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Abstract: The correlation coefficient (CC) was substantiated as a simple, yet robust statistical tool

in the quality assessment of hyperspectral imaging (HSI) data. The sensitivity of the metric was

also characterized with respect to artificially-induced errors. The CC was found to be sensitive

to spectral shifts and single feature modifications in hyperspectral ground data despite the high,

artificially-induced, signal-to-noise ratio (SNR) of 100:1. The study evaluated eight airborne

hyperspectral images that varied in acquisition spectrometer, acquisition date and processing

methodology. For each image, we identified a uniform ground target region of interest (ROI) that

was comprised of a single asphalt road pixel from each column within the sensor field-of-view

(FOV). A CC was calculated between the spectra from each of the pixels in the ROI and the data

from the center pixel. Potential errors were located by reductions in the CCs below a designated

threshold, which was derived from the results of the sensitivity tests. The spectral range associated

with each error was established using a windowing technique where the CCs were recalculated after

removing the spectral data within various windows. Errors were isolated in the spectral window that

removed the previously-identified reductions in the CCs. Finer errors were detected by calculating

the CCs across the ROI in the spectral range surrounding various atmospheric absorption features.

Despite only observing deviations in the CCs from the 3rd–6th decimal places, non-trivial errors

were detected in the imagery. An error was detected within a single band of the shortwave infrared

imagery. Errors were also observed throughout the visible-near-infrared imagery, especially in the

blue end. With this methodology, it was possible to immediately gauge the spectral consistency of

the HSI data across the FOV. Consequently, the effectiveness of various processing methodologies

and the spectral consistency of the imaging spectrometers themselves could be studied. Overall,

the research highlights the utility of the CC as a simple, low monetary cost, analytical tool for the

localization of errors in spectroscopic imaging data.

Keywords: imaging spectroscopy; hyperspectral; correlation coefficient; error detection; data

quality assessment

1. Introduction

In imaging spectroscopy, contiguous narrow-band spectrographic information is collected for

each spatial pixel in an imaging system. The technology is presently synonymous with hyperspectral

imaging (HSI) and is commonly implemented within the discipline of remote sensing to characterize

the physical and chemical properties of observed materials. This is preformed via spectroscopic

and spatial analysis methodologies [1]. Imaging spectroscopy technologies have shown their

utility in numerous remote sensing applications in geology [2–4], defense [5,6], agriculture [7–9],

forestry [10–12], oceanography [13–15], forensics [16–18] and ecology [15,19,20], among others.
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In theory, spectrographic imaging data are spectrally and spatially piece-wise smooth; neighboring

locations and wavelengths are well-correlated due to the high spatial-spectral resolution allowed by

the narrow band criterion [21,22].

With such an abundance of information, the processing and analysis of HSI data are not trivial.

Relevant spectral signatures are often difficult to identify, especially given the presence of signal

noise, which further impedes information extraction [23]. Spatial and spectral correlations can be

exploited to aid in the analysis of imaging spectroscopy data with a correlation metric. The Pearson

product-moment correlation coefficient (CC) is one of the simplest statistical tools that has been widely

implemented to measure levels of correlation [24].

The CC is a measure of linear association between two variables. It is formally given [24] by

Equation (1):

CC =
∑ (x − x)(y − y)

√

∑ (x − x)2
∑ (y − y)2

(1)

where x, y, x, y represent the two variables of interest and their means, respectively. In mathematical

terms, the CC represents the sum of the centered and normalized cross-product of x and y [24].

Each variable is centered by removing its mean. The denominator normalizes the numerator by the

variance of the studied variables. Using the Cauchy–Swartz inequality, it can be shown [24] that the

numerator is always less than or equal to the denominator. Therefore, the value of the CC is bounded

between −1 and 1. The boundary values represent a perfect linear correlation between x and y. A value

of zero corresponds to no linear correlation between the variables. Values greater than zero indicate

a positive correlation between the variables of interest; the opposite is true for values less than zero.

The CC is a useful descriptive measure of correlation since its value does not depend on the scales of

measurement for the studied variables [24]. It is important to note that the calculation of the CC is not

limited by any statistical assumptions; however, its value as an input to other statistical metrics may

need to conform to certain restraints (e.g., normally-distributed data).

To date, the CC has been widely implemented to investigate spectrographic imaging data [11,25–35].

In these efforts, the literature has concentrated on applying the statistical tool to establish bands that

linearly associate with quantifiable physical and chemical properties. Exploiting the linear relation,

this method of band selection has been used to create and improve predictive models that associate

hyperspectral data with useful parameters [11,25,27,29–32,34,35]. For example, Peng et al. [11] applied

the CC to establish bands that strongly correlate with forest leaf area index, improving predictive models

at the landscape level. To a lesser extent, the CC has been applied for the purposes of data reduction and

correction [25,28,33,36]. In 2011, Richter et al. [33] outlined a corrective method for HSI data that relied,

in part, on the CC. The correction accounted for the effects of the spectral smile, a spectral non-uniformity

in the cross-track direction that is caused by the optical design of the spectrometer and results in per

pixel changes in wavelength registration across the field-of-view (FOV) [33]. In the study, the CC was

used to measure uniformity levels across the FOV, indirectly assessing the effects of the spectral smile

defect. A corrective solution was selected by maximizing this metric. From this application, the CC

was shown to be a useful tool in the assessment of HSI data. Following this example, the CC can be

used for the detection and quantification of other errors. This was exemplified by Tanabe and Saeki [26],

who rigorously quantified the sensitivity of the CC to spectral shifts in infrared spectra. Such research

was fundamental to the application of the CC for error detection in infrared spectroscopy. Unfortunately,

the findings were somewhat limited in their application to hyperspectral remote sensing as the study

was conducted in an ideal environment with a laboratory-grade spectrometer. Earth observation (EO)

remotely-sensed measurements are most often collected with airborne spectrometers under less than the

ideal conditions. Before the CC can be confidently applied to hyperspectral EO data, the sensitivity of the

tool needs to be characterized with respect to various potential errors and noise levels.

The purpose of this study was to use the CC to develop an easy to implement methodology to

detect issues with HSI data. The methodology was intended explicitly for the detection of errors, not for
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the identification of their origin. Although other error detection methodologies exist (e.g., [37–40]),

they can be expensive to implement and rely on a higher level of mathematical understanding.

To develop a novel method, the CC was first characterized with respect to artificially-induced errors

in ground data. Afterwards, this information was applied to locate the spatial location and spectral

bands associated with errors in real HSI data. The overall objective of this study was to substantiate

the CC metric as a low monetary cost, robust and simple statistical tool in the quality assessment of

EO HSI data through the detection of errors.

2. Materials and Methods

2.1. In-Situ Ground Hyperspectral Data

In-situ hyperspectral radiance measurements were collected on 23 June 2016, from 16:54:19

to 17:00:36 GMT with a Spectra Vista Corporation (Poughkeepsie, NY, USA) HR-1024i ground

spectrometer at the Flight Research Laboratory of the National Research Council of Canada (NRC)

under stable illumination conditions (Figure 1). The HR-1024i is a solid-state device that collects

radiance data in a circular FOV. The device collects spectral data over 1024 spectral bands, which are

non-uniformly distributed between 350 and 2500 nm using three independent detectors: a single

512-chanel silicon photodiode array and two 256-channel indium gallium arsenide arrays. The three

detectors are characterized by nominal spectral resolutions of ≤3.5 nm (340 nm–1014 nm), ≤9.5 nm

(971 nm–1911 nm) and ≤6.5 nm (1897 nm–2523 nm), respectively. In this study, spectral measurements

were acquired with a 4◦ FOV fore-optics from a height of 1 m at 10 different locations on an

asphalt target. Each measurement covered a single 38.3 cm2 segment of asphalt that was contained

within the area imaged by the airborne HSI systems (ITRES Research Limited, Calgary, AB, Canada)

described in Section 2.2. The in-situ datasets were used to provide ground truth measurements for the

characterization of the CC.

≤ ≤
≤

 
(a) (b)

Figure 1. (a) Experimental setup for acquiring in-situ ground hyperspectral measurements of an asphalt

target using the HR-1024i spectrometer. (b) The hemispherical sky photo was acquired simultaneously

with the ground spectrometer measurements as a means of estimating the potential influence of

cloud and visible aerosol (haze) during the time of data acquisition. All data were collected under

stable conditions.

A wavelength (λ)-dependent, interpolated and normalized mean in-situ radiance spectrum for

asphalt, R(λ), was derived from the collected ground measurements for use in Section 2.3. In particular,

ten asphalt radiance spectra were averaged, normalized by the maximum and then resampled at 0.1 nm

intervals using the Akima interpolation method [41] to produce the “true” spectral signature of asphalt

to be used in the characterization phase of the CC tool. The Akima interpolation method was selected

due to its robust ability to provide a smooth interpolation that closely matched the original input

signal [41]. The spectrum was interpolated to place R(λ) on a uniform wavelength array and increase

the density of spectral information while preserving the overall shape and content of the original signal.
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2.2. Airborne Hyperspectral Image Acquisition and Processing

Airborne HSI data were acquired on 23 June 2016 at 14:53:13 GMT and 24 June 2016 at 13:24:16

GMT over the Macdonald–Cartier International Airport (containing the Flight Research Laboratory

calibration site) in Ottawa, ON, Canada (Figure 2). Asphalt is an ideal target for real airborne

acquisition as it is effectively ubiquitous in urban settings and can be found on the roadway systems

surrounding the studied area. Furthermore, the surface reflectance of the material has a low amplitude

(nearly flat), smoothly varying spectral response and is thus useful for in-field pseudo-calibration and

validation [42].

≤

Figure 2. Study site at the Macdonald–Cartier International Airport in Ottawa, ON, Canada. The flight

line followed a 306.5◦ True North path as shown by the blue arrow. Ground calibration measurements

were taken on the asphalt surface located by the red X.

Airborne imaging spectrometry data were acquired aboard the NRC’s Twin Otter fixed-wing

aircraft with two complimentary HSI systems. The imagers each recorded an adjacent and

partially-overlapping portion of the reflective electromagnetic spectrum between 366 nm and 2530 nm.

Both imagers were manufactured by ITRES Research Limited. The first sensor system, the Compact

Airborne Spectrographic Imager 1500 (CASI), acquired 288 bands (wavelength samples) within the

366–1053 nm range. The CASI is a variable frame rate, grating-based, pushbroom imager with a

39.7◦ FOV across 1500 spatial pixels. The device has a 0.49-mrad instantaneous FOV with a variable

f-number aperture, configurable between 3.5 and 18.0. The second imaging system was the Shortwave

Airborne Spectrographic Imager (SASI). The SASI is a prism-based pushbroom imager that acquires

data from 160 spectral bands within the 885–2530 nm range with 640 spatial pixels across a 39.8◦ FOV.

The device has an instantaneous FOV of 1.14 mrad and an aperture with a constant f-number of 1.8.

Imagery is acquired at a fixed frame rate of 60 hertz with a programmable integration time of ≤16.6 ms.
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On both data acquisition days, imagery was obtained from a nominal height of 1115 m AGL with an

approximate heading of 306.5◦ True North (Figure 2).

Prior to CC analysis, the HSI data underwent three pre-processing steps. The first step was a

correction in the calibration to take into consideration the effects of small, but measurable pressure

and temperature-induced shifts in the spatial-spectral sensor alignment. The second step was

a spectroradiometric calibration that, following removal of estimated signal offset contributions

(electronic offset, dark current, frame shift smear (CASI only), internal scattered light (CASI only)

and 2nd order (CASI only)), converted the resulting radiance-induced digital pixel signal into

units of spectral radiance (uW·cm−2·sr−1·nm−1). The final step was implemented to remove the

laboratory-measured spectral smile by resampling the data from each spatial pixel to a uniform

wavelength array. Although most of the spectral smile effects are removed by this pre-processing,

extremely small residual effects may remain. Geocorrection of the data was not performed in order to

preserve the original spectral response per pixel.

The described pre-processing methodologies utilized NIST traceable calibration data provided

by the sensor manufacturer. Using the initial calibration data, various artefacts were identified in the

resulting calibrated imagery. Independent of this study, the processing methodology was updated

to refine the steps described above, resulting in new calibration programs and calibration data files.

This refined processing removed many of the identified artefacts in the data. The CC analysis was

performed on the raw imagery after being processed with both the initial and refined calibration

files and methodologies. Overall, the study examined 8 datasets: the four raw hyperspectral images

collected by the CASI and SASI over the two acquisition dates processed with both the original and

refined processing methodologies.

2.3. Characterization of the Correlation Coefficient with Averaged and Interpolated In-Situ Radiance
Hyperspectral Data

Before the CC was applied to the airborne imagery, the sensitivity of the statistical tool needed to

be characterized with respect to the natural variances within asphalt spectra. This was accomplished

by calculating the CC between each of 10 raw in-situ hyperspectral radiance measurements and their

averaged spectral response.

The sensitivity of the CC to common signal issues in HSI data was also characterized by artificially

inducing errors in R(λ), the spectral response derived in Section 2.1. Five artificial errors were

introduced independently by modifying R(λ) in accordance with Table 1 to generate a variety of

transformed signals, Rt(λ). The following modifications were applied: introduction of additive white

Gaussian noise (AWGN), additive transformation, multiplicative transformation, introduction of

spectral shift and multiplicative transformation of a single feature. The transformation models in

Table 1 were developed to mediate the desired modifications. Parameters were carefully selected

to mimic realistic potential errors. The AWGN modification was applied to generate a transformed

spectral response with a specified signal-to-noise ratio, SNR. SNR designates the ratio between the

energy of the original signal and the generated noise. For example, to obtain an SNR of 100:1, 4.31%

AWGN was added to the signal. β, γ and ∆ represent the additive factor, multiplicative factor and

spectral shift (in nm), respectively, used to carry out each modification. Although there was no reason

for the additive and multiplicative modifications to influence the CC, these tests were included to

help provide a clear understanding of the approach. The multiplicative transformation of a single

spectral feature was mediated through a normal distribution scaled by α and vertically shifted with a

minimum value of 1. σ and µ corresponded to the standard deviation and mean values, respectively,

of the distribution. A normal distribution was used for the multiplicative factor to ensure the feature

remained continuous along the edges of the spectral feature. µ was selected to capture the atmospheric

absorption feature centered at 935 nm. The σ of 12 nm was chosen to ensure that the shoulders of the

feature between 899 nm and 971 nm were within 3σ of µ. α was varied from 1–50 to control the degree

to which the absorption feature was modified.
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Table 1. The five modifications applied to R(λ) to generate the transformed signal, Rt(λ).

Modification Transformation Model Data Parameters

Introduction of Additive White
Gaussian Noise

Rt(λ) = R(λ) + AWGN
SNR = ∑|R(λ)|2

∑|AWGN|2 ,

{SNR|SNRǫ
= ∑ | |∑ | || 	,= = , | 	,= = , | 	, 5 5= − Δ Δ = , | 	,

= √ = , = 9 5, | 	, 5
	 Δ		

	
	

, 1 ≤ n ≤ 1000}
Additive Transformation Rt(λ) = R(λ) + β β = n

100 , {n|nǫ
= ∑ | |∑ | || 	,= = , | 	,= = , | 	, 5 5= − Δ Δ = , | 	,

= √ = , = 9 5, | 	, 5
	 Δ		

	
	

, 0 ≤ n ≤ 100}
Multiplicative Transformation Rt(λ) = γR(λ) γ = n

100 , {n|nǫ
= ∑ | |∑ | || 	,= = , | 	,= = , | 	, 5 5= − Δ Δ = , | 	,

= √ = , = 9 5, | 	, 5
	 Δ		

	
	

, 50 ≤ n ≤ 150}
Introduction of Spectral Shift Rt(λ) = R(λ − ∆) ∆ = n

10 , {n|nǫ
= ∑ | |∑ | || 	,= = , | 	,= = , | 	, 5 5= − Δ Δ = , | 	,

= √ = , = 9 5, | 	, 5
	 Δ		

	
	

, 0 ≤ n ≤ 100}

Multiplicative Transformation of a
Single feature

Rt(λ) =

(

α e
−(λ−µ)2

2σ2

σ
√

2π
+ 1

)

R(λ) σ = 12, µ = 935, {α|αǫ
= ∑ | |∑ | || 	,= = , | 	,= = , | 	, 5 5= − Δ Δ = , | 	,

= √ = , = 9 5, | 	, 5
	 Δ		

	
	

, 1 ≤ α ≤ 50}

The tested ranges of values for SNR, β, γ and ∆ were selected to introduce nominal to substantial

errors. The CC was calculated between R(λ) and each of the transformed datasets, Rt(λ), in accordance

with Figure 3.

= ∑ | |∑ | || 	,= = , | 	,= = , | 	, 5 5= − Δ Δ = , | 	,
= √ = , = 9 5, | 	, 5

	 Δ		

 

	
	

Figure 3. Schematic view of the basic algorithm for the characterization of the CC.

To test the persistence of the acquired trends with the presence of signal noise, the CC calculations

for the last four modifications were repeated with AWGN. In particular, 4.31% AWGN was introduced

to R(λ) to acquire a new radiance signal, RAWGN(λ), with an SNR of 100:1, a reasonable value for

airborne HSI data. A new transformed signal, Rt AWGN(λ), was acquired by applying transformation

models from the last four rows of Table 1 to R(λ) after introducing AWGN to generate a signal with

an SNR of 100:1. The CC was calculated between RAWGN(λ) and each Rt AWGN(λ) in accordance with

Figure 4.

As a final test of consistency, the standard deviation of the CC was assessed in the presence of

noise. In particular, the AWGN transformation in Table 1 was applied to R(λ) 1000 times. A CC was

calculated between R(λ) and each of its transformations. The standard deviation of the CCs from each

distinct SNR was calculated.
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Figure 4. Schematic view of the basic algorithm for the characterization of the CC in the presence of

signal noise.

2.4. Application of the Correlation Coefficient to Airborne Hyperspectral Imagery (Error Detection)

Before applying the CC, a region of interest (ROI) (blue line in Figure 5) was identified across the

FOV, along the taxiway located directly south of the calibration site. The ROI was comprised of a single

asphalt road pixel from each column within the sensor FOV. Every attempt was made to acquire spectra

from asphalt pixels that were uncontaminated by non-asphalt substances such as paint, vegetation and

other non-asphalt hydrocarbons. “Wobbles” in the imagery in Figure 5 are caused by the movement of

the aircraft and can be readily accounted for through various geocorrective methodologies. In this

work, it was fundamental to preserve the original sensor geometry in the analysis, so no geocorrection

process was applied.

 

Figure 5. Non-geocorrected CASI imagery of the data acquisition site. The blue line indicates the ROI

selected for the analysis. The ROI contained a single pixel from each column across the asphalt road.

Ground calibration measurements were taken on the asphalt surface located by the red X, in accordance

with Figure 2.
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The spectrum from the center asphalt pixel in the ROI was designated as the reference for the

application of the CC since it was the center of the instruments’ FOV. The center pixel was evaluated

to ensure that it was a reasonable reference that contained no obvious errors. A CC was calculated

between the spectrum from each pixel in the ROI and the designated central pixel reference in

accordance with Figure 6.

 

		

Figure 6. Schematic view of the basic algorithm for the application of the CC in the spatial localization

of errors in HSI data.

Theoretically, the CCs should be exactly 1 across the FOV. Although this is not the case in real

data, the CC between well-behaved target spectra will vary around a mean value that is still quite close

to 1. The spatial pixels associated with substantial reductions in the CCs were recorded as potential

locations for errors in the HSI data. Substantial reductions were characterized by CCs that fell below a

designated threshold that was derived from the sensitivity testing.

To calculate the threshold, a stable spatial region was manually identified by consistent CCs that

varied around a constant mean. Using the mean CC of this region, the SNR of a stable spectrum

was approximated using the noise sensitivity data derived in Section 2.3. With the approximate SNR,

the data from the final test in Section 2.3 were used to estimate the expected standard deviation of

the CCs derived from stable spectra. Using the estimated standard deviation and the mean value of

the CCs in the stable region, potential errors were detected by reductions more than 3σ below the

mean. A 3σ threshold was selected to ensure that at least 99.7% of the stable data were not flagged

as a potential error. Consequently, CCs below the threshold were likely associated with errors in the

HSI data.

To spectrally isolate the potential errors in the recorded spatial locations, the CCs across the ROI

were recalculated after removing the data in pre-defined spectral windows. The schematic in Figure 7

was carried out for various spectral windows. The spectral windows were designed to vary in size and

spectral location. The window sizes were selected to ensure that windows contained anywhere from 1

to half of the total spectral bands. For any given size, the window was spectrally located beginning at

the lower boundary of the spectral range. Each window was shifted by 5 nm until its edge surpassed

the upper boundary of the dataset. For each window size and location, the average CC was calculated

across the spatial regions associated with the detected potential errors. By maximizing the average CC

over these regions, it was possible to identify the spectral window that was associated with a majority

of the studied potential error.

To verify the spectral window and specify the nature of the potential errors, the imagery was

visualized for a single band within the identified spectral ranges. In this visualization, image intensities

were histogram equalized to enhance contrast by making the histogram of the resulting image

equalized to a constant value. To verify that the reductions in the CCs were associated with these

errors, the CCs were calculated across the FOV with respect to the center pixel after the removal of the

identified spectral region.
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Figure 7. Schematic view of the basic algorithm for the application of the CC in the spectral localization

of errors in HSI data.

Atmospheric absorption features were used to locate finer errors in the imagery that might

not be easily visible in the CCs when calculated with the entire spectrum. These features were

manually identified in the spectrum of the center asphalt pixel using the theoretical locations in Table 2

for guidance.

Table 2. The approximate spectral location of known atmospheric absorption features [43]. It is

important to note that the wavelength ranges for some atmospheric absorption features may vary

in response to external factors. For instance, the range of the water absorption features is highly

dependent on water vapor and aerosol optical thickness [44].

Source Start Wavelength (nm) End Wavelength (nm)

O2 686 695
H2O 713 734
O2 757 770

H2O 806 840
H2O 888 997
H2O 1087 1176
O2 1223 1285

H2O 1300 1521
CO2 1591 1620
H2O 1759 1982
CO2 1991 2038
CO2 2037 2079
CH4 2139 2400

Atmospheric absorption features are distinctive and constant under stable conditions [45]. As such,

the CC was thought to be able to detect inconsistencies in these regions since error-induced changes

located within these features are more easily identifiable. As depicted in Figure 8, a CC was calculated

between the spectrum from each pixel in the ROI and the designated central reference pixel using only

the hyperspectral data that corresponded to each of the approximate wavelength regions identified in

Table 2.
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−

Figure 8. Schematic view of the basic algorithm for the application of the CC in the localization of finer

errors in HSI data.

For each spectral range, the imagery was visualized for a single band within the specified window

to study the nature of any detected errors. Once again, image intensities were histogram equalized

to enhance contrast and clearly display potential errors. The methodologies presented in this section

were repeated for each of the 8 processed images described in Section 2.2.

3. Results

3.1. In-Situ Ground Hyperspectral Data

The data points in the normalized and averaged in-situ radiance signature were preserved after

the Akima interpolation process was applied to generate R(λ) (Figure 9).

−

Figure 9. Averaged and normalized ground spectrum of asphalt before and after interpolation.

The differences between the two curves can be seen in the subplot, which zooms in on the 1185–1255 nm

spectral window. The interpolated curve, R(λ), was used for the methodologies described in Section 2.3.

The mean squared error between overlapping data points before and after interpolation was negligible

(<10−30). The Akima interpolation method generated a qualitatively smooth R(λ).
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3.2. Characterization of the Correlation Coefficient with Averaged and Interpolated In-Situ Radiance
Hyperspectral Data

The CC between the mean in-situ asphalt radiance and any given individual sample used to

comprise the mean signal was very close to one, ranging from 0.99987–0.99998, with a standard

deviation of 0.000023.

The CCs between R(λ) and each of the transformed datasets outlined in Table 1 are recorded in

Figure 10.

(a) (b)

(c) (d)

(e)	 	
Figure 10. The CC between R(λ) and each of the transformed datasets, Rt(λ). (a) The CC asymptotically

reduced from one when the SNR decreased through the introduction of AWGN. (b) The CC was

invariant to additive transformations. (c) Multiplicative transformations had no impact on the CC.

(d) The introduction of a spectral shift resulted in a small but clear decrease in the CC. (e) The

multiplicative transformation of a single feature was detected in the CC by a gradual reduction.

The CC decreased with the addition of AWGN (Figure 10a). At SNR values below 9:1, the CC

was under 0.9. As the SNR increased, the CC raised in an asymptotic fashion. After reaching an SNR
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of 1000:1, the CC equilibrated at approximately one. The CC remained constant at one for all linear

transformations (Figure 10b,c). As the spectral shift increased from 0–10 nm, the CC decayed from a

value of 1–0.991 (Figure 10d). A similar result was found after the atmospheric absorption feature at

935 nm was modified. In this case, the CC reduced from one to a value of 0.9970 as the scaling factor

increased (Figure 10e).

As can be seen in Figure 11, the general trends outlined in Figure 10b,e persisted even after the

application of AWGN at an SNR of 100:1.

(a) (b)

(c) (d)	 	 	Figure 11. The CC between RAWGN(λ) and each of the transformed datasets, Rt AWGN(λ). All signals

were characterized by an SNR value of 100:1. The trends from Figure 10 persisted, despite being masked

by the noise to some degree. (a) The CC was invariant to the additive transformation. (b) Multiplicative

transformations had no impact on the CC. (c) The introduction of a spectral shift resulted in a small,

but clear decrease in the CC. (d) The multiplicative transformation of a single feature was detected in

the CC by a gradual reduction.

The CC remained invariant to linear transformations (Figure 11a,b). However, the average value

of the CC reduced to approximately 0.98. Although the detailed relationships in Figure 11c,d were

masked by the variation induced by the introduced noise, the first-order trends are clearly present and

identifiable. The CC reduced from 0.980–0.968 after a 10 nm spectral shift in Figure 11c. As the scaling

factor increased from 0–50, the CC decreased from 0.9815–0.975. At an SNR of 100:1, the average

standard deviation in the CC for each modification was approximately 0.001. As seen in Figure 12,

this value matched the results derived from the final CC test, which calculated the standard deviation

in the calculated CC at various noise levels.
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Figure 12. The standard deviation of the CCs at various noise levels. There was an asymptotic increase

in the standard deviation of the CCs when the SNR decreased through the introduction of AWGN.

At a SNR of 100, the standard deviation is approximately 0.001. The standard deviation in the

CC asymptotically increased from zero to approximately 0.22 when the SNR decreased through the

introduction of AWGN.

3.3. Application of the Correlation Coefficient to Airborne Hyperspectral Imagery (Error Detection)

For each hyperspectral image, the calculated CCs recorded in Figure 13 adhered very closely

to one across the FOV when calculated with respect to the spectrum from the center pixel. The CCs

for the CASI imagery were consistently lower than that of the SASI by an average value of 0.0021

(Figure 13). In addition, the average standard deviation in the CCs of the CASI data was over 18-times

larger than that of the SASI.

For the CASI imagery, the CCs systematically reduced in value by more than one standard

deviation near the edges of the FOV. This reduction was largest for the CASI data derived from the

original processing methodology. When compared to the imagery collected on the 23rd, the CASI data

from the 24th were characterized by more substantial reductions in the CCs near the edges of the FOV,

especially along the left side. The CCs for the SASI imagery were almost identical, regardless of the

processing methodology or the acquisition date. The CCs for the SASI imagery were consistently lower

than the mean across the FOV from Pixels 548–564. As seen in Figure 13b,d, this reduction appeared

to be parabolic in nature, reaching a minimum value of approximately 0.995 and 0.997 in the SASI

imagery from the 23rd and 24th, respectively.

The spatial locations associated with distinct reductions in the CCs were identified using the

threshold defined in Section 2.4. These locations were used to spectrally isolate the potential errors to

the windows identified in Table 3 using the windowed-based methodology described in Section 2.4.

(a) (b)

Figure 13. Cont.
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(c) (d)

Figure 13. The CCs calculated across the field-of-view with respect to the entire spectrum from the

center pixel. (a) The CC of the CASI imagery (23 June 2016); (b) SASI imagery (23 June 2016); (c) CASI

imagery (24 June 2016); (d) SASI imagery (24 June 2016). (a,c) The CASI imagery was characterized by

systematic reductions near the edges of the FOV. These revealed potential errors consistent with the

spectral smile effect and other cross-track illumination effects. This reduction was most substantial

for the CASI images generated by the old processing methodology. Compared to the imagery from

the 24th, the CCs were more uniform across the FOV for the CASI data from the 23rd. (b,d) The SASI

imagery was consistent across all dates and processing methodologies. There was a notable reduction

in the CCs across the FOV from Pixels 548–564. This revealed the spatial location of an error.

Table 3. Spatial and spectral localization of large imaging errors. Spatial errors were detected from

the data in Figure 13 using the defined threshold. Potential errors were spectrally located through the

window-based methodology described in Section 2.4. Errors were detected along the edges of the CASI

imagery in the blue end of the spectra. A single band error was detected in the SASI imagery from

993–1008 across Pixels 548–564.

Imager Date Processing Problematic Pixels Spectrally-Isolated Range (nm)

CASI 23 June 2016 Original 1–70 and 1285–1498 366–453
CASI 23 June 2016 Refined 1403–1498 396–483
CASI 24 June 2016 Original 1–149 and 1258–1498 366–453
CASI 24 June 2016 Refined 1–141 and 1252–1498 396–483
SASI 23 June 2016 Original 548–564 993–1008
SASI 23 June 2016 Refined 548–564 993–1008
SASI 24 June 2016 Original 548–564 993–1008
SASI 24 June 2016 Refined 548–564 993–1008

Errors in the imagery were clearly detected though the visualization of the spectral windows

in Table 3. An example of the error in the CASI imagery is displayed in Figure 14. In the imagery,

the asphalt road is clearly brightest along the edge pixels.

This general trend held for all CASI imagery and was less prominent with the refined processing

methodology (Figure 15). The asphalt road is still brightest along the edge pixels, but to a lesser degree

than in Figure 14.

The error within all SASI imagery was located at the same spatial pixels and spectral range.

The error could be displayed by visualizing the only band in the 993–1008 spectral range (Figure 16).
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Figure 14. Histogram-equalized CASI image (24 June with the original processing) at 393.068 nm.

The asphalt road along the south side of the image was brightest along the edge pixels. The errors in

the data are highlighted by the red arrows.

Figure 15. Histogram-equalized CASI imagery (24 June with the refined processing) at 393.068 nm.

The asphalt road along the south side of the image was brightest along the edge pixels. These errors in

the data are highlighted by the red arrows and were less noticeable in the imagery that was generated

from the refined processing.
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Figure 16. Histogram-equalized SASI imagery (24 June with the refined processing) at 1003 nm.

An error across Pixels 548–564 is identified by the red arrow.

After removing data in the spectral windows in accordance with Table 3, there was a substantial

increase in the values of CCs across the FOV in all images (17), especially at spatial locations

associated with the previously identified imaging errors. Comparing Figures 13b,d and 17b,d, the large

reduction in the SASI imagery from Pixels 548–564 was completely removed. Furthermore, the CCs

along the FOV of the CASI images remained relatively constant, even at the edge pixels. Overall,

there was more consistency between the images derived by the different processing methodologies

and acquisition dates.

(a) (b)

Figure 17. Cont.
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(c) (d)

−

Figure 17. The CCs calculated across the field-of-view with respect to the spectrum complementary to

the windows in Table 3. (a) CASI imagery (23 June 2016); (b) SASI imagery (23 June 2016); (c) CASI

imagery (24 June 2016); (d) SASI imagery (24 June 2016). (a,c) The CCs of the CASI imagery increased

greatly, especially along the edges, indicating that the error was primarily contained within the spectral

regions identified in Table 3. The CASI data from the 23rd were relatively consistent between both

processing methodologies. Although this trend generally held for the data from the 24th, (c) showed a

notable offset. (b,d) The large reduction in the CCs from the SASI imagery at Pixels 548–564 was not

present after removing the problematic band that was found between 993 and 1008 nm.

Comparing Figure 13a,c to Figure 17a,c, there was more consistency in the CCs of the CASI

imagery from the 23rd between the original and refined processing. Although this trend holds for

the CASI data from the 24th, there was still a notable average offset of 0.0007 between the two curves.

Significance testing yielded p-values less than 10−5 for all observed relationships.

To further the analysis and spectrally locate smaller residual errors in the CASI data from the 24th,

five atmospheric absorption features were identified in the spectral range from 365–1050 nm (Table 4).

Table 4. Identified atmospheric absorption features in the spectral range covered by the CASI.

Feature Number Source Start Wavelength (nm) End Wavelength (nm)

1 O2 680 712
2 H2O 710 745
3 O2 750 776
4 H2O 804 846
5 H2O 883 992

The CCs across the FOV of the CASI images from the 24th were calculated with respect to the

center pixel over the spectral regions identified in Table 4 and are shown in Figure 18. The CCs

in the 680–712 nm region were highly variable, ranging from 0.95–1 with a subtle low frequency

sinusoidal structure (Figure 18a,b). Visual inspection of the associated imagery in Figure 19 indicated

that, throughout much of the FOV, there were discrete pixels and groups of pixels that appeared to be

non-uniform across the entire FOV, noticeably varying in brightness even amongst neighboring pixels.

These pixels lead to “striping” artefacts across the entire FOV in the image data. These trends were

apparent in both CASI images. The low frequency sinusoidal structure could not be clearly visualized

in the imagery. The sinusoidal structure was not a numerical computational effect.
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Figure 18. Cont.
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(i) (j) 

Figure 18. The CCs calculated across the field-of-view of the CASI imagery with respect to the spectrum

from the center pixel. The wavelength regions used to calculate the CCs are identified in each graph and

correspond to the values in Table 4. Plots (a,c,e,g,i) correspond to the CASI data that were processed

with the original methodology. Plots (b,d,f,h,j) correspond to the CASI data that were processed with

the refined methodology. (a,b) The CCs for the 680–712 nm region were highly variable with a low

frequency sinusoidal structure. (c,d) The CCs for the 710–745 nm region were relatively constant across

the FOV. A distinct reduction was detected in the CC of a single pixel near the right edge for the

imagery processed with the original methodology, but not the refined processing. (e,f) There was

a reduction of approximately 0.021 in the CC for the 750–775 nm region near the edges of the FOV.

This effect is likely caused by the smile effect or other cross-track illumination effects. (g,h) For the data

from the 804–846 nm window of the imagery processed with the original methodology, there were

characteristic reductions in the CC greater than 0.05 detected. These reductions revealed potential

imaging errors for the spectral window in the following spatial ranges: 256–276, 551–576, 912–936

and 1209–1235. These reductions were not present in the CCs for the image derived with the refined

processing. (i,j) In the 883–992 nm region, the CCs were relatively constant across the FOV.

Figure 19. Histogram-equalized CASI imagery (24 June with the original processing) at 706.4 nm.

The image is zoomed in to display Columns 57–513 from left to right. There are “striping” artefacts

across the FOV. This ripple is clearly visible near the center of the figure, as indicated by the red arrow.
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Although Figure 18c remained relatively consistent across the asphalt road, there was a sudden

reduction near the end of the FOV at Pixels 1454 and 1456. After independently displaying all bands

in the specified spectral window in greyscale, errors were spatially located in Columns 1454 and

1456; these errors were visualized as a bright and dark vertical stripe, respectively, across the imagery

(Figure 20). The vertical stripes were not present in the CASI imagery with the refined processing or

Figure 18d.

Figure 20. Histogram-equalized CASI (24 June with original processing) imagery at 744.653 nm.

The image is zoomed in to display Columns 1248–1482 from left to right. The red and orange arrows

point to the errors in Pixels 1454 and 1456 in the cross-track, respectively. These errors were visualized

as a bright and dark vertical stripe.

There was a reduction of approximately 0.021 in the CC near the edges of the FOV in Figure 18e,f.

The effects associated with these reductions could not be visualized within the imagery. Figure 18g was

characterized by sporadic reductions in the CC of greater than 0.05. These reductions revealed potential

imaging errors for the spectral window in the following spatial ranges: 256–276, 551–576, 912–936

and 1209–1235. After independently displaying all of the bands in the specified spectral window in

greyscale, it was possible to detect groups of non-uniform pixels that noticeably varied in brightness.

These groups created distinct “striping” artifacts that can be seen at several spatially-isolated points

across the CASI imagery from the 24th with the original processing (Figure 21). This effect was not

present in the CASI imagery with the refined processing or Figure 18h.

The CCs in Figure 18i,j remained relatively constant with very little variation. The associated

imagery was visualized in greyscale with one of the bands from the identified spectral range (Figure 22).

No large errors could be seen in any of the analyzed CASI imagery within this spectral range.
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Figure 21. Histogram-equalized CASI imagery (24 June with original processing) at 835.491 nm.

The red lines show the locations of distinct “striping” artefacts.

Figure 22. Histogram-equalized CASI imagery (24 June with original processing) at 931.099 nm.

The imagery is stable, with no obvious errors.

4. Discussion

By characterizing the sensitivity of the CC before its application to real airborne HSI data, it was

possible to verify the detective capabilities of the metric in the localization of errors in hyperspectral
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data. The findings generally agreed with all basic intuition and theoretical expectation of the CC. Linear

transformations, in agreement with theory, had no impacts on the value of the CC. By calculating

the CC between two similar spectra, the value could be used to gauge the consistency independent

of the effects associated with linear transformations. Because of this property, the CC was shown

to be extremely insensitive to the natural variances between different asphalt spectra. This was

important for the detection of errors in HSI data as it implied that the differences in the calculated

CCs were not primarily due to the variations between asphalt samples. All modifications, aside from

the linear transformations, resulted in a consistent reduction in the CC. Consequently, the CC could

detect spectral shifts and modified spectral features. Although the CC was sensitive to signal noise,

all general trends held irrespective of the AWGN in hyperspectral data with an SNR of 100:1, which is

a reasonably high noise level for airborne HSI data. This trend was fundamental to the application

of the CC as it meant that the metric was sufficiently resistant to noise for the purposes of error

detection; so long as errors are not being completely masked by noise, the CC can detect their presence.

Implementing this knowledge, the CC was applied to real airborne HSI data.

Through the application of the CC, the quality of remotely-sensed hyperspectral data could be

assessed through error detection in a quantitative manner. This was evident in the analysis of the

eight hyperspectral images that were studied. By calculating the CCs across the FOV with the entire

spectra, it was possible to immediately gauge the spectral consistency of the HSI data collected by the

CASI and SASI, across the FOV. It is important to note that the method was explicitly designed for the

detection of errors, not for the identification of their origin.

In the CASI imagery, the methodology was able to spatially detect errors along the edges of

Figure 13a,c by systematic reductions in the CCs near the boundaries of the FOV. The spectral locations

of these effects were found in the blue end of the spectrum, in accordance with Table 3. Visualization

of the imagery in Figures 14 and 15 revealed an error that is consistent with the effects of the spectral

smile or other cross-track illumination effects [46]. With a greater decline in the CCs near the edges

of the FOV, this error was more prominent in the CASI data collected with the original processing

methodology. As such, it is possible to deduce that the refined processing was able to better correct for

the effects observed at the edges. The CASI imagery from the 24th was characterized by slightly lower

and more variable CCs then the data from the 23rd, especially near the edges of the FOV. With this

information, there is some innate variability in the data acquisition of the CASI that could be quantified

from the CCs.

The CCs of the SASI imagery were virtually identical regardless of the processing methodology

and acquisition date. This suggested that the SASI was very stable in its data acquisition. Furthermore,

it was clear that the refined processing methodology did not have a large impact on the data. Using the

developed algorithms, an error was detected in the SASI imagery at a single spectral band by a

reduction in the CCs from Pixels 548–564. This showcased the developed CC-based methodology as a

strong tool in the localization of errors in imaging spectrometers.

After removing the data within the spectral windows identified in Table 3, there was a greater

degree of consistency amongst all of the CASI and SASI images. That being said, not all datasets

perfectly aligned; there was a slight offset between the CASI images collected from the 24th.

To investigate the discrepancy in the CASI images from the 24th, finer errors were detected in the

regions that surrounded the five atmospheric absorption features in Table 4. All but one of the

spectral regions was characterized by non-uniform CCs across the FOV (Figure 18). The irregular

structure in Figure 18a,b was caused by non-uniform pixels, which noticeably varied in brightness.

This error created “striping” artefacts across the image data. These artefacts have been observed in

the literature and are likely due to radiometric calibration errors [47]. Although the origin of the low

frequency sinusoidal structure could not be established, it is clear that the trend is not a numerical

computational effect. As such, there is likely a subtle wide spatial scale feature. The origin of the

subtle feature in the CCs is still being investigated. The sporadic reduction in the CCs of Figure 18c

detected errors at Pixel Columns 1454 and 1456, which were visualized as a bright and dark vertical
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stripe, respectively, across the imagery (Figure 20). Since this reduction was not present in Figure 18d,

the refined processing methodology was able to correct for this error. Based on the structure of the CCs

near the edges of the FOV in Figure 18e,f, there were potential residual smile effects or other cross-track

illumination effects that could not be clearly visualized in the imagery. The sporadic reductions in

the CC of Figure 18g revealed groups of non-uniform pixels that created distinct “striping” artefacts

that can be seen at several points across the CASI imagery from the 24th with the original processing

(Figure 21). These errors were not present in Figure 18h or its associated imagery. As such, the refined

processing methodology was able to correct for this error. The relatively constant CCs across the FOV

in Figure 18i,j corresponded with stable imagery within the designated spectral window, as displayed

in Figure 22. This information is fundamental as it showcases that the CC method can detect stable

imagery, when it is present. The offset between the CASI imagery collected on the 24th in Figure 17

was likely due to the additional errors that were not corrected in the original processing methodology.

Although significance testing yielded p-values less than 10−5 for all observed relationships, it is

important to note that these values did not necessarily imply practical significance. This was due to

an issue inherent to the p-value itself; with such a large sample size and small variance, significance

testing flagged even the most subtle of changes as significantly different [48]. Fortunately, this was not

an issue within the study as all of the flagged potential errors could be visualized and verified in the

imagery itself. A similar statement can be made for the differences observed in the CCs between the

distinct processing methodologies and acquisition devices.

Overall, errors were detected in the CASI and SASI imagery though the application of the

CC. Although more sophisticated error detection methodologies exist (e.g., [37,39,40]), they can

be monetarily expensive to implement and rely on a higher level of mathematical understanding.

Without a fundamental understanding of a method, its implementation can lead to inaccurate

interpretations. The presented method is intuitive; the CC is a rather simple statistical tool and

its application is straight forward. The detection can be conducted on radiance spectra prior to

atmospheric correction, quickly after acquisition. After removing the wavelength region associated

with large errors, the described methodologies could be repeated to isolate smaller errors. Although

the application was developed for hyperspectral technologies, it can be easily generalized for data

collected by other imaging spectrometers. This versatility showcases the CC as a strong and simple

statistical tool for the analysis of spectrographic imaging data through the detection of errors.

5. Conclusions

This work substantiated the versatility of the CC with respect to the localization of errors in

spectrographic imaging data. The sensitivity of the CC was characterized with respect to subtle spectral

changes in the averaged in-situ level radiance data. Errors were spectrally and spatially detected

in real airborne acquired HSI data. As per the original intent of the study, the methodology was

successfully developed for the detection of errors, not for the identification of their origin. The method

was able to gauge the effectiveness of various processing methodologies and the imaging systems

themselves. Overall, the CC is clearly a strong, simple, low monetary cost, analytical tool for studying

hyperspectral remotely-sensed data quality through error detection.
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