND ND

10 A9 34.6 625 260, 350 Myricetin 3-O-rutinoside 0.76 ± 0.13 2.25 ± 0.22 4.6 ± 0.32 4.86 ± 0.36 6.06 ± 0.36 7.8 ± 0.49

11 A10 35 739 235, 277 Cindonain-(alfa-4beta-8)-catechin 0.42 ± 0.1 0.32 ± 0.08 0.25 ± 0.06 0.36 ± 0.04 0.47 ± 0.05 0.3 ± 0.08

12 A11 35.5 479 259, 357 Myricetin 3-O-galactoside ND 2.37 ± 0.18 7.08 ± 0.49 10.45 ± 0.77 10.57 ± 0.62 12.21 ± 0.9

13, 14 A12 36.6 521 258, 357 Myricetin 3-O-galactoside-malatone 0.31 ± 0.15 4.05 ± 0.31 8.55 ± 0.65 8.2 ± 0.6 11.8 ± 0.84 6.85 ± 0.57

15 A13 36.9 610 258, 356 Rutin 0.66 ± 0.1 0.77 ± 0.07 2.06 ± 0.12 2.81 ± 0.15 3.87 ± 0.26 5.34 ± 0.36

16 A14 38.5 464 258, 354 Quercetin 3-O-Glucoside 0.42 ± 0.11 2.83 ± 0.12 5.68 ± 0.49 9.32 ± 0.45 10.33 ± 0.58 8.4 ± 0.47

17, 18 A15 39.9 505 258, 355 Quercetin 3-O-Glucoside-6″-acetone 1.12 ± 0.18 2.83 ± 0.13 8.04 ± 0.92 10.51 ± 1.04 16.73 ± 1.06 26.59 ± 2.2

19, 20 A16 41.3 467 252, 335 Epicatechin 3-O-glucuronidate ND 10.29 ± 1.13 10.82 ± 1.2 11.09 ± 0.6 11.47 ± 0.7 9.58 ± 0.36

Table 1. Peak assignment for the analysis of extracts from seed coats at diferent development stages. aMeasured 
with a C18 Grace column and a corresponding gradient proile (see Materials and methods). bObtained with an 
ion trap mass spectrometer. cIdentiied ater comparison with standards and references. dObtained with a UV 
detector. eND, none detected; others were detected. fµg/100 g fresh weight MC.

Figure 3. Flavonoid proiles at six diferent time points during M. truncatula MC development. (A) Sixteen 
lavonoids were identiied by HPLC-MS using Fisher’s Least Signiicant Diference test (p < 0.05, LSD). he 
identiied compounds from each proile are listed in Table 1. he HPLC conditions are described in Materials 
and Methods. Values represent the average ± SD of nine biological replicates. (B) he concentration of three 
types of lavonoid derivatives present in MC. Values represent the average ± SD of nine biological replicates. (C) 
In-PA content in MC using BuOH-HCl assays. Values represent the average ± SD of three biological replicates.
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Ontology (GO) classiication of DEGs. We next performed GO classiication analysis based on signii-
cantly DEGs using SEA tool of agriGO39. 1994 and 2431 genes were assigned to two major categories (biological 
process and cellular component) respectively. GO terms of response to stress, developmental process, multicel-
lular organismal process, multicellular organismal development, and anatomical structure development were 
predominant based on their p-values in the biological process category (Fig. 4A and B, Table S4). GO terms of 
intracellular organelle, organelle, intracellular part, cell part, and cell were identiied as being the most abundant 
classes in the cellular component category (Fig. S3, Table S5). To cross-compare the gene expression levels at 
diferent time-points during MC development, the fold-change value (comparison with the corresponding value 
at 6 DPP) of these genes at other ive time-points was used as input for PAGE (P < 0.05, FDR = 5%) (Fig. 4C, 
Table S6). Fity-seven GO terms were down-regulated during MC development. Intriguingly, the genes that 
were down-regulated during the later developmental stages were mainly involved in the biotic or abiotic stress 
response, including 121 genes involved in the response to hormone stimulus, 187 genes involved in the response 
to abiotic stimulus, 290 genes involved in the response to chemical stimulus, 331 genes involved in the response 
to stress, and 520 genes involved in the response to stimulus (Table S6).

Recently, vesicle-mediated lavonoid transport was observed in a microscopy-based study. Anthocyanoplasts 
are thought to be transporter of anthocyanin or to serve as the sites of anthocyanin biosynthesis14, 46–49. In addi-
tion, anthocyanin-containing vesicle-like structures are co-localized with protein storage vacuoles (PSVs) and 
transport anthocyanins in a trans-Golgi network (TGN)-independent ER-to-PVC vesicle traicking pathway50. 
It was previously reported that prevacuole-like vesicle structures containing PAs can merge with the central vac-
uole46. More recently, Arabidopsis mutants with reduced PA production (i.e., tt mutants) were found to exhibit 
morphological defects in the central vacuole of the seed coat endothelium cells26, 36, 51–53. Furthermore, most of 
the genes up-regulated in MC during later developmental stages were involved in compound transportation; 
speciically, 335, 360, 360, 360, and 360 genes were identiied as being involved in the transport of the macromo-
lecular complex, membrane-bounded vesicle, vesicle, cytoplasmic vesicle, and cytoplasmic membrane-bounded 
vesicle, respectively (Table S6). hese results indicate the importance of vesicle-mediated lavonoid transport in 
M. truncatula MC.

Figure 4. GO enrichment analysis of DEGs at six diferent time-points during MC development in M. 
truncatula. (A) GO analysis of DEGs. (B) Enrichment GO “Biological process” analysis of the DEGs. See 
Supplemental Fig. S3 for the “Cellular component” categories. (C) he down-regulated GO terms were analyzed 
by PAGE (Tables S5 and S6). he colored blocks represent the level of up/downregulation of each term at a 
certain developmental stage. he yellow-to-red, cyan-to-blue, and grayscale represent up-regulation, down-
regulation, and no signiicant change, respectively. Detailed information of each term is provided in Table S5.
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MC are the irst barrier of defense in M. truncatula seeds. A total of 815 genes were associated with 
abiotic and biotic stress, such as defense, disease resistance, signaling, protein degradation, and hypersensitive 
response. hese defense-related genes were divided into several functional categories, including the cell wall 
(115), secondary metabolism (87), hormone metabolism (87), stress (108), redox (38), miscellaneous (52), RNA 
(60), protein (146), and signaling (172) (Table S7).

Plant NBS-LRR proteins are receptors that directly or indirectly recognize pathogen-deployed proteins, and 
this speciic reorganization triggers the plant defense response54, 55. We detected fourteen diferentially expressed 
NBS-LRR proteins (p < 0.05) during MC development, including those belonging to the TIR-NBS-LRR (7 genes), 
leucine-rich repeat family protein (3 genes), CC-NBS-LRR (2 genes), and like LRR protein (2 genes) classes.

In addition, sixty transcription factors (TFs, p < 0.05) associated with defense resistance were differen-
tially expressed in MC, including those belonging to the MYB domain transcription factor family (20 genes), 
MYB-related transcription factor family (5 genes), AP2/EREBP family, APETALA2/ethylene-responsive element 
binding protein family (9 genes), WRKY domain transcription factor family (6 genes), bZIP transcription factor 
family (15 genes), and C2C2(Zn) DOF zinc inger family (5 genes). WRKY456, 57, WRKY2358, 59, WRKY3360–62, 
and WRKY4063–65 are known to be involved in the pathogen response in plants. Several WRKY factors may be 
involved in elicitor-triggered reprogramming of secondary metabolites in M. truncatula49. he overexpression of 
four WRKY genes in Nicotiana tabacum (tobacco) demonstrated that the encoded proteins regulate lignin depo-
sition, PR gene expression, and systemic defense responses against tobacco mosaic virus66. In this study, WRKY4, 
WRKY23, WRKY33, WRKY40, and WRKY56 were identiied as signiicantly induced during MC development.

Finally, genes with other biological processes involved in the plant defense system including those related 
to the cell wall, secondary metabolism, hormone metabolism, protein, and signaling also exhibited diferential 
expression during MC development (Table S7). Microarray analysis results indicate that genes accumulated with 
the highest expression during MC development, were defense-related proteins speciically related to the cell wall, 
secondary metabolism, hormone metabolism, stress, protein process, and defense response signaling. With the 
fact that MC form the outer cell layer of the seed coat, which covers the seed and protects the enclosed embryonic 
tissues, are the irst line of defense in the M. truncatula seed.

TFs involved in lavonoid biosynthesis during MC development. A total of 223 putative TFs were 
signiicantly diferentially expressed at the six time-points examined in MC, including members of the AP2/ERF, 
bHLH, C2H2, HB, MADS, MYB, WRKY, and bZIP families. bHLH and MYB subfamily proteins were previously 
shown to be involved in the accumulation of anthocyanins and related phenylpropanoids7, 21–23, 67–70. Among the 
223 putative TFs, twenty-ive MYB TFs (Fig. 5A) and twenty-three bHLH TFs (Fig. 5B) were found to be signif-
icantly diferentially expressed during MC development, including MYB3R1, MYB4, MYB16, MYB55, MYB61, 
MYB70, MYB77, MYB78, MYB112, MYB123, bHLH096, bHLH093, SPT, NAI1, PAP3, SPT, and ILR3 (Table S8).

Figure 5. Expression proiling of MYB and bHLH families during MC development. Relative expression 
values were used to construct the heat map. (A) shows the expression proile of the MYB family. (B) shows the 
expression proile of the bHLH family. Additional information regarding the transcriptional factor genes is 
presented in Table S8.
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MYB transcription factors, basic helix-loop-helix (bHLH) transcription factors, and tryptophan–aspartic acid 
repeat (WDR) proteins regulate the expression of genes involved in lavonoid biosynthesis71, 72. he Arabidopsis 
genome contains 133 R2R3-MYB genes73, whereas M. truncatula has 91 (IMGAG database). MYB11/PFG2, 
MYB12/PFG1, and MYB111/PFG3 were reported to regulate lavonol biosynthesis in Arabidopsis74, 75. In addition, 
several MYB transcription factors were identiied as repressors of the lavonoid pathway, speciically of anthocya-
nin biosynthesis, including FaMYB1 from strawberry (Fragaria × ananasa)76, AtMYBL2, AtMYB4, and AtMYB60 
from Arabidopsis77–79, and AmMYB308 from Antirrhinum80.

Furthermore, plant bHLH transcription factors are important regulators of lavonoid biosynthesis. AtTT8, an 
important bHLH protein in Arabidopsis, was found to regulate both the anthocyanin and PA pathways81. In addi-
tion, a small number of WD40 proteins were identiied as regulators of lavonoid biosynthesis, including petunia 
ANTHOCYANIN11 (AN11)82, Arabidopsis TRANSPARENT TESTA GLABRA 1 (TTG1)20, perilla PFWD (Perilla 
frutescens WD repeats)83, maize ZmPAC1 (PALE ALEURONE COLOR 1)84, M. trunculata MtWD40-17, and Vitis 
vinifera (grapevine) WDR1 and WDR285.

Most R2R3-MYB transcription factors that regulate lavonoid biosynthesis, including WDR proteins, depend 
on cofactors, and a small subgroup of bHLH proteins with a common motif in their N termini interact with a 
signature motif in the R3 repeat of the N-terminal R2R3 domain of MYB factors86. In Arabidopsis, the TT2/TT8/
TTG1 complex regulates PA accumulation in the seed coat87, 88.

ABC transporters are involved in MC development. A total of 155 annotated transporter proteins 
showed diferential expression during the development of MC tissues, including three p- and v-ATPases, 17 sugar 
transporters, 13 amino acid transporters, 15 peptide and oligopeptide transporters, 9 potassium transporters, 19 
major intrinsic protein transporters (PIPs), and 23 ABC transporters (Fig. 6). All ABC transport proteins were 
grouped into three clusters by hierarchical cluster analysis with Euclidean distance (Fig. 6B). Five, eight, and ten 
ABC transport proteins were grouped into Cluster 1, Cluster 2, and Cluster 3, respectively. he expression level 
of Cluster 1 in the early developmental stages (6 DPP, 10 DPP, and 13 DPP) was higher than at other stages. By 
contrast, the expression level of proteins in Cluster 3, including PGP2, PDR13, MRP14, PED3, and PGP2, was 
up-regulated later in development.

he ABC transporter family transports a range of substrates, including metal ions, auxin, malate, defensive 
secondary metabolites, and xenobiotics89, across membranes using the energy released from ATP hydrolysis90. 
Over 120 putative ABC transporters have been identiied in the Arabidopsis, rice (Oryza sativa), tomato (Solanum 
lycopersicum), and M. truncatula genomes; however, only a few of these have been characterized. MRP-type ABC 
transporters have been veriied to be involved in lavonoid transport91, functioning in the long-distance trans-
port of lavonoids, such as naringenin, dihydrokaempferol, and dihydroquercetin, via unidirectional cell-to-cell 
movement between the root and shoot92. Some multidrug and toxic compound extrusion (MATE)-type trans-
porters have been implicated in the transport and detoxiication of xenobiotics and a wide range of metabolites, 
such as cations, organic acids, and secondary metabolites. MATE1 was identiied as preferentially transport-
ing epicatechin 3′-O-glucoside, a precursor for proanthocyanidin biosynthesis. MATE1 complements the seed 

Figure 6. Expression proiling of transport protein genes during MC development. he relative expression 
values were used to construct the heat map. (A) Shows the expression proile of all transport protein genes. (B) 
Is the expression proile of ABC transport protein genes.
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proanthocyanidin phenotype of the Arabidopsis tt12 mutant both quantitatively and qualitatively. On the basis 
of biochemical properties, tissue-speciic expression pattern, and genetic loss-of-function analysis, MATE1 has 
been identiied as an essential membrane transporter for proanthocyanidin biosynthesis in the Medicago seed 
coat. Subsequently, MATE2 has also been considered to act as a membrane transporter during proanthocyanidin 
biosynthesis in Medicago leaves9. In our study, a total of 155 annotated transporter proteins showed diferential 
expression during the development of MC tissues, including 23 ABC transporters. hese results indicate that 
transporter proteins transport a variety of substrates, including lavonoids. Furthermore, they ofer a clue as to 
how other lavonoids, such as quercetin and myricetin, are transported into the vacuole.

Characterization of metabolism during MC development. Using the ‘Metabolism overview’ pathway 
in MapMan, we identiied signiicant transcriptional changes in genes with putative functions in metabolism 
(Fig. S4). Genes related to primary and secondary metabolic processes, including minor and major carbohydrate 
metabolism; cell wall biosynthetic processes; energy-generating processes; amino acid, lipid, wax, terpene, and 
lavonoid biosynthetic processes; phenylpropanoid and phenolic processes; and nucleotide metabolism account 
for 10.53% of all transcriptional changes. Our results show that metabolism is one of the dominant biological pro-
cesses in MC development. Further analysis of 4680 genes using the Kyoto Encyclopedia of Genes and Genomics 
(KEGG)93–96 showed that 1028 genes were assigned to 294 ECs with 103 biosynthesis pathways (Table S9). In this 
study, we focused on the “biosynthesis of secondary metabolites” pathway in relation to lavonoid biosynthesis 
based on our HPLC-MS results and MC structure analysis. We identiied 102 genes as being involved in lavo-
noid biosynthesis, phenylpropanoid biosynthesis, and lavone and lavonol biosynthesis (Table S10), including 
ten genes representing genes encoding enzymes that were enriched in lavonoid biosynthesis (P < 0.001). We 
reconstructed the lavonoid biosynthesis pathway using the KEGG database. hese results indicate that most 
of the enzymes in the lavonoid biosynthesis pathway could be identiied among the DEGs in MC (Fig. S5). 
here were signiicantly diferentially expressions of the genes encoding Flavonoid 3′,5′-hydroxylase (F3′5′H), 
Dihydroflavonol-4-reductase (DFR, TT3), Leucoanthocyanidin dioxygenase (LDOX), Flavonol synthase/
flavanone 3-hydroxylase (FLS), Leucoanthocyanidin reductase (LAR), Chalcone synthase, Caffeoyl-CoA 
O-methyltransferase (COMT), and 4-coumarate-CoA ligase (4CL) in MC development (Table S10).

Building the model system for regulatory network of lavonoid biosynthesis in MC. he 2110 
genes identiied based on functional category analysis using MapMan 3.0 was clustered by the k-means method 
with Euclidean distance. A total of 22 clusters were deined from these genes based on the igure of merit value 
(Fig. 7). hese 22 clusters were divided into four groups. Probes in the irst group, including Cluster 3, 8, 14, 
15, 16, 18, and 19, were down-regulated throughout MC development. hese clusters contained a total of 715 
genes. he second group representing clusters of genes including Cluster 9 (88 genes), 20 (76 genes), and 22 (46 
genes) were irst up-regulated and then down-regulated during MC development. he third group, consisting of 
clusters of genes including Cluster 10 (62 genes), 11 (93 genes), and 13 (71 genes), were irst down-regulated and 
then up-regulated during MC development. Clusters of genes in the fourth group (883 genes, split up between 
clusters 1, 2, 4, 5, 6, 7, 12, 17, and 21) were up-regulated during MC development. We analyzed the relationship 

Figure 7. Clustering of the expression proiles of 2110 diferentially expressed probes at six diferent time-
points during M. truncatula MC development. Clustering was performed using k-means statistics and 22 
clusters were chosen for further analysis of transcriptional patterns. he number of genes in each cluster is listed 
in parentheses. he X-axis indicates the number of days post pollination (DPP). he Y-axis indicates the LOG2-
transformed fold-change of stage-speciic intensity relative to the baseline intensity of each gene.
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between gene expression level and lavonoid accumulation during MC development by constructing a weighted 
gene co-regulatory network (WGCNA) (Fig. 8). Four lavonoids, i.e., A3 (leucodelphinidin), A5 (epicatechin 
3-O-glucoside), A7 (epicatechin), and A8 (catechin), were signiicantly positively associated with six clusters 
(Group A: CP8, 14, 15, 16, 18, and 19, total of 603 genes) and negatively related to 12 other clusters (Group B: CP1, 
2, 4, 5, 6, 7, 11, 12, 17, 20, 21, and 22, total of 1177 genes). Eight lavonoids, i.e., A6 (luteolin 3-O-glucoside), A12 
(myricetin 3-O-galactoside-malatone), A13 (rutin), A15 (quercetin 3-O-Glucoside-6″-acetone), A9 (myricetin 

Figure 8. Correlation analysis between K-means clusters and concentration of identiied lavonoids during M. 
trunctula MC development. Correlation between modules and lavonoid concentration is presented by colors 
ranging from red (highly positive correlation) to green (highly negative correlation). Columns represent the 
lavonoid concentration during development of MC and rows represent the modules. he correlation coeicient 
and p-value are shown in each cell. CP indicates the cluster number.

Figure 9. DEGs were assigned to 35 bins in the ‘Overview’ visualization pathway of MapMan using Afymetrix 
mapping for Medicago. Black bars represent clusters CP8, 14, 15, 16, 18, and 19. White bars represent clusters 
CP1, 2, 4, 5, 6, 7, 11, 12, 17, 20, 21, and 22.
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3-O-rutinoside), A16 (epicatechin 3-O-glucuronidate), A14 (quercetin 3-O-Glucoside), and A11 (myricetin 
3-O-galactoside), were positively related to 12 clusters (Group B: CP1, 2, 4, 5, 6, 7, 11, 12, 17, 20, 21, and 22) 
and negatively related to 6 other clusters (Group A: CP8, 14, 15, 16, 18, and 19). A1 (leucodelphinidin), A2 

Figure 10. he lavonoid pathway network in MC with a hard cut-of value of |r| = 0.85 using Cytoscape. Nodes 
indicate individual genes, and edges indicate two genes that are co-expressed, with a cut-of value of |r| = 0.85.

Figure 11. A model of potential lavonoid and isolavonoid metabolic processes in M. truncatula. PAL, L-Phe 
ammonia-lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate:CoA ligase; CHS, chalcone synthase; CHI, 
chalcone isomerase; F3H, lavanone 3-hydroxylase; DFR, dihydrolavonol reductase; FS, lavone synthase; IFS, 
isolavone synthase; HID, 2-hydroxyisolavanone dehydratase; FLS, lavonol synthase; ANS, anthocyanidin 
synthase; ANR, anthocyanidin reductase; GT, glycosyltransferase; MaT, malonyl CoA:lavonoid acyltransferase; 
MATE, multidrug and toxin extrusion transporter; V-ATPase, vacuolar ATPase; GST, glutathione 
S-transferases; NHX, H/Na exchanger.
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(leucodelphinidin-glucoside), A4 (leucodelphinidin), and A10 (cindonain-(α-4β-8)-catechin) were not signii-
cantly related to any cluster. hese results indicate that Flavan-3-ol and lavonol accumulated during MC devel-
opment. Flavan-3-ol accumulated in the early developmental stages, whereas lavonol accumulated in the late 
developmental stages. Except for the genes in the functional category “development”, which were more abundant 
in Group A than in Group B, more genes in Group B were linked to functional categories than in Group A (Fig. 9).

We identiied 19 lavonoid pathway related genes, including 11 transporter protein genes and 13 transcrip-
tion factor genes amongst the 2110 genes. To investigate the interaction between these genes, we constructed 
a network for MC based on a hard cut-of value of |r| = 0.85 using Cytoscape (Fig. 10). he network showed 
co-expression of transcription factors with transporter proteins and lavonoid biosynthesis genes. Furthermore, 
genes encoding transporter proteins were co-expressed with the lavonoid biosynthesis related genes. hese 
results indicated that transcription factors and transporter proteins are involved in lavonoid biosynthesis in MC 
development. In addition, transporter proteins may transport lavonoids during MC development.

Based on the WGCNA network results, lavonoid biosynthesis can be divided into four stages in the MC of 
M. truncatula (Fig. 11). In the early stages of development of MC, various signals activate lavonoid biosynthe-
sis. Only small amounts of lavonoids were detected at 6 DPP and genes related to lavonoid biosynthesis were 
expressed at lower levels at 6 DPP than at other stages. Ater 6 DPP, genes of the lavonoid biosynthesis path-
way are activated, and large amounts of lavonoids are biosynthesized and modiied in the cytoplasm of MC. 
Numerous novel lavonoids, isolavonoids, and related biosynthetic genes have been identiied and characterized 
via metabolomic and genomic analyses, including TT3, TT4, TT5, TT6, and TT7. In addition, several TFs that 
regulate lavonoid biosynthesis, such as TT147, TTG120, TT221, TTG222, and TT823 have been reported. In our gene 
expression proiles, 223 genes encoding putative TFs exhibited signiicantly diferentiated expression during MC 
development. his inding suggests that a large number of TFs are involved in the development of MC. However, 
all lavonoids produced need to be transported to and stored in the vacuole via various kinds of transporters.

TT1225, TT1926, MATE18, and MATE29 were previously reported to function as transporters of E3′G and 
Cy3G. However, we identiied large amounts of quercetin and myricetin derivatives in MC. Although it is unclear 
how quercetin and myricetin are transported into the vacuole, we found that 155 annotated transporter proteins, 
including three p- and v-ATPases and twenty-three ABC transporters, were diferentially expressed during MC 
development. his inding indicates that other transporters may transport lavonoids in MC. Finally, all lavo-
noids were polymerized and stored in the vacuole as procyanidin oligomers, anthocyanin complexes, or other 
polyphenols. hus, our results show that M. truncatula MC are an excellent model system in which to study 
lavonoid biosynthesis.
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