

NRC Publications Archive Archives des publications du CNRC

Validation of GEDAP Programs "Wavetran" and "Boat-Wave"

Cumming, D.; Mak, L. M.

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

Publisher's version / Version de l'éditeur: https://doi.org/10.4224/8895739 Laboratory Memorandum; no. LM-2004-14, 2004

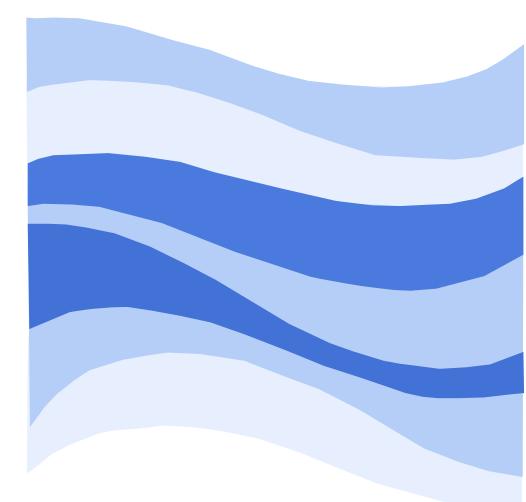
NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=9eb7368f-89ad-4061-b30a-3ebb649864df https://publications-cnrc.canada.ca/fra/voir/objet/?id=9eb7368f-89ad-4061-b30a-3ebb649864df

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site <u>https://publications-cnrc.canada.ca/fra/droits</u> LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.



National Research Council Canada

Institute for Ocean Technology Conseil national de recherches Canada Institut des technologies océaniques

DOCUMENTATION PAGE

REPORT NUMBER	NRC REPORT NUMBER	DATE				
LM-2004-14		June 200	04			
REPORT SECURITY CLASSIFICAT	ION	DISTRIBUTION				
Unclassified		Unlimite	4			
TITLE		Uninnited	u			
VALIDATION OF GEDAP PRO	GRAMS 'WAVETRAN' AND 'BO	DAT WAVE				
AUTHOR(S)	CRAINE WATELRAN AND DO					
D. Cumming and L. Male						
D. Cumming and L. Mak CORPORATE AUTHOR(S)/PERFOR						
Institute for Ocean Technolo	gy, National Research Counci	I, St. John's,	NL			
PUBLICATION N/A						
NA						
SPONSORING AGENCY(S)						
lastitute fan Ossen Teshusele	w. National Desearch Course		N II			
INSTITUTE for Ocean Technolo	gy, National Research Counci	NRC FILE NU				
42_960_26						
KEY WORDS		PAGES	FIGS.	TABLES		
Software, WAVETRAN, BOA		iv, 12, App. A-D	16	9		
SUMMARY		7.pp. 77.D				
	ation, using realistic physical wav					
	ore Engineering Basin (OEB), of C is used to translate unidirectional					
stationary wave probe to anothe	er stationary point using linear the	ory. 'BOAT_V	VAVE' is use	ed to		
	or irregular wave data from a stati					
on a moving model using linear the software.	theory. An attempt will be made	to define an e	nvelope for v	valid use of		
ADDRESS National Rese	earch Council cean Technology					
	e, P. O. Box 12093					
St. John's, NL						
	-5185, Fax: (709) 772-2462					

Institute for Ocean Technology

¥

National Research Council Conseil national de recherches Canada Institut des technologies océaniques

VALIDATION OF GEDAP PROGRAMS 'WAVETRAN' AND 'BOAT_WAVE'

LM-2004-14

D. Cumming, L. Mak

June 2004

TABLE OF CONTENTS

List of	Tablesiv Figuresiv Symbols and Abbreviationsv
1.0	INTRODUCTION1
2.0	BACKGROUND1
3.0	DESCRIPTION OF THE OFFSHORE ENGINEERING BASIN
4.0	DESCRIPTION OF GEDAP PROGRAMS 'WAVETRAN' AND 'BOAT_WAVE'
5.0	OEB TEST CONFIGURATIONS
6.0	'WAVETRAN' VALIDATION
7.0	'BOAT_WAVE' VALIDATION
	DISCUSSION
	CONCLUSIONS AND RECOMMENDATIONS
10.0	ACKNOWLEDGEMENTS12
11.0	REFERENCES12

APPENDIX A:	Description of the Offshore Engineering Basin
APPENDIX B:	Description of the QUALISYS System
APPENDIX C:	Analysis Results: 'WAVETRAN' Regular Waves
APPENDIX D:	Analysis Results: 'WAVETRAN' Irregular Waves

LIST OF TABLES

Data Set 1 Waves	Table 1 – 3
Data Set 2 Waves	4, 5
Example Comparison of Spectral Parameters ('WAVETRAN')	6
Repeatability Check ('WAVETRAN')	7
'BOAT_WAVE' Validation – Regular Waves	8
'BOAT_WAVE' Validation – Irregular Waves	9

LIST OF FIGURES

	Eiguro
Photograph of Typical Seakeeping Ship Model in OEB	Figure 1
Photograph of Typical Moored Platform in OEB	2
Sketch of OEB Configuration – Data Set 1	3
Sketch of OEB Configuration – Data Set 2	4
Plot Illustrating Limit of 'WAVETRAN' - Regular Waves, Flume Mode	5
Plot Illustrating Limit of 'WAVETRAN' - Regular Oblique Waves	6
Plot Illustrating Limit of 'WAVETRAN' - Irregular Waves, Flume Mode	7
Plot Illustrating Limit of 'WAVETRAN' - Irregular Oblique Waves	8
'WAVETRAN' Validation Related Example Time Series Plots	9–14
'WAVETRAN' Validation Related Example Spectral Plots	15, 16

LIST OF SYMBOLS AND ABBREVIATIONS

cm	centimeter(s)
Cxy(τ)	Cross-Covariance Function
d	water depth
EW1	East Wave Probe
FFT	Fast Fourier Transform
g	acceleration due to gravity (9.808 m/s ²)
GDAC	General Data Acquisition and Control
GEDAP	General Data Analysis Package
Hav	Average Wave Height
Hmax	Maximum Wave Height
Hz	Hertz
IMD	Institute for Marine Dynamics (now IOT – Institute for Ocean Technology)
IOT	Institute for Ocean Technology
IR	infrared
k	wave number
L _w	wave length
m	meter(s)
mm	millimeter(s)
MW1	Middle Wave Probe
NC1	North Center Wave Probe
NRC	National Research Council

LIST OF SYMBOLS AND ABBREVIATIONS (cont'd)

NW1	North West Wave Probe
OEB	Offshore Engineering Basin
Rxy(τ)	Cross Correlation Function
S	second(s)
SW1	South West Wave Probe
t	tonne(s), time
T1, T2	time segment start, end time
Tav	Average Wave Period
Tmax	Maximum Wave Period
Tw	Wave Period
WW1	West Wave Probe
	0.4.4450
π	3.14159
τ	time shift

VALIDATION OF GEDAP PROGRAMS 'WAVETRAN' AND 'BOAT_WAVE'

1.0 INTRODUCTION

This report documents the validation, using realistic physical wave data acquired in the Institute for Ocean Technology (IOT) Offshore Engineering Basin (OEB), of GEDAP programs 'WAVETRAN' and 'BOAT_WAVE'. 'WAVETRAN' is used to translate unidirectional regular or irregular wave data from a stationary wave probe to another stationary point using linear theory. 'BOAT_WAVE' is used to translate unidirectional regular or irregular wave data from a stationary wave probe to a defined point on a moving model using linear theory. An attempt will be made to define an envelope for valid use of the software.

2.0 BACKGROUND

IOT performs seakeeping experiments in the OEB on scaled self-propelled, radio controlled free-running physical models of ships using standard procedures described in Reference 1. A photograph of a typical ship model taken during a seakeeping test in the OEB is provided in Figure 1. Moored platforms are also commonly tested in wind, waves and current (see Figure 2). Waves are generated in the OEB using standard procedures described in Reference 2. To measure the wave field during testing, IOT would typically install a number of stationary capacitance wave probes at known positions in the OEB co-ordinate system as shown in Figure 3. IOT often tailors model test programs for clients/ collaborators involved in validating time domain numerical prediction software. For these projects, providing time domain wave information at some defined point on the model (typically the model's center of gravity) is a common requirement. GEDAP programs 'WAVETRAN' or 'BOAT WAVE' can, using data from a stationary wave probe as an input, be used to estimate the variation in wave height at a stationary or moving model subjected to a unidirectional regular or irregular wave field. This document has been written to validate the software, establish boundaries for acceptable output and provide IOT clients/collaborators with some confidence in the integrity of the results generated.

These programs do not provide acceptable results in multi-directional or nonlinear waves. Poor results are noted when the generated waves are steep enough to break or where there is a measurable variation in wave celerity as the waves propagate the length of the tank.

3.0 DESCRIPTION OF THE OFFSHORE ENGINEERING BASIN

The IOT Offshore Engineering Basin (OEB) has a working area of 26 m by 65.8 m with a depth that can be varied from 0.1 m to 3.0 m. The depth used for the validation exercise described in this report was 2.8 m. Waves are generated

using 168 individual, computer controlled wet back wavemaker segments, hydraulically activated, fitted around the perimeter of the tank in an "L" configuration. Each segment can be operated in one of three modes of articulation: flapper mode (\pm 15°), piston mode (\pm 400 mm) or a combination of both modes. The wavemakers are capable of generating both regular and irregular waves up to 0.5 m significant wave height. Passive wave absorbers are fitted around the other two sides of the tank. The facility has a recirculating water system based current generation capability with current speed dependent on water depth, extensive video coverage and is serviced over its entire working area by a 5 t lift capacity crane. Additional information on the OEB can be found in Appendix A.

4.0 DESCRIPTION OF GEDAP PROGRAMS 'WAVETRAN' AND 'BOAT_WAVE'

Both 'WAVETRAN' and 'BOAT_WAVE' were designed to be used by the GEDAP data analysis software package described in Reference 3. A brief description of the GEDAP software package and documentation on all GEDAP programs available to the IOT user can be found on the IOT internal web site.

'BOAT_WAVE' reads in a GEDAP V1 file containing Eta1(t) where Eta1(t) is the wave elevation record of a unidirectional regular or irregular wave train at the position (x1, y1) of a stationary wave probe. At each time step, 'BOAT_WAVE' calculates the wave elevation at a desired point on the physical model, specified by two planar position input files X_LOC(t) and Y_LOC(t) normally measured using the QUALISYS optical tracking system described in Reference 4 with additional information presented in Appendix B. Note the QUALISYS infrared (IR) markers on the ship model shown in Figure 1. The wave elevation time series at the desired point on the model is stored in an output file.

'WAVETRAN' reads in a GEDAP V1 file containing Eta1(t) where Eta1(t) is the wave elevation record of a unidirectional regular or irregular wave train at the position of a stationary wave probe (x1, y1). At each time step, 'WAVETRAN' then calculates the corresponding wave elevation record Eta2(t) at some other defined stationary point (x2, y2) and stores this time series in an output file. Note the array of wave probes around the platform in Figure 2.

For both programs, the user specifies the direction of propagation of the unidirectional wave train and the water depth. In addition, both programs use FFT techniques to compute the phase shift of each frequency component on the basis of linear wave theory. The wave direction and planar position in the OEB must be specified in a co-ordinate system defined as follows (see Figure 3):

- origin at the south west corner of the tank.
- X co-ordinate positive east

• Y co-ordinate positive north

WARNING: If the planar position data acquired from QUALISYS is not provided in this co-ordinate system, GEDAP program 'TRANSFORM1' must be run to perform a co-ordinate transformation before using 'WAVETRAN' or 'BOAT_WAVE'. Also the positions of the wave probes must also be input by the user in this co-ordinate system.

If there is a tilt to any of the wave probes, this can result in significant probe position errors. For example, for a water depth of 2.8 m, it will only require a 4 degree tilt in a wave probe to get a 0.2 m error in position.

5.0 OEB TEST CONFIGURATIONS

The software was validated using available data acquired during a number of projects carried out over the last few years in the OEB. The following experiments were carried out:

Data Set 1 – Project 977:

Data from three wave probes were acquired for most of the experiments in Data Set 1. A ship model was operating in the tank with planar (X, Y) position measured using QUALISYS during each run. The co-ordinates of each wave probe are provided as follows:

South West Probe (SW1):X = 15.347 m, Y = 5.775 mNorth West Probe (NW1):X = 15.230 m, Y = 20.828 mNorth Center Probe (NC1):X = 29.413 m, Y = 20.837 m

See Figure 3 for layout of OEB for Data Set 1.

Wave Configurations - Data Set 1:

Regular Waves:

Flume Mode, west wavemakers used only, blanking plates Installed covering north beaches – nominal wave period = 1.12 s to 3.628 s, wave height = 0.0735 m to 0.5 m.

Oblique Waves, west and south wavemakers used, waves generated 60 degrees relative to west wall, no blanking plates installed – nominal wave period = 1.12 s to 3.023 s, wave height = 0.0735 m to 0.5 m.

Irregular Waves:

Flume Mode, west wavemakers used only, blanking plates installed covering north beaches – nominal modal period = 2.6 s, nominal significant wave height = 0.283 m – multiple wave segments were used to cover spectrum. North west wave probe data unavailable.

Oblique Waves, west and south wavemakers used, waves generated 60 degrees relative to west wall, no blanking plates installed – nominal modal period = 2.6 s, nominal significant wave height = 0.283 m – multiple wave segments were used to cover the spectrum.

See Tables 1 - 3 for list of Data Set 1 waves.

Data Set 2 – Project 903:

Data from three wave probes were acquired for most of the experiments in Data Set 2. There was no physical model in the tank during these experiments. The co-ordinates of each wave probe are provided as follows:

East Probe (EW1): X = 43.541 m, Y = 13.285 m West Probe (WW1): X = 15.005 m, Y = 13.340 m Middle Probe (MW1): X = 29.373 m, Y = 13.330 m

See Figure 4 for layout of OEB for Data Set 2.

Wave Configurations - Data Set 2:

Regular Waves:

Flume Mode, west wavemakers used only, blanking plates Installed covering north beaches – nominal wave period = 1.43 s to 6.67 s, wave height = 0.05 m to 0.7 m.

Irregular Waves:

Flume Mode, west wavemakers used only, blanking plates installed covering north beaches – nominal mean period = 1.43 to 2.5 s, nominal significant wave height = 0.05 m to 0.6 m – one wave segment from each wave reviewed.

See Table 4, 5 for list of Data Set 2 waves.

6.0 'WAVETRAN' VALIDATION

The data analysis procedure and the results of the validation of program 'WAVETRAN' is presented in this section. For Data Set 1, waves measured using the North West and South West probes were moved to the North Center probe position and compared to waves measured using the North Center probe. For Data Set 2, waves measured using the East and West probes were moved to the Middle probe position and compared to waves measured using the Middle probe. All data acquired in the OEB is initially formatted as GDAC test data acquisition files described in References 5, 6.

Data Analysis Procedure

The following basic data analysis sequence was followed:

- Run GEDAP Program 'SPLIT_DAC' to split GDAC test data acquisition files acquired during experiments in the OEB into separate GEDAP format wave data files in model scale units.
- Run GEDAP program 'WAVETRAN' to move wave data from one probe position to a second wave probe position. The user inputs the X, Y position of each wave probe in the specified OEB co-ordinate system with the origin defined at the south west corner of the tank, the water depth (m) and the wave direction with respect to the west tank wall (degrees).
- Use GEDAP Program 'GPLOT' to review the wave data from all wave probes in the time domain to determine an acceptable common time segment.
- Run GEDAP Program 'SELECT1' to select a common time segment that includes valid data for all wave probes of interest.
- Run GEDAP Program 'XCORR' to carry out a cross-correlation between all wave channel time series signals.
- Run GEDAP Program 'ZCA' to determine the average wave height, period (H_{AV}, T_{AV}) for regular waves and average as well as maximum wave height, period (H_{MAX}, T_{MAX}) for irregular waves by carrying out a time domain zero crossing analysis on the wave time series signals.
- Run GEDAP Program 'WAVE' to estimate the breaking wave height given a user specified wave period (s) and water depth (m). (Regular waves only).

Cross-Correlation of two wave signals:

Program 'XCORR' computes $Rxy(\tau)$ where $Rxy(\tau)$ is the cross-correlation function of two input time series signals, x(t) and y(t). It then locates the value of τ (tau), the time shift in seconds between the two input time series signals, at which the maximum value of $Rxy(\tau)$ occurs and applies this time shift to y(t) to obtain a new signal called ys(t). This time-shifted signal ys(t) has maximum correlation with the first input signal, x(t). The cross-correlation function $Rxy(\tau)$ is defined as follows:

 $Rxy(\tau) = Cxy(\tau) / (sigma_x * sigma_y)$

where $Cxy(\tau)$ = the cross-covariance function of x(t) and y(t), sigma_x = the standard deviation of x(t) and sigma_y = the standard deviation of y(t).

If the two input signals are identical, $Rxy(\tau)$ has a maximum value of 1.0 at τ = zero seconds. The cross-covariance function $Cxy(\tau)$ is defined by:

 $Cxy(\tau) = E[(x(t) - mux) * (y(t + \tau) - muy)]$ where E[z] = the expected value of z, mux = mean value of x(t), and muy = mean value of y(t).

 $Cxy(\tau)$ is computed by an FFT technique which is typically 50 to 100 times faster than calculating $Cxy(\tau)$ directly in the time domain. If time shift τ has a negative value, then y(t) leads x(t).

The results of the cross-correlation and zero crossing analysis are presented in Appendix C for the regular waves and Appendix D for the irregular waves.

The criterion for an unacceptable wave signal transfer has been defined as:

Evaluating the Validation Envelope for 'WAVETRAN':

An effort was made to define a safe operating envelope for 'WAVETRAN' using the available data. Plots of Nominal Wave Height (m) vs. Nominal Wave Frequency (Hz) are provided in Figure 5 (regular waves, flume mode), and Figure 6 (regular oblique waves). Plots of Average Wave Height (m) vs. Average Wave Frequency (Hz) are presented in Figure 7 (irregular waves, flume mode) and Figure 8 (irregular oblique waves).

The maximum limit for using 'WAVETRAN' is defined by the relationship:

L_w(0.1*TANH(k * d))*A

Where: L_w = wave length (m) = $(2 * \pi)/(g * T_w^2)$ g = acceleration due to gravity = 9.808 m/s² π = 3.14159

- $T_w =$ wave period (s)
- k = wave number $(m^{-1}) = (4 * \pi^2)/(g * T_w^2)$
- d = water depth (m)
- A = constant
 - = 0.8 for regular waves, flume mode
 - = 0.7 for regular oblique waves
 - = 1/3 for all irregular waves

The values that exceed the unacceptable criterion are defined by red dots in Figures 5 to 8.

Example Time Series Plots:

The following comparative time series plots are provided:

Figure 9: Linear, Regular Wave, Flume Mode Figure 10: Non-Linear, Regular Wave, Flume Mode Figure 11: Linear, Irregular Wave, Flume Mode Figure 12: Non-Linear, Irregular Wave, Flume Mode Figure 13: Linear, Regular Oblique Wave Figure 14: Non-Linear, Regular Oblique Wave

Example Spectral Density Plots:

A variance spectral density analysis was carried out on both a linear as well as non-linear irregular wave to determine whether using 'WAVETRAN' had any significant impact on the spectral characteristics.

Figure 15: Linear Irregular Wave Figure 16: Non-Linear Irregular Wave

A comparison of the spectral parameters for each wave probe is listed in Table 6.

Repeatability Check:

The analysis was carried out on six runs that were repeated during the testing. The results of this analysis are provided in Table 7.

7.0 'BOAT_WAVE' VALIDATION

The validation procedure for 'BOAT_WAVE' was very similar to the procedure adopted for 'WAVETRAN'. Only data from Data Set 1 was used to validate this software as there was no moving model in the tank during Data Set 2 project #903.

Data Analysis Procedure

The following basic data analysis sequence was followed:

- Run GEDAP Program 'SPLIT_DAC' to split GDAC test data acquisition files acquired during experiments in the OEB into separate GEDAP format wave data files in model scale units.
- Use GEDAP program GPLOT to view the QUALISYS two planar position channels and manually remove any spikes or other unwanted anomalies using GEDAP program DESPIKE or glitch fixing by linear interpolation (GFL) available within GPLOT.
- Run GEDAP program 'BOAT_WAVE' to move wave data from the three wave probe positions to the center of gravity of the moving model as measured using QUALISYS. The user inputs the X, Y position of each wave probe in the specified OEB co-ordinate system with the origin defined at the south west corner of the tank, the water depth (m) and the wave direction with respect to the west tank wall (degrees). It was also important to verify that the QUALISYS planar position data was also specified in the OEB co-ordinate system with the origin defined at the south west corner of the tank.
- Use GEDAP Program 'GPLOT' to review the wave data from all wave probes in the time domain to determine an acceptable common time segment.
- Run GEDAP Program 'SELECT1' to select a common time segment that includes valid data for all wave probes of interest.
- Run GEDAP Program 'XCORR' as described in Section 6.0 to carry out a cross-correlation between all three wave channel time series signals at the center of gravity of the model.

WARNING: If the position of the model as measured using QUALISYS is not carefully despiked, these unwanted anomalies will be reflected in the wave data moved to the model.

Since 'BOAT_WAVE' is essentially based on the same principals as 'WAVETRAN', it is assumed that the valid operating envelope for 'BOAT_WAVE' matches the valid operating envelope for 'WAVETRAN' and the same user restrictions apply. To verify this assumption, a small random subset of runs from Data Set 1 were evaluated using the same criterion ($[\tau/T_{AV}] * 100\% > 10\%$) as was used for 'WAVETRAN'. The results of the regular wave analysis for flume mode and oblique waves are presented in Table 8 while the irregular wave analysis for flume mode and oblique waves is presented in Table 9.

8.0 DISCUSSION

The primary objective of the validation exercise was to determine if the software provided satisfactory results relative to a defined criterion and attempt to define the boundaries of acceptable performance. The two wave data sets used to achieve these goals were not dedicated to validating this software so there are some limitations.

8.1 'WAVETRAN' Validation Results

Referring to plots defining the envelope for valid use of 'WAVETRAN' (Figures 5 - 8):

Other than for the regular wave, flume mode (Figure 5), there is not enough data to fully define the envelope for valid use however the following observations can be made:

Regular Waves, Flume Mode (Figure 5): There is enough data available for this situation to make definitive conclusions with respect to the performance of the software. There is little scatter in the data and the invalid results can be expected for wave height and frequency combinations that exceed a line defined by $L_w(0.1*TANH(k*d))*0.8$. Also, due to scatter at very low wave amplitudes, the software is not deemed to be reliable at wave heights less than 10 cm.

Regular Oblique Waves (Figure 6): Even though there is a smaller data set available, it is apparent that there is more scatter and less reliability when using 'WAVETRAN' in oblique seas. Generally invalid results can be expected for wave height and frequency combinations that exceed a line defined by $L_w(0.1*TANH(k*d))*0.7$. Also, due to scatter at very low wave amplitudes, the software is not deemed to be reliable at wave heights less than 10 cm.

Irregular Waves, Flume Mode (Figure 7): The envelope for valid use of 'WAVETRAN' is more complex in irregular seas. Generally invalid results can be expected for average wave height and frequency combinations that exceed a line defined by $L_w(0.1*TANH(k*d))/3$ - for average wave heights less than 0.25 m. For average wave heights greater than 0.25 m, there appears to be more stability in the results. This is probably due to the fact that an average wave height and frequency is being used and although individual waves in the irregular wave time series may be breaking; it doesn't appear to have a major impact on the average wave height or frequency of the wave train.

Irregular Oblique Waves (Figure 8): There is insufficient irregular oblique wave data available to fully define an envelope for valid use of 'WAVETRAN' however the data implies that generally invalid results can be expected for average wave height and frequency combinations that exceed a line defined by $L_w(0.1*TANH(k$

* d))/3. It is safe to say however, that some scatter can be expected in the results and caution must be exercised in using 'WAVETRAN' in this situation.

Generally the results using 'WAVETRAN' for regular waves with the OEB in flume mode are the best. Figure 9 illustrates a typical time series plot and demonstrates that there is little phase shift or deviation in wave height.

Figure 10 illustrates what happens if a regular wave breaks between the time it is measured using the two west wave probes and when it reaches the north center wave probe. There is an unacceptable phase shift although there does not appear to be a major impact on wave height.

There is fairly a consistent correlation between the outputs of the three wave probes when measuring linear irregular waves with the tank in flume mode (Figure 11). The phase relationship comparison is very good however there is some variation in wave height noted.

There does not appear to be any correlation between the wave probe signals for the non-linear irregular wave illustrated in Figure12. It is clear that 'WAVETRAN' gives unacceptable results in this situation.

Figure 13 and 14 provide an example of the difference in phase relationship that can be expected after transferring a linear and non-linear regular oblique wave. Note the lower wave amplitude for the north west probe in Figure 13. This probe is located close to the corner in the tank where the west wave board bank and north beach meet. It is possible that the location of the north west probe may result in some local distortion here since the data from the south west probe looks fine. Figure 14 illustrates the impact on phase when waves break between wave probe locations.

An example comparison of the spectral characteristics between the wave probes was investigated for a linear (Data Set 2: File IR_010_001) and non-linear (Data Set 2: File IR_018_001) irregular wave case in Figures 15, 16, and Table 6. The fact that there are relatively small differences between the spectra for each wave probe - even for the non-linear waves (little difference in spectral shape, amplitude, spectral peak) implies that the overall characteristics do not change significantly. Thus there is likely a phase shift in the time series of the non-linear wave but little alteration in the spectral characteristics.

8.2 **'BOAT_WAVE'** Validation Results

Referring to Tables 8, 9 and comparing the results with the results for the same runs from 'WAVETRAN' presented in Appendix C and D, it is apparent that the same trends exist and thus it can be assumed that the valid envelope defined for 'WAVETRAN' can be adopted for 'BOAT_WAVE'.

9.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the data sets analyzed, the following recommendations and restrictions for using 'WAVETRAN' and 'BOAT_WAVE' are provided in this section:

9.1 Programs 'WAVETRAN' and 'BOAT_WAVE'

- Satisfactory results can be derived using 'WAVETRAN' and 'BOAT_WAVE' to analyze regular waves with the OEB in flume mode for wave height and frequency combinations not exceeding a line defined by L_w(0.1*TANH(k * d))*0.8 and the wave heights greater than 10 cm.
- Satisfactory results can be derived using 'WAVETRAN' and 'BOAT_WAVE' to analyze regular oblique waves with the OEB for wave height and frequency combinations not exceeding a line defined by L_w(0.1*TANH(k * d))*0.7 and the wave heights greater than 10 cm.
- Satisfactory results can be derived using 'WAVETRAN' and 'BOAT_WAVE' to analyze irregular waves with the OEB in flume mode for average wave height and frequency combinations not exceeding a line defined by L_w(0.1*TANH(k * d))/3 - for average wave heights less than 0.25 m although caution should be exercised by the user since more data is required to further validate the software.
- Satisfactory results can be derived using 'WAVETRAN' and 'BOAT_WAVE' to analyze irregular oblique waves with the OEB for wave height and frequency combinations not exceeding a line defined by L_w(0.1*TANH(k * d))/3 although caution must be exercised as the data set analyzed was too small to fully define a valid operating envelope.
- 'WAVETRAN' and 'BOAT_WAVE' work best in regular waves with the OEB in flume mode however scatter can be expected in the integrity of the results for oblique and/or irregular waves.
- The location of the wave probes appears to have an influence of the integrity of the results using 'WAVETRAN'. It is recommended that 'WAVETRAN' not be used to transfer data from a wave probe positioned close to wave boards or beaches in oblique waves.
- There is little variation in the irregular wave spectral characteristics between wave probes after 'WAVETRAN' has been used to transfer the wave data from one point to another even for non-linear waves.
- Good repeatability has been demonstrated.

9.2 Other Recommendations

- Additional data is required to fully validate these programs especially in oblique irregular seas.
- Only wave data acquired in the OEB has been used in this document. A separate exercise should be carried out to derive/validate software to move wave data from a wave probe fitted at one end of the IOT tow tank carriage to a specified point on a free-running model free to surge.

10.0 ACKNOWLEDGEMENTS

The authors would like to thank Dr. E. Baddour for permission to use wave data from Project #903 in assist with the validation of this software.

11.0 REFERENCES

- 1) Institute for Ocean Technology Standard Test Method: Seakeeping, V1.0, 42-8595-S/GM-5, November 15, 2001.
- Institute for Ocean Technology Standard Test Method: Environmental Modeling – Waves, Wind, Current, V4.0, 42-8595-S/GM-3, January 3, 2002.
- Miles, M.D., "The GEDAP Data Analysis Software Package", NRC Institute for Mechanical Engineering, Hydraulics Laboratory Report No. TR-HY-030, August 11, 1990.
- Sullivan, M., "Optical Tracking at the Institute for Marine Dynamics", Proc. of the 4th Canadian Marine Hydrodynamics and Structures Conference, Ottawa, June 23 – 25, 1997, IMD Report #IR-1997-15, July 1997.
- Miles, M.D., "Test Data File for New GDAC Software", NRC Institute for Marine Dynamics Software Design Specification, Version 3.0, January 2, 1996.
- Miles, M.D., "DACON Configuration File for New GDAC Software", NRC Institute for Marine Dynamics Software Design Specification, Version 3.2, August 14, 1996.

Tables

Regular Waves - Flume Mode:						
						Est. Wave Breaking
	T1	T2	Wave Period	Wave Frequency	Wave Height	Wave Height
Filename	(s)	(s)	(s)	(Hz)	(m)	(m)
NOTE: OEB in Flume Mode (waves generate				g walls installed cover	ring all north bea	
	60	80	1.12	0.8929	0.0735	0.19578
S8 180HG 0HG 0p75WL 0p1WS 001	60	80	1.12	0.8929	0.1838	0.19578
S8_180HG_0HG_1p0WL_0p04WS_001	50	70	1.29	0.7752	0.0980	0.25973
S8_0HG_1p0WL_0p1WS_001	45	65	1.29	0.7752	0.2450	0.25973
	40	60	1.58	0.6329	0.1470	0.38945
	35	55	1.58	0.6329	0.3675	0.38945
est_011	40	60	1.649	0.6064	0.3330	0.42398
 est_008	40	60	1.814	0.5513	0.3330	0.51145
est_132	35	55	1.814	0.5513	0.5000	0.51145
S13_180HG_0HG_2p0WL_0p04WS_001	60	80	1.82	0.5495	0.1960	0.51474
S13_0HG_2p0WL_0p1WS_001	52	70	1.82	0.5495	0.4900	0.51474
est_141	35	55	1.909	0.5238	0.3330	0.56424
est_153	32	52	1.909	0.5238	0.5000	0.56424
est_140	35	55	2.015	0.4963	0.3330	0.62435
est_154	30	50	2.015	0.4963	0.5000	0.62435
S8_180HG_0HG_2p5WL_0p04WS_001	40	70	2.04	0.4902	0.2450	0.63861
S0_180HG_2p5WL_0p06WS_001	60	90	2.04	0.4902	0.3675	0.63861
S8_0HG_2p5WL_0p08WS_001	28	45	2.04	0.4902	0.4900	0.63861
est_139	35	60	2.134	0.4686	0.3330	0.69217
est_150	30	49	2.134	0.4686	0.5000	0.69217
est_138	40	60	2.267	0.4411	0.3330	0.7668
est_149	32	52	2.267	0.4411	0.5000	0.7668
est_137	35	55	2.418	0.4136	0.3330	0.84805
est_148	30	50	2.418	0.4136	0.5000	0.84805
est_136	35	55	2.591	0.3860	0.3330	0.93463
est_147	35	60	2.591	0.3860	0.5000	0.93463
est_135	32	56	3.023	0.3308	0.3330	1.1152
 est_146	35	60	3.023	0.3308	0.5000	1.1152
est_134	30	55	3.628	0.2756	0.3330	1.2922
	35	60	3.628	0.2756	0.5000	1.2922
NOTE:						
Nave height, wave period and wave direction	n are no	minal v	alues.			

TABLE 1: DATA SET 1 – REGULAR WAVES, FLUME MODE

Regular Oblique Waves:						
						Est. Wave Breaking
	T1	T2	Wave Period	Wave Frequency	Wave Height	Wave Height
Filename	(s)	(s)	(s)	(Hz)	(m)	(m)
NOTE: Oblique waves generated 60 degrees						
FS8_120HG60HG_0p75WL_0p04WS_001	70	88	1.12	0.8929	0.0735	0.19578
FS8_120HG60HG_0p75WL_0p1WS_001	65	75	1.12	0.8929	0.1838	0.19578
FS8_120HG_1p0WL_0p04WS_001	60	74	1.29	0.7752	0.0980	0.25973
FS8_120HG_1p0WL_0p1WS_001	60	76	1.29	0.7752	0.2450	0.25973
test_289	35	60	1.395	0.7168	0.3330	0.30372
test_288	36	56	1.511	0.6618	0.3330	0.35627
FS8_120HG_1p5WL_0p04WS_001	58	76	1.58	0.6329	0.1470	0.38945
FS8_120HG_1p5WL_0p1WS_001	55	80	1.58	0.6329	0.3675	0.38945
est_285	35	70	1.649	0.6064	0.3330	0.42398
test_314	34	56	1.814	0.5513	0.3330	0.51145
FS8_120HG_2p0WL_0p04WS_001	55	78	1.82	0.5495	0.1960	0.51474
FS8_120HG_2p0WL_0p08WS_001	52	78	1.82	0.5495	0.3920	0.51474
test_195	32	58	2.015	0.4963	0.3330	0.62435
FS8_120HG_2p5WL_0p04WS_001	52	70	2.04	0.4902	0.2450	0.63861
FS8_120HG_2p5WL_0p06WS_001	52	74	2.04	0.4902	0.3675	0.63861
test_191	32	55	2.267	0.4411	0.3330	0.7668
test_292	32	68	2.267	0.4411	0.5000	0.7668
test_189	30	54	2.418	0.4136	0.3330	0.84805
test 187	32	55	2.591	0.3860	0.3330	0.93463
 test_348	30	53	2.591	0.3860	0.5000	0.93463
 test_304	32	55	2.79	0.3584	0.3330	1.0242
test_346	30	53	2.79	0.3584	0.5000	1.0242
test 185	30	52	3.023	0.3308	0.3330	1.1152
test_290	30	65	3.023	0.3308	0.5000	1.1152
NOTE:						
Wave height, wave period and wave direction	n are no	minal va	alues.			
Estimated breaking wave height computed for	or user i	nput wa	ter depth and way	e period (computed u	sing GEDAP Pro	ogram 'WAVE')

TABLE 2: DATA SET 1 – REGULAR OBLIQUE WAVES

Validati	on of	f GED	AP Pro	gram 'V	VAVETF	RAN' & 'I	BOAT_V	VAVE'			
Irregula	r wa	ves ir	h the Ol	-B:							
		Elume el	Mada Def	Cot 4:							
Irregular W					al Period =	26.0					
Nominal S	gninca		e πι. = 0.20	s m, wou	al Periou =	2.0 5.					
	T1	T2			-	-					
Run	(s)	(s)				-					
				operated (deg from	west wall) b	lanking wall	e installed (overing all	north beache	
TEST 022	60	100	e (waves y				lanking wali		Jovening all	nonth beach	55.
TEST_022	60	100				_					
TEST_028	60	100									
TEST 031	60	100			-						
TEST 034	60	100			1		1	1	1	1	
TEST_037	60	100			1					1	
TEST_040	60	100			1						
TEST_043	60	100									
TEST_046	60	100									
TEST_086	50	90									
TEST_089	50	90									
TEST_092	55	95									
TEST_095	55	95									
TEST_098	55	95									
TEST_101	55	95									
TEST_104	60	100									
TEST_107	55	95			_						
TEST_110	55	95				_					
TEST_113	55	95				_					
Irregular O	hliaura	Maxaa	Data Cat	4.							
					al Period =	2.6.2					
Nominal S	gninca		e πι. = 0.20	is m, wou	ai Periou =	2.0 S.					
	T1	T2			-	-	-				
Run	(s)	(s)									
			nenerated	60 dea fr	om west wa	all, blanking	walls remov	red			
					Modal Perio				1		
TEST 321	40	80		5. <u>_</u> 50 m,							
TEST 323	45	75			1		1				
TEST 325	45	75									
TEST_327	45	75		1	1		1	1			
TEST_329	45	75			1						
	45	75			1						
TEST_333	45	75									
TEST_335	45	75									
TEST_337	45	75									
TEST_339	45	75									
TEST_341	45	75			1						
	-	-			1		1				
NOTE: T1	T2 - St	tart, End	Segment	Select Tim	е						
						mponents -	each test is	a different	segment.		

TABLE 3: DATA SET 1 – IRREGULAR OBLIQUE & FLUME MODE WAVES

REGULAR WAVES	FLUM	ייםסא =	- Data Set 2				
EGULAR WAVES			- Dala Sel 2.			Est. Wave Breaking	
	T1	T2	Wave Period	Wave Frequency	Wave Height	Wave Height	
File Name	(s)	(s)	(s)	(Hz)	(m)	(m)	
OTE: OEB in Flum	e Mode (waves	generated 0 deg.	from west wall), blank	ing walls installed	covering all north beaches	
RD_001_001	40	60	2.00	0.50	0.10	0.61583	
RD_002_001	40	60	2.00	0.50	0.20	0.61583	
RD_003_001	40	60	2.00	0.50	0.30	0.61583	
RD_004_001	40	60	2.00	0.50	0.40	0.61583	
RD_005_001	40	60	2.00 2.00	0.50	0.50	0.61583	
RD_006_001 RD 007 002	40	60 60	2.00	0.50	0.60	0.61583 0.61583	
RD_008_001	40	65	1.67	0.60	0.05	0.43475	
RD 009 001	45	65	1.67	0.60	0.00	0.43475	
RD 010 001	45	65	1.67	0.60	0.15	0.43475	
RD_011_001	45	65	1.67	0.60	0.20	0.43475	
RD_012_001	45	65	1.67	0.60	0.25	0.43475	
RD_013_001	45	65	1.67	0.60	0.30	0.43475	
RD_014_001	45	65	1.67	0.60	0.35	0.43475	
RD_015_001	45	65	1.67	0.60	0.40	0.43475	
RD_016_001	45	65	1.67	0.60	0.45	0.43475	
RD_017_001	45	65	1.67	0.60	0.50	0.43475	
RD_018_001 RD 019 001	47	67	1.43	0.70	0.05	0.31914	
RD_019_001 RD_020_001	47	67 67	1.43 1.43	0.70	0.10	0.31914 0.31914	
RD 021 001	47	67	1.43	0.70	0.13	0.31914	
RD_022_001	47	67	1.43	0.70	0.20	0.31914	
RD_023_001	47	67	1.43	0.70	0.30	0.31914	
RS_001_001	40	60	2.50	0.40	0.05	0.89024	
RS_002_001	40	60	2.50	0.40	0.10	0.89024	
RS_003_001	40	60	2.50	0.40	0.15	0.89024	
RS_004_001	40	60	2.50	0.40	0.20	0.89024	
RS_005_001	40	60	2.50	0.40	0.25	0.89024	
RS_006_001	40	60	2.50	0.40	0.30	0.89024	
RS_007_001	40	60	2.50	0.40	0.35	0.89024	
RS_008_001	40	60	2.50	0.40	0.40	0.89024	
RS_009_001 RS_010_001	40	60 60	3.33 3.33	0.30	0.10 0.20	1.2151 1.2151	
RS_011_001	40	60	3.33	0.30	0.30	1.2151	
RS_012_001	40	60	3.33	0.30	0.40	1.2151	
RS_013_001	40	60	3.33	0.30	0.50	1.2151	
RS_014_001	40	60	3.33	0.30	0.60	1.2151	
RS_015_001	40	60	4.00	0.25	0.05	1.3698	
RS_016_001	40	60	4.00	0.25	0.10	1.3698	
RS_017_001	40	60	4.00	0.25	0.15	1.3698	
RS_018_001	40	60	4.00	0.25	0.20	1.3698	
RS_019_001	40	60	4.00	0.25	0.25	1.3698	
RS_020_001	40	60	4.00	0.25	0.30	1.3698	
RS_021_001 RS 022 001	40	60 60	4.00	0.25	0.35	1.3698 1.3698	
RS_022_001	40	70	4.00	0.25	0.40	1.3098	<u> </u>
RS_024_001	40	70	5.00	0.20	0.03	1.5046	
RS_025_001	40	70	5.00	0.20	0.15	1.5046	
S_026_001	40	70	5.00	0.20	0.20	1.5046	
RS_027_001	40	70	5.00	0.20	0.25	1.5046	
RS_028_001	60	100	6.67	0.15	0.05	1.6144	
RS_029_001	45	85	6.67	0.15	0.10	1.6144	
RS_030_002	60	100	6.67	0.15	0.15	1.6144	
NOTE:	1	Ļ		·			
/ave height, wave p				ninal values. put water depth and w			

TABLE 4: DATA SET 2 – REGULAR WAVES, FLUME MODE

Validation of	GEDA	P Pro	ogram 'WAV	/ETRAN' - Irreg	gular Waves	in the OEB:	
IRREGULAR WAVE	ES - FLUI	ME MO	DE - Data Set 2:				
			Mean	Mean	Significant		
	T1	T2	Freq.	Period	Wave Height		
Run	(s)	(s)	(Hz)	(s)	(m)		
						covering all north beach	nes.
IR_001_001	60	100	0.40	2.50	0.10		
IR_002_001	60	100	0.40	2.50	0.20		
IR_003_001	60	100	0.40	2.50	0.30		
IR_004_001	60	100	0.40	2.50	0.40		
IR_005_001	60	100	0.40	2.50	0.50		
IR_006_001	60	100	0.40	2.50	0.60		
IR_007_001	60	100	0.50	2.00	0.05		
IR_008_001	60	100	0.50	2.00	0.10		
IR_009_001	60	100	0.50	2.00	0.15		
IR_010_001	60	100	0.50	2.00	0.20		
IR_011_001	60	100	0.50	2.00	0.25		
IR_012_001	60	100	0.50	2.00	0.30		
IR_013_001	60	100	0.50	2.00	0.35		
IR_014_001	60	100	0.50	2.00	0.40		
IR_015_001	60	100	0.60	1.67	0.05		
IR_016_001	60	100	0.60	1.67	0.10		
IR_017_001	60	100	0.60	1.67	0.15		
IR_018_001	60	100	0.60	1.67	0.20		
IR_019_001	60	100	0.60	1.67	0.25		
IR_020_001	60	100	0.60	1.67	0.30		
IR_021_001	60	100	0.70	1.43	0.05		
IR_022_001	60	100	0.70	1.43	0.10		
IR_023_001	60	100	0.70	1.43	0.15		
IR_024_001	60	100	0.70	1.43	0.20		
NOTE:							
Significant wave hei	ight, wave	period	and wave direction	on are nominal values	S.		
T1, T2 - Start, End S	-						

TABLE 5: DATA SET 2 – IRREGULAR FLUME MODE WAVES

File: IR_010_001	LINEAR IRREGULAR WAVE	
Wave Probe WW1	Frequency of Spectral Peak (Hz)	0.52500
Wave Probe WW1	Period of Spectral Peak (s)	1.9048
Wave Probe WW1	Significant Wave Height Est. (m) [*]	0.17886
Wave Probe MW1	Frequency of Spectral Peak (Hz)	0.52497
Wave Probe MW1	Period of Spectral Peak (s)	1.9049
Wave Probe MW1	Significant Wave Height Est. (m) [*]	0.18184
Wave Probe EW1	Frequency of Spectral Peak (Hz)	0.52500
Wave Probe EW1	Period of Spectral Peak (s)	1.9048
Wave Probe EW1	Significant Wave Height Est. (m)*	0.17839
File: IR-018_001	NON-LINEAR IRREGULAR WAVE	
Wave Probe WW1	Frequency of Spectral Peak (Hz)	0.54250
Wave Probe WW1	Period of Spectral Peak (s)	1.8433
Wave Probe WW1	Significant Wave Height Est. (m) [*]	0.18038
Wave Probe MW1	Frequency of Spectral Peak (Hz)	0.54247
Wave Probe MW1	Period of Spectral Peak (s)	1.8434
Wave Probe MW1	Significant Wave Height Est. (m) [*]	0.18667
Wave Probe EW1	Frequency of Spectral Peak (Hz)	0.52500
Wave Probe EW1	Period of Spectral Peak (s)	1.9048
Wave Probe EW1	Significant Wave Height Est. (m)*	0.17217

* **NOTE:** Significant wave height estimate = 4 * standard deviation from the zeroth spectral moment (M₀) after filtering at lower and upper frequency limit of spectrum.

TABLE 6: COMPARISON OF SPECTRAL PARAMETERS ('WAVETRAN')

REPEATABILITY CHECK:

					Transfer E	W1 to MW1		Transfer W	W1 to MW	1						
File Name	T1 (s)	T2 (s)	Wave Period (s)	Wave Height (m)	Rxy (tau)	tau (s)	% Wave Period	Rxy (tau)	tau (s)	% Wave Period	EW1 Hav (m)	EW1 Tav (s)	WW1 Hav (m)	WW1 Tav (s)	MW1 Hav (m)	MW1 Tav (s)
RD_015_001	45	65	1.67	0.40	0.9408	0.26375	15.79	0.9841	-0.2283	13.67	0.3626	1.671	0.3495	1.668	0.3679	1.668
RD_015_002	45	65	1.67	0.40	0.9684	0.26619	15.94	0.9768	-0.26742	16.01	0.3707	1.669	0.3728	1.669	0.3683	1.667
RD_022_001	47	67	1.43	0.25	0.9724	0.23249	16.26	0.9869	-0.2340	16.36	0.2335	1.429	0.2359	1.428	0.2462	1.429
RD_022_002	47	67	1.43	0.25	0.9792	0.22395	15.66	0.9879	-0.2364	16.53	0.2381	1.429	0.2370	1.428	0.2504	1.428
RS_005_001	40	60	2.50	0.25	0.9849	0.04884	1.95	0.9915	-0.0586	2.34	0.5009	2.496	0.4640	2.504	0.5082	2.504
RS_005_002	40	60	2.50	0.25	0.9846	0.05251	2.10	0.9919	-0.059832	2.39	0.4927	2.496	0.4691	2.504	0.5088	2.504
RS_010_001	40	60	3.33	0.20	0.9981	0.00244	0.07	0.9971	-0.0501	1.50	0.1721	3.327	0.1558	3.315	0.1863	3.332
RS_010_002	40	60	3.33	0.20	0.9974	-0.00244	0.07	0.9967	-0.039074	1.17	0.1785	3.321	0.1571	3.314	0.1851	3.333
RS_024_001	40	70	5.00	0.10	0.9937	0.053738	1.07	0.9845	0.2956	5.91	0.1332	4.990	0.1144	5.002	0.0974	4.991
RS_024_002	40	70	5.00	0.10	0.9928	0.04458	0.89	0.9835	0.2901	5.80	0.1338	4.993	0.1150	5.006	0.0974	4.998
RS_028_001	60	100	6.67	0.05	0.9745	0.71704	10.75	0.9865	-0.3261	4.89	0.0312	5.782	0.0423	6.672	0.0289	6.632
RS_028_002	60	100	6.67	0.05	0.9741	0.68039	10.20	0.9822	-0.3506	5.26	0.0360	6.650	0.0419	6.660	0.0297	6.639

TABLE 7: REPEATABILITY CHECK - 'WAVETRAN'

Validation of GEDAP Program	n 'B	ΟΔΙ	WAVE'-R	equiar Waves	in the OFB									
						/ . 								
Regular Waves Data Set 1:														
						Transfer I	W1 to NC	:1	Transfer S	W1 to NC1	1	Transfer	SW1 to N	W1
	T1	T2	Wave Period	Wave Frequency	Wave Height		tau		Rxy (tau)	tau		Rxy (tau)		% Wave
Filename	(s)	(s)	(s)	(Hz)	(m)		(s)	Period		(s)	Period		(s)	Period
NOTE: OEB in Flume Mode (waves generat	ed 0 (deg. fi	om west wall), bla	anking walls installed c	overing all north	beaches.								
FS8_180HG_0HG_0p75WL_0p04WS_002		95	1.12	0.8929	0.0735	0.9980	-0.0916	8.18	0.9983	-0.0702	6.27	0.9978	0.0214	1.91
FS8_0HG_1p0WL_0p1WS_001	40	70	1.29	0.7752	0.2450	0.8675	-0.5973	46.30	0.8936	-0.4911	38.07	0.9912	0.0989	7.67
FS13_180HG_0HG_2p0WL_0p04WS_001	60	80	1.82	0.5495	0.1960	0.9973	-0.0489	2.69	0.9973	-0.0269	1.48	0.9978	0.0196	1.07
FS8_180HG_0HG_2p5WL_0p04WS_001	40	70	2.04	0.4902	0.2450	0.9904	-0.0366	1.80	0.9914	-0.0037	0.18	0.9978	0.0330	1.62
test_150	30	49	2.134	0.4686	0.5000	0.9950	-0.1625	7.62	0.9953	-0.1695	7.94	0.9979	-0.0070	0.33
test_148	30	50	2.418	0.4136	0.5000	0.9964	-0.0587	2.43	0.9978	-0.0538	2.22	0.9980	0.0049	0.20
test_134	30	55	3.628	0.2756	0.3330	0.9913	-0.1436	3.96	0.9973	0.1374	3.79	0.9890	0.2810	7.75
Regular Waves - Data Set 1:														
						Transfer I	W1 to NC	1	Transfer S	W1 to NC1		Transfer		W1
	T1	T2	Wave Period	Wave Frequency	Wave Height	Rxy (tau)	tau	% Wave	Rxy (tau)	tau	% Wave	Rxy (tau)	tau	% Wave
Filename	(s)	(s)	(s)	(Hz)	(m)		(s)	Period		(s)	Period		(s)	Period
NOTE: Oblique waves generated 60 degree	s fron	n the v	vest wall, blanking	g walls removed.										
FS8_120HG60HG_0p75WL_0p04WS_001	70	88	1.12	0.8929	0.0735	0.9680	-0.06599	5.89	0.9912	-0.16498	14.73	0.9804	-0.0990	8.84
FS8_120HG_1p0WL_0p1WS_001	60	76	1.29	0.7752	0.2450	0.9825	-0.21902	16.98	0.9591	-0.52018	40.32	0.9777	-0.2973	23.04
FS8_120HG_1p5WL_0p1WS_001	55	80	1.58	0.6329	0.3675	0.9799	-0.17714	11.21	0.9610	-0.47035	29.77	0.9828	-0.2902	18.36
FS8_120HG_2p0WL_0p08WS_001	52	78	1.82	0.5495	0.3920	0.9928	-0.14174	7.79	0.9947	-0.23461	12.89	0.9965	-0.0904	4.97
test_292	32	68	2.267	0.4411	0.5000	0.9853	-0.16076	7.09	0.9892	-0.18128	8.00	0.9952	-0.0274	1.21
test_348	30	53	2.591	0.3860	0.5000	N/A	N/A	N/A	0.9680	-0.06965	2.69	N/A	N/A	N/A
test_185	30	52	3.023	0.3308	0.3330	0.998	0	0.00	0.9958	-0.06354	2.10	0.9958	-0.0611	2.02
NOTE:														
Wave height, wave period and wave direction	n are	nomi	nal values.											
Estimated breaking wave height computed for														
Rxy (tau) - cross correlation function betwee	n two	wave	probe signals.	If two signals are ider	ntical, Rxy (tau) :	= 1.0.								
tau - time lag (s) between two wave probe si														
Non-linear Wave is defined as 0.7*H/L < 0.1	TAN	H(kd)	(ie: wave is too c	lose to breaking to pro	vide satisfactory	solution u	sing WAVE	TRAN)						
Where: H = wave height (m)														
$L = wave length (m) = 2*PI/g*T_W^2$														
q = acceleration due to gravity (m/s2)	= 9.8	08 m/	's ²											
PI = 3.14159														
T _w = wave period (s)														
k = wave number (m ⁻¹) = (4*Pl ²)/(g*T	w ²)													
d = water depth (m)									1					
% Wave Period = (tau/nominal wave period)	* 100)												
			art, End Segment	Select Time										
Linear Data in BLACK , Non-linear Data in R			,	-		1		1	1					

TABLE 8: 'BOAT_WAVE' VALIDATION - REGULAR WAVES

Validation of GEDAP Program 'BOAT_WAVE' - Irregular Waves in the OEB:

Data Set 1:

		Transfer NW1 to NC1					SW1 to NC1		Transfer S	1	
	T1	T2	Rxy (tau)	tau	% Wave	Rxy (tau)	tau	% Wave	Rxy (tau)	tau	% Wave
Run	(s)	(s)		(s)	Period		(s)	Period		(s)	Period
NOTE: OEB in Flume Mode (waves generated 0 deg. from west wall), blanking walls installed covering all north beaches.											
Nomina	al Significant	t Wave	Ht. = 0.28	3 m, Modal F	Period = 2.0	6 s.					
TEST_025	70	100	0.9665	-0.08062	4.89	0.9390	-0.069626	4.22	0.9884	0.011	0.67
TEST_037	70	100	0.9393	-0.095278	5.09	0.9173	-0.073291	3.91	0.9909	0.018	0.98
TEST_086	50	90	0.9348	-0.004885	0.29	0.9200	0.004885	0.29	0.9856	0.034	2.04
TEST_101	60	95	0.9509	0	0.00	0.9312	0.003665	0.18	0.9861	0.004	0.18
TEST_113	63	80	0.9743	0.039475	2.01	0.9651	0.062329	3.17	0.9890	0.017	0.85

NOTE: % Wave Period has been defined as tau/Average Wave Period @ north center wave probe

Rxy (tau) - cross correlation function between two wave probe signals.If two signals are identical, Rxy (tau) = 1.0.tau - time lag (s) between two wave probe signals.(-ve is lead)T1, T2 - Start, End Segment Select Time(-ve is lead)

Data Set 1:

			Transfer NV	V1 to NC	:1	Transfer S	W1 to NC1		Transfer SV	/1	
	T1	T2	Rxy (tau)	tau	% Wave	Rxy (tau)	tau	% Wave	Rxy (tau)	tau	% Wave
Run	(s)	(s)		(s)	Period		(s)	Period		(s)	Period
NOTE: OEB	NOTE: OEB oblique waves generated 60 deg. from west wall, blanking walls removed.										
Nomi	nal Significa	nt Wave	e Ht. = 0.283	m, Modal	Period = 2.0	6 s.					
TEST_323	40	70	N/A	N/A	N/A	0.8523	-0.1759	6.61	N/A	N/A	N/A
TEST_329	40	70	N/A	N/A	N/A	0.9329	-0.14292	6.62	N/A	N/A	N/A
TEST_335	40	70	N/A	N/A	N/A	0.8148	-0.1759	8.98	N/A	N/A	N/A
TEST_341	40	70	N/A	N/A	N/A	0.8669	-0.18323	10.43	N/A	N/A	N/A

TABLE 9: 'BOAT_WAVE' VALIDATION – IRREGULAR WAVES

Figures

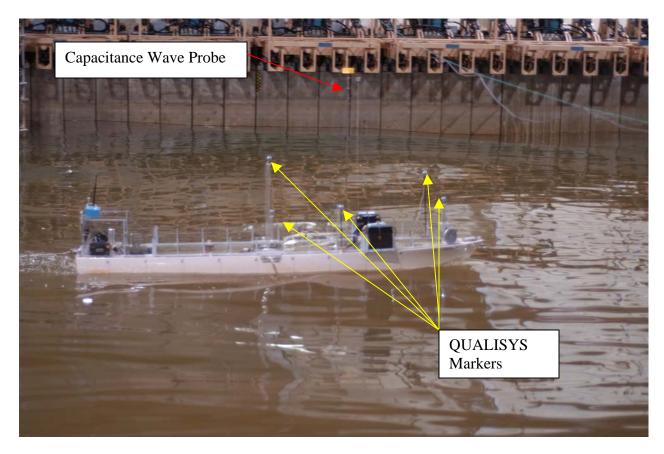


Figure 1: Typical Seakeeping Test on a Ship Model in OEB

Figure 2: Typical Moored Platform in OEB

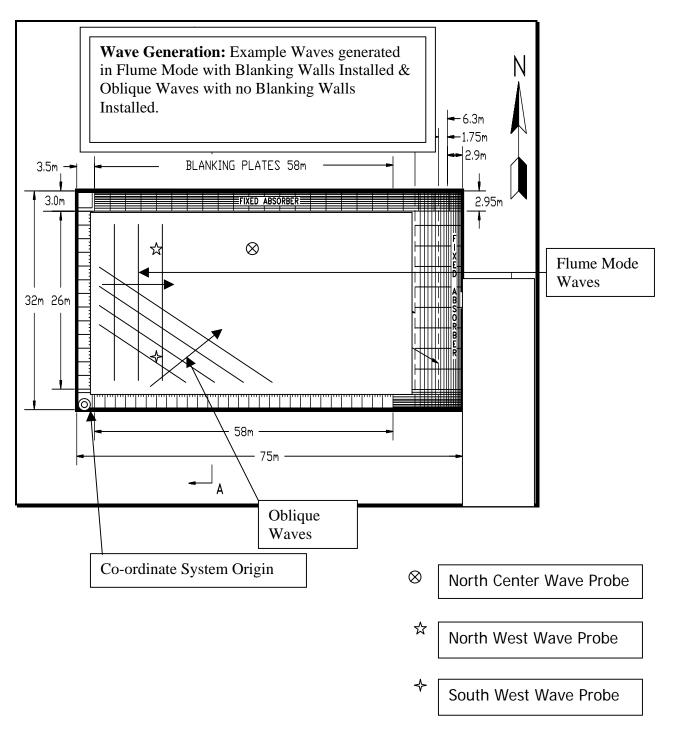


Figure 3: Offshore Engineering Basin – Data Set 1

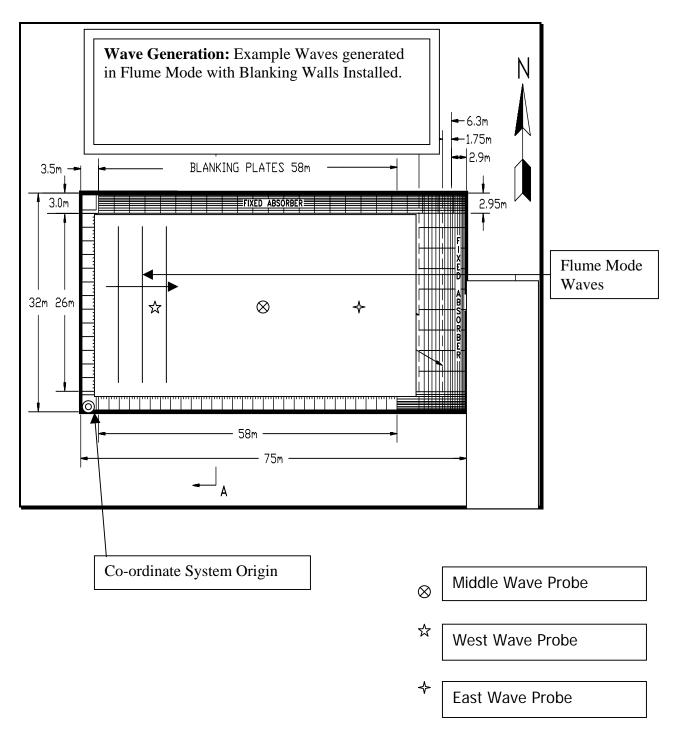
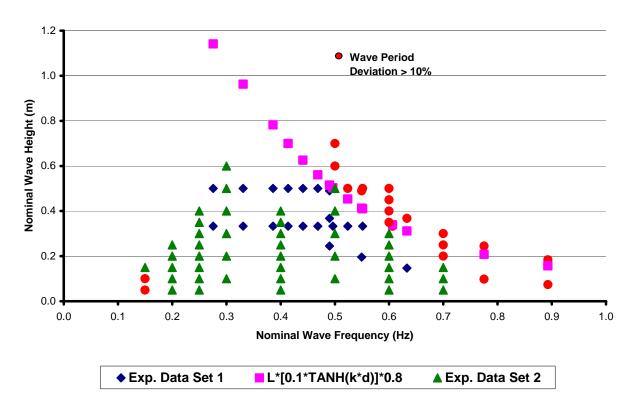
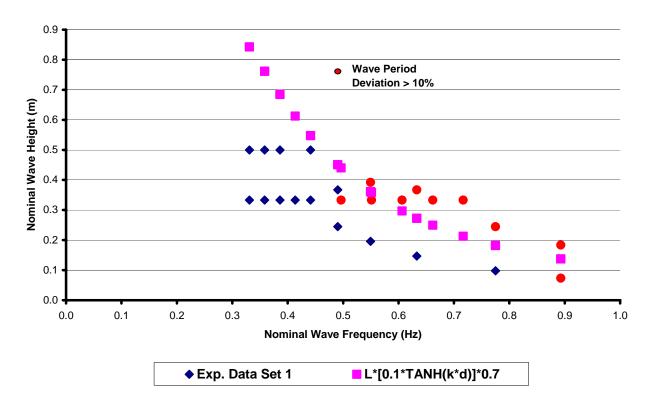




Figure 4: Offshore Engineering Basin – Data Set 2

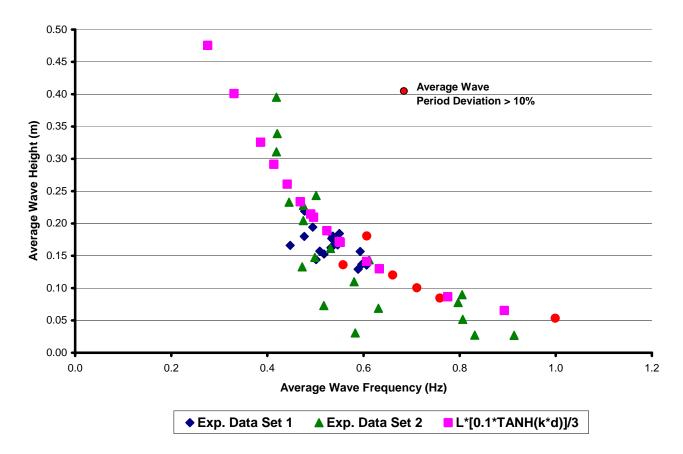

Limit of WAVETRAN, Regular Waves, Flume Mode

Figure 5: Limit of 'WAVETRAN', Regular Waves, Flume Mode

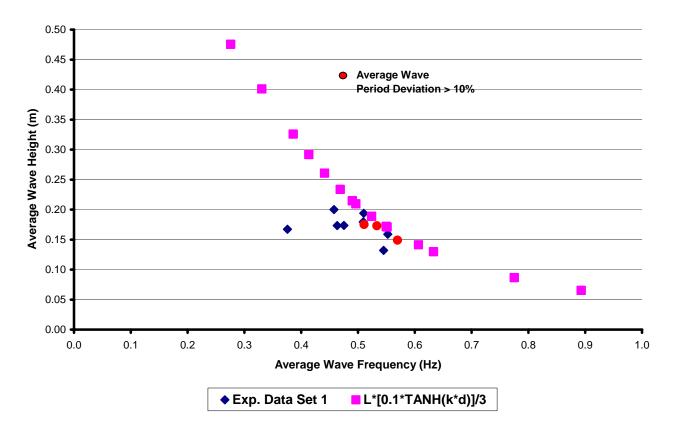

Limits of WAVETRAN, Regular Oblique Waves

Figure 6: Limit of 'WAVETRAN', Regular Oblique Waves

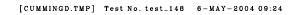

Limits of WAVETRAN, Irregular Waves, Flume Mode

Figure 7: Limit of 'WAVETRAN', Irregular Waves, Flume Mode

Limits of WAVETRAN, Irregular Oblique Seas

Figure 8: Limit of 'WAVETRAN', Irregular Oblique Waves

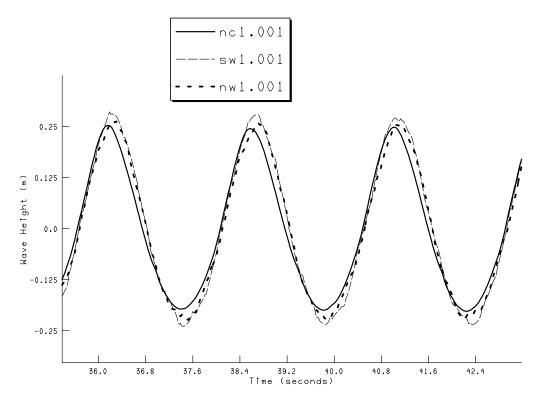
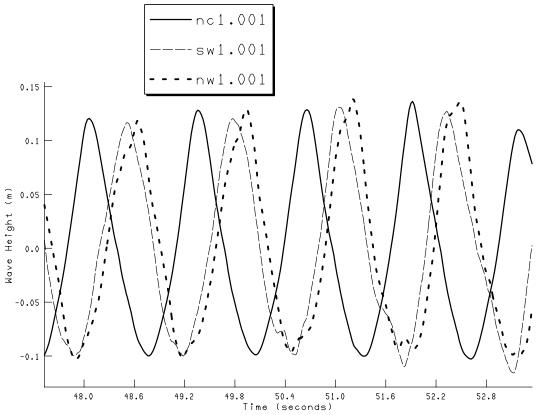
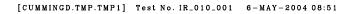




Figure 9: Example - Linear, Regular Wave, Flume Mode

[CUMMINGD.TMP] Test No. fs8_0hg_1p0wl_0p1ws_001 6-MAY-2004 09:39

Figure 10: Example – Non-Linear, Regular Wave, Flume Mode

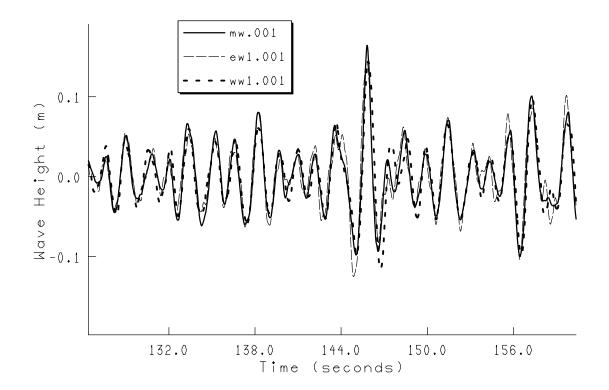
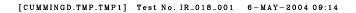



Figure 11: Example - Linear, Irregular Wave, Flume Mode

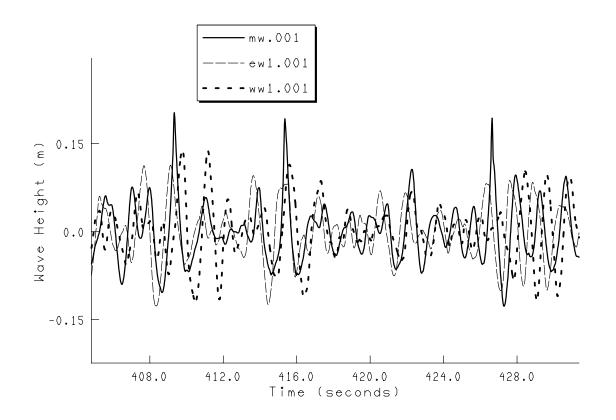
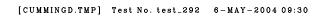



Figure 12: Example – Non-Linear, Irregular Wave, Flume Mode

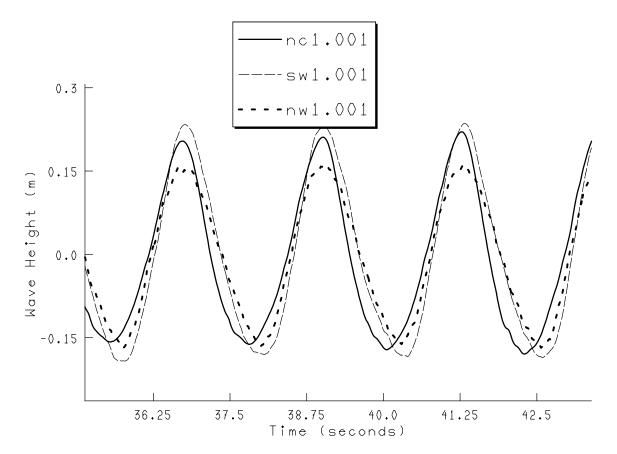


Figure 13: Example - Linear, Regular Oblique Wave

[CUMMINGD.TMP] Test No. test_285 6-MAY-2004 09:34

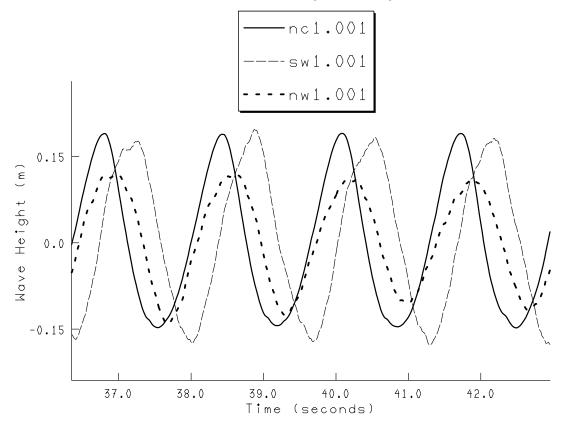


Figure 14: Example – Non-Linear, Regular Oblique Wave

[CUMMINGD.TMP] Test No. IR_010_001 22-JUN-2004 10:01

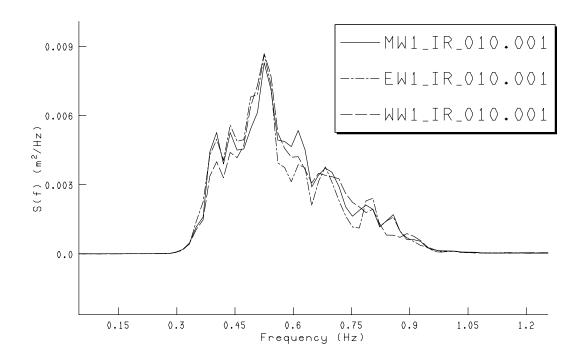


Figure 15: Example Spectral Density Comparison – Linear Irregular Wave

[CUMMINGD.TMP] Test No. IR_018_001 22-JUN-2004 10:13

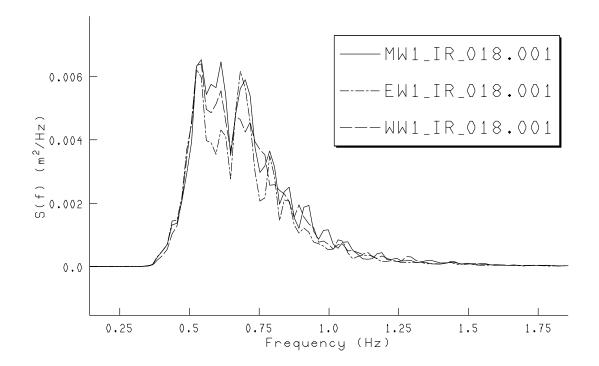
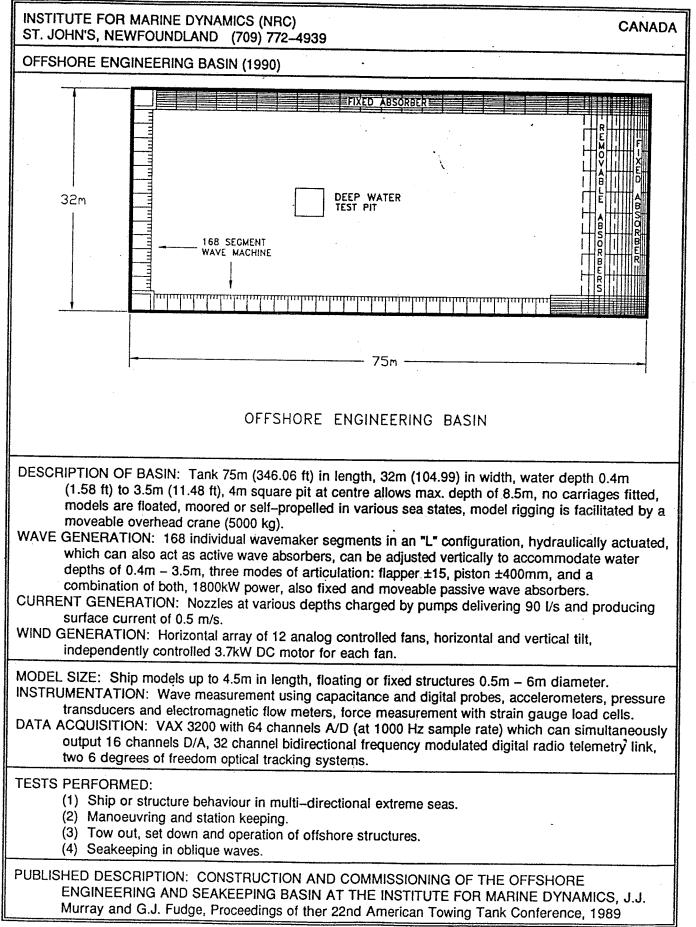
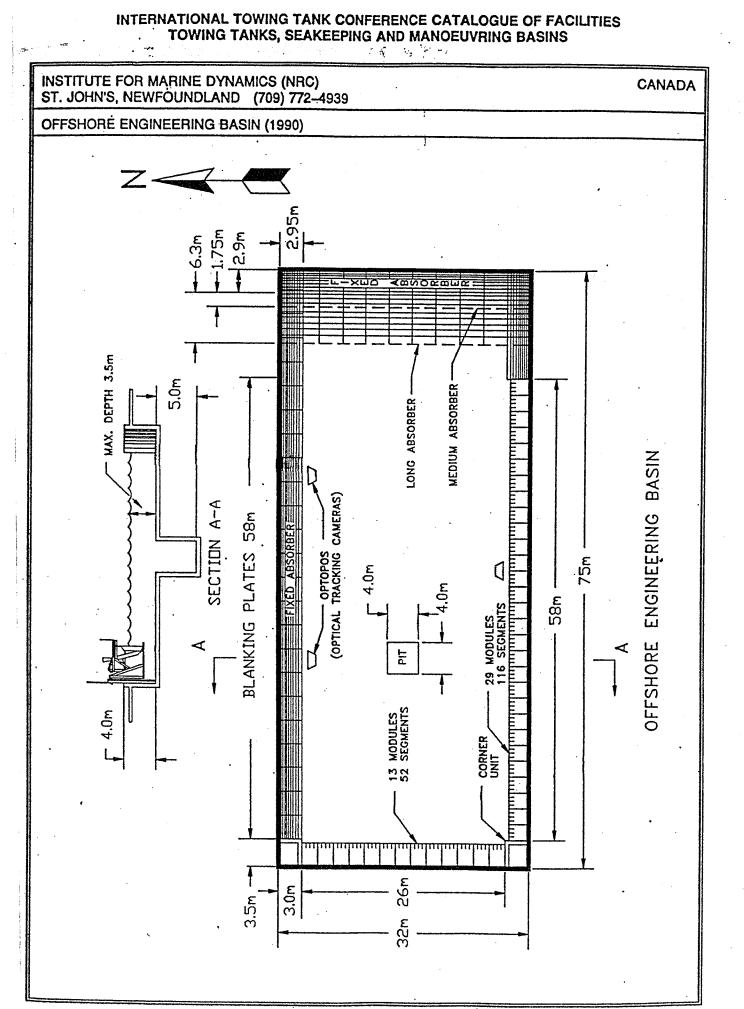
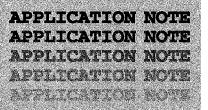
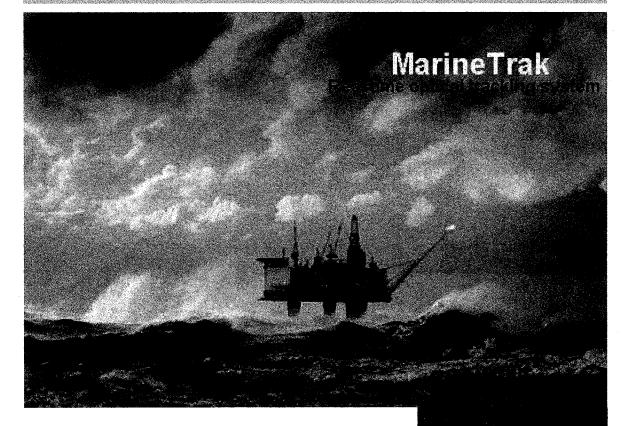




Figure 16: Example Spectral Density Comparison – Non-Linear Irregular Wave

Appendix A Description of the Offshore Engineering Basin

TOWING TANKS, SEAKEEPING AND MANOEUVRING BASINS




C2-2

Appendix B Description of the QUALISYS System

Optomatrix Technology AB

MarineTrak EVM 3-D and 6-DOF data in real time

MarineTrak uses optical tracking technology to quickly and accurately measure objects remotely in either 3-D or 6-DOF (i.e Degree Of Freedom; X, Y, Z, roll, pitch, yaw) in naval test basins without disturbing the motion of the vessel.

The measurement of 6-DOF is monitored continuosly with an accuracy better than 1mm even for very large measurement areas such as ocean basins. The high measuring frequency and low latency of the system makes it possible for the output data to be used for on-line measurements.

The system was first developed for Marintek in Norway and is now established on the market. Today no fewer than 12 users have installed MarineTrak in their test facilities.

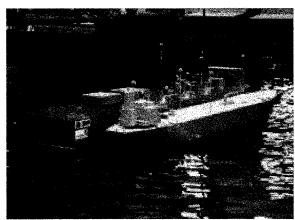
BENEFITS

- Real-time 6-DOF
- No physical contact, no interference
- Frequency 1-100Hz
- Multi-object capability
- High accuracy
- Large measurement area

Optomatrix Technology AB

MarineTrak EVM 3-D and 6-DOF data in real time

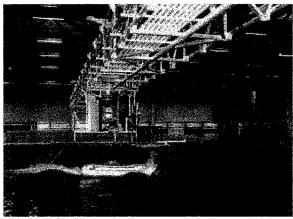
System overview


The main parts of the system consist of a realtime processing unit, a host PC, markers and a number of infrared-emitting cameras which represent the latest in motion capture technology. The cameras are divided into two groups to view the area occupied by the ship models. The number of cameras in use varies from 2 up to 16 depending on size of the test area and required accuracy.

Measurement Method

The method uses reflective or emitting markers placed on the object to be tracked. Cameras detect the infrared light reflected or emitted by the markers and calculate 2-D co-ordinates for the centre of each one. Each marker must be in the field of view of at least one camera from each group so that the 2-D data from each camera can be used to calculate the 3-D position of the marker. By using a rigid body which is a group of 3 or more markers with fixed positions relative to each other, 6-DOF can be calculated. The unique rigid body also enables the cameras to identify and keep track of multiple objects.

APPILICATION NOTE


APPLICATION NOTE APPLICATION NOTE APPLICATION MOTE

MarineTrak in use for model testing in the offshore basin MarineTrak in towing tank at Marintek A/S, Norway at DHI Water & Environment, Denmark.

Typical applications

The MarineTrak system may be used in a wide variety of situations and in a wide range of measurements volumes. The system is completely modular. For instance, a typical set-up for a towing tank uses two cameras, but by adding cameras, a larger volume can be covered. The system is also ideal for field use since the cameras are portable and the system is easy to set up and calibrate.

User interface

MarineTrak comes with a Windows NT manager that allows the user to quickly and interactively set up and operate the system. If you want to integrate an external system, a variety of alternatives is available including drivers for DOS, Labview/Visual basic, Windows NT and TCP/IP. A version of Marine Trak is available for analog output 6-DOF.

For more information, contact us!

QUALISYS

Summary

The MarineTrak system from Qualisys system uses optical tracking technology to study the movements of a ship or any other kind of floating vessel in a test environment. Three-dimensional position and roll, pitch, yaw angles of the object are measured and output in an on-line, real time fashion. The use of actively emitting IR markers enables the system to measure accurately even at large distances.

Background

When testing ship models in test basins there is a need to quickly and accurately measure position and attitude of the model. The measurement should be done remotely, and without disturbing the motion of the model. The solution to the problem is optical motion tracking. A few lightweight optical markers are attached to the model to enable special cameras mounted around the tank to cover the desired part of the water surface.

With the Marinetrak EVM system developed by Qualisys AB, Sweden, continuous monitoring of 6 D. O. F. (Degrees of Freedom) can be carried out, rendering an accuracy of better than 1 mm even for very large measurement areas. The high measuring frequency and low latency of the system enables the output data to be used for on-line measurements.

Measurement Principle

The measurement system consists of a number of infrared-sensitive cameras arranged to view the area occupied by the ship models. The camera detects the position of small infrared emitting markers attached to the model. Twodimensional co-ordinates from each camera are sent to a central processing unit, where the different cameras' 2-D data, together with information about camera locations, are used to calculate three-dimensional co-ordinates for the markers. (Fig. 1).

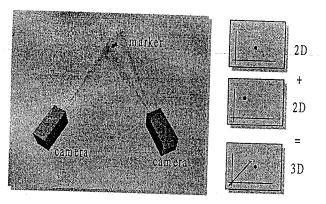


Fig. 1 Measurement principle

The camera locations are automatically calculated in a calibration procedure.

In order to cover large areas without sacrificing accuracy and resolution, Qualisys has devised a unique system utilising partly overlapping camera views in a sunfeather configuration (Fig. 2). Virtually unlimited measurement areas can be cov-

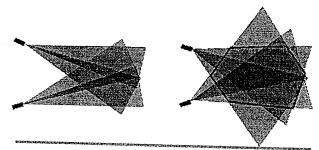


Fig. 2. Camera configurations

Qualisys AB Göteborgsvägen 74 SE- 433 63 SÄVEDALEN Sweden

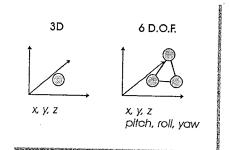
QUALISYS

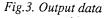
ered in this fashion

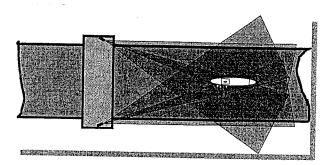
System features

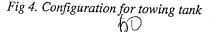
The EVM system consists of between 2 and 16 cameras, divided in two camera groups. In order for a marker to be correctly measured, it must be in the field of view of at least one camera from each group. The software will calculate 3D coordinates for each marker, alternatively 6 D.O.F. for groups of markers whose intermarker distances remain constant (Fig. 3).

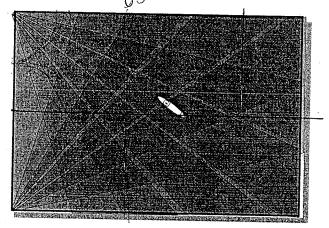
Calibration of the system is made with a number of fixed reference markers, placed so that each camera views at least two reference markers. Alternatively, a portable calibration structure or a dynamic, wand based calibration may be used.

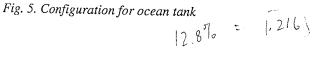

Since test basin measurements are often made at large distances, the use of active, infrared emitting markers is recommended. These markers are designed to be small, lightweight and totally autonomous.


The system delivers 3D co-ordinates or, alternatively, 6 D.O.F. through a serial link to the user's host computer. The 3D calculation software is running on a special processing unit, that communicates directly with the cameras.


Typical applications


The Marinetrak system may be used in a wide variety of situations, and in a wide range of measurement volumes. The system is completely modular, and by adding cameras, larger volumes can be covered. A typical set-up for a towing tank using two cameras is depicted in Fig. 4, whereas a set-up for a large basin may require up to 16 cameras (Fig. 5).


Since the cameras are completely portable, and the system is very easy to set up and calibrate, the system is also ideal for field use.



Ø

· ~ ».

QUALISYS

System Lay-out

A Marinetrak EVM system consists of the following parts

Infrared emitting cameras (2-16)

Processing Unit (1)

Reference Markers (4 - 40)

Measurement Markers

Cables

3D Measurement Software

Specifications (typical)¹

	<u>50 m x 70 m area</u>	<u>6 m x 6 m area</u>
Spatial resolution:	0,5 mm	0,1 mm
Relative accuracy:	+/- 1,5 mm	+/- 0,25 mm
Absolute accuracy:	+/- 10 mm	+/- 2 mm
Angular accuracy:	+/- 3 mrad	+/- 0,5 mrad
Frame rate:	F S0fps	₿0 fps
No. of cameras:	714	4
Max. No. of markers	32	32
Max no. of rigid bodies:	10	10

¹ Actual specification may vary depending on measurement situation, hardware configuration, ambient conditions etc.

active leds ~ 100 - 500

MCU- 240 - 1900000 @ MCU- 240 - \$20,000 EVM - PPU - \$20,000

Qualisys AB Göteborgsvägen 74 SE- 433 63 SÄVEDALEN Sweden Tel: +46 31 336 94 00 Fax: +46 31 336 94 00 E-mail: sales@qualisys.se Appendix C Analysis Results: 'WAVETRAN' Regular Waves

Validation of GEDAP Program 'WAVETRAN'	WAI	/ETF	22	egular Waves in the	e OEB:							
Regular Flume Mode Waves Data Set 1:							na a la desta de seras de un de sera de la desta de sera de se					
			Nominal	Nominal	Nominal	Est. Wave Breaking	Transfer NW1 to NC	W1 to NC1		Transfer SW1 to NC ¹	W1 to NC1	
	H	T2	Wave Period	Wave Frequency	Wave Height	Wave Height	Rxy (tau)	tau	% Wave	Rxy (tau)	tau	% Wave
Filename	(s)	(s)	(s)	(Hz)	(m)	(m)		(s)	Period		(s)	Period
NOTE: OEB in Flume Mode (waves generated		from v	0 deg. from west wall), blanking	blanking walls installed covering	ng all north beaches.	hes.						
FS8_180HG_0HG_0p75WL_0p04WS_002	60	80	1.12	0.8929	0.0735	0.19578	0.9951	-0.1307	11.67	0.9947	-0.1063	9.49
FS8 180HG 0HG 0p75WL 0p1WS 001	60	80	1.12	0.8929	0.1838	0.19578	0.9356	0.4946	44.16	0.9587	0.5729	51.15
FS8 180HG 0HG 1p0WL 0p04WS 001	50	70	1.29	0.7752	0.0980	0.25973	0.9952	-0.1334	10.34	0.9925	-0.0601	4.66
FS8_0HG_1p0WL_0p1WS_001	45	65	1.29	0.7752	0.2450	0.25973	0.9693	-0.4873	37.78	0.9714	-0.4031	31.25
G_0HG	40	60	1.58	0.6329	0.1470	0.38945	0.9906	-0.1001	6.34	0.9934	-0.0537	3.40
FS8_0HG_1p5WL_0p1WS_001	35	55	1.58	0.6329	0.3675	0.38945	0.9739	-0.3517	22.26	0.9781	-0.3029	19.17
test_011	40	60	1.649	0.6064	0.3330	0.42398	0.9682	-0.2335	14.16	0.9596	-0.2018	12.24
test_008	40	60	1.814	0.5513	0.3330	0.51145	0.9750	-0.1539	8.48	0.9728	-0.1417	7.81
test_132	35	55	1.814	0.5513	0.5000	0.51145	0.9469	-0.2400	13.23	0.9411	-0.2400	13.23
FS13 180HG 0HG 2p0WL 0p04WS 001	60	80	1.82	0.5495	0.1960	0.51474	0.9905	-0.0792	4.35	0.9916	-0.0450	2.47
FS13_0HG_2p0WL_0p1WS_001	52	70	1.82	0.5495	0.4900	0.51474	0.9630	-0.2666	14.65	0.9612	-0.2226	12.23
test_141	35	55	1.909	0.5238	0.3330	0.56424	0.9960	-0.0958	5.02	0.9957	-0.0689	3.61
test 153	32	52	1.909	0.5238	0.5000	0.56424	0.9893	-0.2134	11.18	0.9924	-0.1889	9.90
test 140	35	55	2.015	0.4963	0.3330	0.62435	0.9868	-0.0951	4.72	0.9849	-0.0706	3.51
test 154	30	50	2.015	0.4963	0.5000	0.62435	0.9710	-0.1793	8.90	0.9728	-0.1451	7.20
FS8 180HG 0HG 2p5WL 0p04WS 001	40	70	2.04	0.4902	0.2450	0.63861	0.9907	-0.0393	1.93	0.9901	0.0028	0.14
FS0 180HG 2p5WL 0p06WS 001	60	90	2.04	0,4902	0.3675	0.63861	0.9969	-0.0890	4.37	0.9974	-0.0323	1.58
FS8_0HG_2p5WL_0p08WS_001	28	45	2.04	0.4902	0.4900	0.63861	0.9741	-0.1505	7.38	0.9797	-0.1007	4.93
test_139	35	60	2.134	0.4686	0.3330	0.69217	0.9943	-0.0668	3.13	0.9937	-0.0546	2.56
test_150	30	49	2.134	0.4686	0.5000	0.69217	0.9926	-0.1446	6.78	0.9920	-0.1515	7.10
test_138	40	60	2.267	0,4411	0.3330	0.7668	0.9789	-0.0616	2.72	0.9854	-0.0567	2.50
test_149	32	52	2.267	0.4411	0.5000	0.7668	0.9868	-0.1585	6.99	0.9842	-0.1364	6.02
test_137	35	55	2.418	0.4136	0.3330	0.84805	0.9980	-0.0222	0.92	0.9974	0.0122	0.51
test_148	30	50	2.418	0.4136	0.5000	0.84805	0.9956	-0.0616	2.55	0.9968	-0.0567	2.34
test_136	35	55	2.591	0.3860	0.3330	0.93463	0.9926	0.0137	0.53	0.9921	0.0308	1.19
test_147	35	60	2.591	0.3860	0.5000	0.93463	0.9903	-0.0012	0.05	0.9873	-0.0287	1.11
test 135	32	56	3.023	0.3308	0.3330	1.1152	0.9944	-0.0012	0.04	0.9950	0.0721	2.38
test_146	35	60	3.023	0.3308	0.5000	1.1152	0.9823	-0.0228	0.76	0.9824	0.0291	0.96
test 134	30	55	3.628	0,2756	0.3330	1.2922	0.9930	-0.1182	3.26	0.9965	0.1261	3.47
test_145	35	60	3.628	0.2756	0.5000	1.2922	0.9895	-0.1154	3.18	0.9953	0.1227	3.38

Validation of GEDAP Program 'WAVETRAN' - Regular Waves in the OEB	WAVETRAN	' - Regular Wa	ives in the OEB:				a najvenje na kongranje na na serie na na serie		
Regular Flume Mode Waves Data Set 1:					a shara ana ao				
	Nominal	Nominal		Variation o	f basic wa	Variation of basic wave parameters:	ers:		
	Wave Height	Wave Period	an a chun a chun ban ann an t-chun ban ann an t-chun ban a bhu an t-chun a chun a chun ban a chun ba chun a chu	SW1	SW1	NW1	NW1	NC1	NC1
Filename	(m)	(s)	L*[0.1*TANH(k*d)]*0.8	Hav (m)	Tav (s)	Hav (m)	Tav (s)	Hav (m)	Tav (s)
NOTE: OEB in Flume Mode (waves generated 0	d 0 deg. from west v	deg. from west wall), blanking walls installed covering all		north beaches.					
FS8 180HG 0HG 0p75WL 0p04WS 002	0.0735	1.12	0.1566	0.0800	1.120	0.0769	1.119	0.0774	1.120
FS8_180HG_0HG_0p75WL_0p1WS_001	0.1838	1.12	0.1566	0.1701	1.119	0.1634	1.119	0.1741	1.120
FS8_180HG_0HG_1p0WL_0p04WS_001	0.0980	1.29	0.2078	0.0886	1.290	0.0988	1.292	0.1076	1.290
FS8_0HG_1p0WL_0p1WS_001	0.2450	1.29	0.2078	0.2232	1.288	0.2208	1.289	0.2220	1.288
FS8_180HG_0HG_1p5WL_0p04WS_001	0.1470	1.58	0.3117	0.1453	1.581	0.1523	1.581	0.1595	1.582
FS8_0HG_1p5WL_0p1WS_001	0.3675	1.58	0.3117	0.3375	1.582	0.3447	1.580	0.3598	1.576
test_011	0.3330	1.649	0.3394	0.3229	1.650	0.3245	1.649	0.3067	1.650
test_008	0.3330	1.814	0.4101	0.3238	1.814	0.3229	1.814	0.3069	1.814
test_132	0.5000	1.814	0.4101	0.4162	1.812	0.4161	1.813	0.4412	1.813
FS13_180HG_0HG_2p0WL_0p04WS_001	0.1960	1.82	0.4127	0.1993	1.821	0.1923	1.820	0.2006	1.819
FS13_0HG_2p0WL_0p1WS_001	0.4900	1.82	0.4127	0.4592	1.820	0.4494	1.821	0.4814	1.820
test_141	0.3330	1.909	0.4532	0.3323	1.910	0.3009	1.909	0.3188	1.911
test_153	0.5000	1.909	0.4532	0.4740	1.911	0.4587	1.910	0.4503	1.911
test_140	0.3330	2.015	0.5031	0.3408	2.014	0.3168	2.013	0.3214	2.017
test 154	0.5000	2.015	0.5031	0.4593	2.103	0.4549	2.013	0.4632	2.013
FS8_180HG_0HG_2p5WL_0p04WS_001	0.2450	2.04	0.5151	0.2268	2.038	0.2360	2.038	0.2260	2.037
FS0_180HG_2p5WL_0p06WS_001	0.3675	2.04	0.5151	0.3368	2.039	0.3450	2.040	0.3321	2.038
FS8_0HG_2p5WL_0p08WS_001	0.4900	2.04	0.5151	0.4842	2.038	0.4844	2.039	0.4774	2.041
test_139	0.3330	2.134	0.5607	0.3153	2.134	0.3015	2.134	0.2999	2.133
test_150	0.5000	2.134	0.5607	0.4888	2.137	0.4522	2.139	0.4556	2.136
test_138	0.3330	2.267	0.6260	0.3360	2.268	0.3052	2.268	0.3012	2.267
test_149	0.5000	2.267	0.6260	0.5108	2.267	0.4749	2.270	0.4415	2.267
test_137	0.3330	2.418	0.6999	0.3560	2.422	0.3460	2.420	0.3071	2.419
test_148	0.5000	2.418	0.6999	0.5141	2.418	0.4829	2.423	0.4486	2.425
test_136	0.3330	2.591	0.7819	0.2943	2.595	0.2949	2.589	0.2702	2.592
test_147	0.5000	2.591	0.7819	0.4745	2.592	0.4443	2.590	0.4107	2.593
test_135	0.3330	3.023	0.9626	0.2814	3.025	0.2610	3.023	0.2572	3.025
test_146	0.5000	3.023	0.9626	0.4171	3.026	0.3667	3.035	0.3523	3.026
test_134	0.3330	3.628	1.1413	0.2759	3.616	0.2721	3.644	0.2782	3.621
test 145	0.5000	3.628	1.1413	0.4362	3.616	0.3984	3.647	0.4132	3.629

Regular Oblique Waves - Data Set 1:												
			Nominal	Nominal	Nominal	Est. Wave Breaking	Transfer N	Transfer NW1 to NC1		Transfer SW1 to NC	W1 to NC1	
	Ŧ	T2	Wave Period	Wave Frequency	Wave Height	Wave Height	Rxy (tau)	tau	% Wave	Rxy (tau)	tau	% Wave
Filename	(s)	(s)	(s)	(Hz)	(m)	(m)	· · · · · · · · · · · · · · · · · · ·		Period	+	(s)	Period
rated 60 degrees	from th	e west		ng walls removed.								
FS8_120HG60HG_0p75WL_0p04WS_001	70	88	1.12	0.8929	0.0735	0.19578	0.9902	-0.10958	9.78	0.9894	-0.1964	17.54
FS8 120HG60HG 0p75WL 0p1WS 001	65	75	1.12	0.8929	0.1838	0.19578	0.9375	-0.21729	19.40	0.9415	0.49521	44.22
120HG	60	74	1.29	0.7752	0.0980	0.25973	0.9824	-0.08927	6.92	0.9837	-0.0687	5.33
FS8_120HG_1p0WL_0p1WS_001	60	76	1.29	0.7752	0.2450	0.25973	0.9368	-0.22287	17.28	0.9475	-0.5181	40.16
test_289	35	60	1.395	0.7168	0.3330	0.30372	0.9177	-0.32282	23.14	0.9337	0.53997	38.71
	36	56	1.511	0.6618	0.3330	0.35627	0.9392	-0.21509	14.23	0.9387	-0.6013	39.79
120HG_1p5WL	58	76	1.58	0.6329	0.1470	0.38945	0.9917	-0.05600	3.54	0.9955	-0.0604	3.82
FS8_120HG_1p5WL_0p1WS_001	55	80	1.58	0.6329	0.3675	0.38945	0.9664	-0.16834	10.65	0.9615	-0.4813	30.46
test_285	35	70	1.649	0.6064	0.3330	0.42398	0.9550	-0.22950	13.92	0.9585	-0.4817	29.21
test_314	34	56	1.814	0.5513	0.3330	0.51145	N/A	N/A	N/A	0.9729	-0.3061	16.87
0p04WS	55	78	1.82	0.5495	0.1960	0.51474	0.9867	-0.08528		0.9914	-0.0853	4.69
FS8 120HG 2p0WL 0p08WS 001	52	78	1.82	0.5495	0.3920	0.51474	0.9680	-0.14358	7.89	0.9859	-0.2499	13.73
	32	58	2.015	0.4963	0.3330	0.62435	0.9957	-0.08574		0.9856	-0.2144	10.64
FS8 120HG 2p5WL 0p04WS 001	52	70	2.04	0.4902	0.2450	0.63861	0.9960	-0.05376	2.64	0.9941	-0.0934	4.58
2p5WL	52	74	2.04	0.4902	0.3675	0.63861	0.9894	-0.08355	4.10	0.9957	-0.1561	7.65
91	32	55	2.267	0.4411	0.3330	0.7668	0.9897	-0.10698	4 72	0.9946	-0.1252	5.52
test 292	32	68	2.267	0.4411	0.5000	0.7668	0.9734	-0 12334	5 44	0 9822	-0 1365	6 02
test 189	30	54	2418	0.4136	0 3330	0 84805	0 0705	-0.0811	3 26	0 0873	0.00537	0.00
	30	22	2 KQ1	0.3860	0.22200	0.02762	0.0071	0.00	2 04	0.000	0.005	200
	40	3	- 20- 7	00000	00000	0.40400	0.337	-0.1022	10.0	0.2200	020.0-	0.20
16ST 348	30	22	2.591	0.3860	0.5000	0.93463	N/A	A/N	N/A	0.9630	-0.0859	3.32
	32	çç	2.79	0.3584	0.3330	1.0242	N/A	N/A	N/A	0.9966	-0.025	0.89
test 346	30	53	2.79	0.3584	0.5000	1.0242	N/A	A/A	N/A	0.9971	-0.0653	2.34
	30	52	3.023	0.3308	0.3330	1.1152	0.9982	-0.0017	0.06	0.9955	-0.0648	2.14
test_290	30	65	3.023	0.3308	0.5000	1.1152	0.9976	-0.0119	0.39	0.9939	-0.1038	3.43
									and the second			****
NOTE:									a site and the second of the second se			
Wave height, wave period and wave direction are nominal values.	are nor	ninal v	alues.						ta ba ba da serang sa ba segara ba se ang sebaga ang sebaga ang sebaga sebaga sebaga sebaga sebaga sebaga sebag			
Estimated breaking wave height computed for user input water depth al	user in	put wa	ater depth and way	nd wave period.								
Rxy (tau) - cross correlation function between two wave probe signals.	two wa	ve prol	be signals.			If two signals are identical, Rxy (tau)	cal, Rxy (tau) = 1.0.				
tau - time lag (s) between two wave probe signals.	nals.				(-ve is lead)	a na na manana na n						
Non-linear Wave is defined as 0.7*H/L < 0.1TANH(kd)	ANH(ko		(ie: wave is too close to	o breaking to provide s	satisfactory soluti	close to breaking to provide satisfactory solution using WAVETRAN)						
Where: H = wave height (m)				وموالي المراجع والمراجع								
$L = wave length (m) = 2*Pl/g*T_W^2$												
g = acceleration due to gravity (m/s2) = 9	9.808 m/s ²	n/s ²									·	
PI = 3.14159				n phát là stra dha chu								
$T_W =$ wave period (s)			na na mana mana mana na mana na	TATA THE REPAY TO AN ANY TO AND AN A WAY TO A MARK WAY AND AND THE A MARKAN A MARKAN A LABOR OF AN								and the second se
$k = wave number (m^{-1}) = (4*Pl^2)/(g*T_w^2)$	2)					we also definition of the Westmann of the second			the subscription is not the subscription of th			
d = water depth (m)				the set of								
% Wave Period = (tau/nominal wave period) * 100	100					are supply to prove where a structure of product of a product of a structure of the structure of the structure of						
N/A = Not Available			T1, T2 - Start, End	art, End Segment Select Time	e							
Linear Data in BLACK, Non-linear Data in RED	٥											

I mail: blanking and blanking	L*[0.1*TANH(K*d)]*0.7 noved. 0.1371 0.1371 0.1818						
Filename With the service generated 60 degrees from HG60HG_0p75WL_0p04WS_001 HG60HG_0p75WL_0p04WS_001 HG60HG_0p75WL_0p04WS_001 HG_1p0WL_0p04WS_001 HG_1p0WL_0p1WS_001 HG_1p5WL_0p1WS_001 HG_1p5WL_0p1WS_001 HG_1p5WL_0p1WS_001 HG_2p5WL_0p1WS_001 HG_2p5WL_0p04WS_001 HG_2p5WL_0p06WS_001 HG_2p5WL_0p06WS_001 HG_2p5WL_0p06WS_001		Variation of I	oasic way	of basic wave parameters	ers:		
Filename Filename Dique waves generated 60 degress from HG60HG 0p75WL 0p04WS 001 HG60HG 0p75WL 0p1WS 001 HG HG HG HD0ML 0p04WS 001 HG 1p0WL 0p1WS 001 HG HG <td< th=""><th></th><th>SW1</th><th>SW1</th><th>NW1</th><th>NW1</th><th>NC1</th><th>NC1</th></td<>		SW1	SW1	NW1	NW1	NC1	NC1
Olique waves generated 60 degrees from HG60HG 0p75WL 0p04WS 001 HG60HG 0p75WL 0p1WS 001 HG 1p0WL 0p04WS 001 HG 1p0WL 0p1WS 001 HG 1p0WL 0p1WS 001 HG 1p5WL 0p1WS 001 HG 1p5WL 0p1WS 001 HG 1p5WL 0p1WS 001 HG 2p5WL 0p1WS 001 HG 2p5WL 0p04WS 001 HG 2p5WL 0p04WS 001 HG 2p5WL 0p06WS 001		Hav (m)	Tav (s)	Hav (m)	Tav (s)	Hav (m)	Tav (s)
HeeoHe 0p75wL 0p04wS 001 HeeoHe 0p75wL 0p1wS 001 He 1p0wL 0p1wS 001 He 1p0wL 0p1wS 001 He 1p5wL 0p1wS 001 He 1p5wL 0p1wS 001 He 2p0wL 0p04wS 001 He 2p0wL 0p08wS 001 He 2p5wL 0p08wS 001							
HeeoHe 0p75WL 0p1WS 001 0.1838 HG 1p0WL 0p04WS 001 0.0980 HG 1p0WL 0p1WS 001 0.2450 HG 1p0WL 0p1WS 001 0.2450 HG 1p5WL 0p1WS 001 0.3330 HG 1p5WL 0p1WS 001 0.1470 HG 1p5WL 0p1WS 001 0.1330 HG 1p5WL 0p1WS 001 0.3330 HG 1p5WL 0p1WS 001 0.3330 HG 1p5WL 0p1WS 001 0.3330 HG 2p0WL 0p1WS 001 0.3330 HG 2p0WL 0p04WS 001 0.3330 HG 2p0WL 0p08WS 001 0.3675 HG 2p0WL 0p06WS 001 0.3330 HG 2p0WL 0p06WS 0.03330 0.03330	0.1371 0.1818	0.0902	1.122	0.0731	1.120	0.0881	1.122
HG 1p0WL 004WS 001 0.0980 HG 1p0WL 0p1WS 001 0.2450 HG 1p0WL 0p1WS 001 0.2450 HG 1p5WL 0p1WS 001 0.3330 HG 1p5WL 0p04WS 001 0.3330 HG 1p5WL 0p04WS 001 0.3330 HG 1p5WL 0p1WS 001 0.3330 HG 2p5WL 0p04WS 001 0.3330 HG 2p5WL 0p08WS 001 0.3330 HG 2p5WL 0p06WS 001 0.3330 HG 2p5WL 0p06WS 001 0.3330 O 0.3330 0.3330 0.3330 0.3330	0.1818	0.2023	1.120	0.1570	1.117	0.1766	1.121
HG 1p0WL 0p1WS 001 0.2450 HG 1p5WL 0p1WS 0.3330 HG 1p5WL 0p1WS 0.1470 HG 1p5WL 0p1WS 0.1470 HG 1p5WL 0p1WS 0.1470 HG 1p5WL 0p1WS 0.1470 HG 1p5WL 0p1WS 0.3330 HG 2p5WL 0p04WS 001 HG 2p5WL 0p06WS 0.1960 HG 2p5WL 0p06WS 0.2450 HG 2p5WL 0p06WS 0.3330 HG 2p5WL 0p06WS 0.3330 HG 2p5WL 0p06WS 0.13330 HG 0.3330 0.3330 0.3330		0.0999	1.288	0.0868	1.286	0.0870	1.290
HG 1p5WL 003330 0.3330 HG 1p5WL 0p04WS 001 0.1470 HG 1p5WL 0p14WS 001 0.1470 HG 1p5WL 0p14WS 001 0.3330 HG 2p5WL 0p14WS 0.1960 HG 2p0WL 0p04WS 001 0.3330 HG 2p5WL 0p08WS 001 0.3330 HG 2p5WL 0p08WS 001 0.3330 HG 2p5WL 0p06WS 001 0.3330 HG 2p5WL 0p06WS 001 0.3330 O 0.3330 0.3330 0.3330 0.3330 HG 2p5WL 0p06WS 001 0.3330 O 0.3330 0.3330 0.3330 0.3330	0.1818	0.2316	1.289	0.1876	1.289	0.2319	1.290
HG 1p5WL 004WS 001 0.3330 HG 1p5WL 0p04WS 001 0.1470 HG 1p5WL 0p1WS 001 0.3675 HG 201 0.3330 0.3330 HG 2p0WL 0p04WS 001 0.3330 HG 2p0WL 0p04WS 001 0.3330 HG 2p0WL 0p08WS 001 0.3330 HG 2p5WL 0p06WS 001 0.3330 HG 0.3330 0.3330 0.3330 0.3330	0.2126	0.3248	1.398	0.2545	1.398	0.3162	1.399
HG 1p5WL 004WS 001 0.1470 HG 1p5WL 0p1WS 001 0.3675 HG 1p5WL 0p1WS 001 0.3330 HG 2p0WL 0p04WS 001 0.3330 HG 2p0WL 0p04WS 001 0.3330 HG 2p0WL 0p04WS 001 0.3330 HG 2p5WL 0p04WS 001 0.3330 HG 2p5WL 0p06WS 001 0.3330 HG 0.3330 0.3330 0.3330	0.2494	0.3218	1.508	0.2631	1.515	0.3250	1.503
0.3675 0.3330 0.3330 0.3330 0.3330 0.3330 0.3330 0.3330 0.3330 0.3330 0.3330 0.3330 0.3330 0.5000	0.2727	0.1428	1.580	0.1265	1.577	0.1635	1.580
0.330 0.330 0.330 0.1960 0.3920 0.3320 0.3330 0.3330 0.3330 0.3330 0.3330 0.3330 0.3330 0.3330 0.5000	0.2727	0.3779	1.580	0.2842	1.581	0.3805	1.573
0.3330 0.1960 0.3920 0.3920 0.3330 0.3330 0.2450 0.3330 0.3330 0.5000 0.3330 0.3330 0.5000	0.2970	0.3682	1.650	0.2970	1.649	0.3440	1.644
0.1960 0.3920 0.3320 0.2450 0.3330 0.3330 0.3330 0.3330 0.3330 0.3330 0.3330 0.3330 0.5000	0.3588	0.4212	1.812	N/A	N/A	0.3949	1.812
0.3920 0.3330 0.2450 0.3675 0.3330 0.3330 0.5000 0.3330 0.3330 0.3330 0.5000	0.3611	0.2430	1.817	0.1848	1.818	0.2378	1.819
0.3330 0.2450 0.2450 0.3675 0.3330 0.3330 0.3330 0.3330 0.3330	0.3611	0.4604	1.817	0.3284	1.818	0.4703	1.818
0.2450 0.3675 0.3330 0.3330 0.3330 0.3330 0.3330 0.3330	0.4402	0.3533	2.015	0.3291	2.015	0.3651	2.015
0.3675 0.3330 0.5000 0.3330 0.3330 0.3330 0.5000	0.4507	0.2579	2.040	0.2244	2.039	0.2665	2.040
0.3330 0.5000 0.3330 0.3330 0.3330 0.5000	0.4507	0.3737	2.041	0.3198	2.039	0.3700	2.038
0.5000 0.3330 0.3330 0.3330 0.5000	0.5478	0.3099	2.268	0.2270	2.269	0.2495	2.267
0.3330 0.3330 0.3330 0.50000 0.500000 0.50000 0.50000 0.500000000	0.5478	0.4198	2.268	0.3285	2.269	0.3860	2.267
187 0.3330 348 0.5000	0.6124	0.3151	2.425	0.2667	2.416	0.2864	2.415
348 0.5000	0.6842	0.3485	2.593	0.3711	2.590	0.3715	2.588
	0.6842	0.4988	2.588	N/A	N/A	0.5678	2.588
test_304 0.3330 2.79	0.7615	0.3253	2.788	N/A	N/A	0.3300	2.791
test_346 0.5000 2.79	0.7615	0.4360	2.790	N/A	N/A	0.4474	2.793
test_185 0.3330 3.023	0.8423	0.2429	3.026	0.2649	3.026	0.2951	3.021
test_290 0.5000 3.023	0.8423	0.3828	3.028	0.412	3.027	0.4497	3.023
NOTE: Hav = Average Wave Height (m)							
Tav = Average Wave Period (s)					Constant of the second are not an an average of the second s		
NC1 = North Center Wave Probe							
SW1 = South West Wave Probe moved to North Center Wave Probe Location	tion						

Validation	l of GE	Validation of GEDAP Program	1	- Regular W	'WAVETRAN' - Regular Waves in the OEB						
REGULAR WAVES	AVES - D	- Data Set 2:								-	
			o balo o porte a la suba tala cananza da da da da a mana da da man		Est. Wave Breaking	Transfer EW1 to MW	N1 to MW1		Transfer W	Transfer WW1 to MW1	
	T1 T2	2 Wave Period	Wave Frequency	Wave Height	Wave Height	Rxy (tau)	tau	% Wave	Rxy (tau)	tau	% Wave
File Name	(s) (s)	-	(Hz)	(u)	(m)		(s)	Period		(s)	Period
NOTE: OEB in	Flume	Mode (waves generated	ed 0 deg. from west wall), blanking walls installed	II), blanking walls	installed covering all north	h beaches.					
RD 001 001	40 6(2.00		0.10	0.61583	0.9982	-0.01221	0.61	0.9979	0.0232	1.16
RD 002 001	40 6(0.50	0.20	0.61583	0.9951	0.009769	0.49	0.9917	-0.0098	0.49
RD 003 001	40 60		0.50	0.30	0.61583	0.9831	0.050064	2,50	0.9836	-0.0525	2.63
	40 6(0.50	0.40	0.61583	0.9774	0.075707	3.79	0.9804	-0.1099	5.50
RD_005_001	40 6(0.50	0.50	0.61583	0.9882	0.12699	6.35	0.9593	-0.1624	8.12
RD 006 001			0.50	0.60	0.61583	0.9707	0.21857	10.93	0.9718	-0.2186	10.93
RD_007_002	40 6(0.50	0.70	0.61583	0.9587	0.28451	14.23	0.9471	-0.2210	11.05
RD 008 001			0.60	0.05	0.43475	0.9936	-0.06105	3.66	0.9956	0.0061	0.37
RD 009 001			0.60	0.10	0.43475	0.9939	-0.00366	0.22	0.9967	0.0073	0.44
010			0.60	0.15	0.43475	0.9926	0.021979	1.32	0.9914	-0.0232	1.39
RD 011 001			0.60	0.20	0.43475	0.9932	0.062275	3.73	0.9904	-0.0598	3.58
RD 012 001	45 6(0.60	0.25	0.43475	0.9788	0.10868	6.51	0.9811	-0.0965	5.78
RD 013 001		5 1.67	0.60	0.30	0.43475	0.9629	0.14775	8.85	0.9549	-0.1551	9.29
RD 014 001			0.60	0.35	0.43475	0.9651	0.19415	11.63	0.9806	-0.2027	12.14
RD 015 001	45 69		0.60	0.40	0.43475	0.9408	0.26375	15.79	0.9841	-0.2283	13.67
016	45 6(0.60	0.45	0.43475	0.9619	0.32114	19.23	0.9445	-0.3089	18.50
RD 017 001	45 6(0.60	0.50	0.43475	0.8886	0.39441	23.62	0.9576	-0.3431	20.55
018			0.70	0.05	0.31914	0.9981	0.004152	0.29	0.9962	0.0200	1.40
019			0.70	0.10	0.31914	0.9970	0.027352	1.91	0.9976	-0.0215	1.50
020			0.70	0.15	0.31914	0.9971	0.084743	5.93	0.9981	-0.0691	4.83
RD_021_001	47 67		0.70	0.20	0.31914	0.9960	0.14702	10.28	0.9949	-0.1448	10.13
022	47 67		0.70	0.25	0.31914	0.9724	0.23249	16.26	0.9869	-0.2340	16.36
RD 023 001		7 1.43	0.70	0.30	0.31914	0.9840	0.32774	22.92	0.9843	-0.3426	23.96
RS_001_001			0.40	0.05	0.89024	0.9974	0.006106	0.24	0.9983	-0.0049	0.20
RS 002 001			0.40	0.10	0.89024	0.9972	0.01099	0.44	0.9978	-0.0085	0.34
RS 003 001			0.40	0.15	0.89024	0.9934	0.017095	0.68	0.9964	-0.0269	1.07
004			0.40	0.20	0.89024	0.9855	0.042738	1.71	0.9958	-0.0379	1.51
002	+		0,40	0.25	0.89024	0.9849	0.048843	1.95	0.9915	-0.0586	2.34
8			0,40	0.30	0.89024	0.9879	0.041517	1.66	0.9824	-0.0745	2.98
200			0.40	0.35	0.89024	0.9760	0.065938	2.64	0.9751	-0.0830	3.32
008	_		0,40	0.40	0.89024	0.9788	0.10257	4.10	0.9810	-0.1233	4.93
600	\neg		0.30	0.10	1.2151	0.9986	-0.01221	0.37	0.9956	-0.0452	1.36
010			0.30	0.20	1.2151	0.9981	0.002443	0.07	0.9971	-0.0501	1.50
011	40 6(0.30	0.30	1.2151	0.9914	0.057391	1.72	0.9943	-0.0330	0.99
012			0.30	0.40	1.2151	0.9915	0.031748	0.95	0.9929	-0.0501	1.50
013	40 60	3.33	0.30	0.50	1.2151	0.9836	0.042738	1.28	0.9916	-0.0501	1.50
RS 014 001	40 6(0.30	0.60	1.2151	0.9827	0.035412	1.06	0.9886	-0.0537	1.61

REGULAR WAVES - Data Set 2:	AVES - I	Data Set 2:				er er en					
					Est. Wave Breaking	1	Transfer EW1 to MW1		Transfer W	Transfer WW1 to MW1	
e el compa para le sur a presa para de la companya de la sur de la companya	T1 1	T2 Wave Period	d Wave Frequency	Wave Height	Wave Height	T	tau	% Wave	Rxy (tau)	tau	% Wave
File Name) (s)	(s) (s)	-	(m)	(m)		(s)	Period		(s)	Period
RS 015 001			0.25	0.05	1.3698	0.9907	-0.29428	7.36	0.9921	-0.3932	9.83
RS 016 001		30 4.00	0.25	0.10	1.3698	0.9962	-0.16729	4.18	0.9937	-0.2723	6.81
RS 017 001	40 6		0.25	0.15	1.3698	0.9969	-0.09891	2.47	0.9929	-0.2198	5.49
RS 018 001	40 6	60 4.00	0.25	0.20	1.3698	0.9965	-0.0696	1.74	0.9935	-0.1771	4.43
RS_019_001	40 6	30 4.00	0.25	0.25	1.3698	0.9954	-0.03541	0.89	0.9929	-0.1539	3.85
RS_020_001	40 6		0.25	0.30	1.3698	0.9944	-0.0232	0.58	0.9927	-0.1392	3.48
RS_021_001	40 6		0.25	0.35	1.3698	0.9936	-0.00733	0.18	0.9917	-0.1294	3.24
022	40 6		0.25	0.40	1.3698	0.9917	0.002443	0.06	0.9897	-0.1209	3.02
RS_023_001	40 7		0.20	0.05	1.5046	0.9951	-0.06534	1.31	0.9878	0.4275	8.55
024	40		0.20	0.10	1.5046	0.9937	0.053738	1.07	0.9845	0.2956	5.91
RS_025_001	40 7	70 5.00	0.20	0.15	1.5046	0.9935	0.05557	1.11	0.9833	0.2846	5.69
RS_026_001	40 7	70 5.00	0.20	0.20	1.5046	0.9891	0.11969	2.39	0.9780	0.1637	3.27
RS_027_001	40 7		0.20	0.25	1.5046	0.9878	0.13434	2.69	0.9744	0.1435	2.87
RS 028 001	60 1	100 6.67	0.15	0.05	1.6144	0.9745	0.71704	10.75	0.9865	-0.3261	4.89
RS_029_001			0.15	0.10	1.6144	0.9734	0.68014	10.20	0.9940	-0.1441	2.16
RS 030 002	60 1	100 6.67	0.15	0.15	1.6144	0.9790	0.49716	7.45	0.9933	-0.0696	1.04
NOTE:					وببالبالية والمحافظ والمعارية والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ						
Wave height, v	vave pen	Wave height, wave period and wave direction	ction are nominal values.		ուղեն նունեներին եւ ենչեն եններել ենչեններին, ենչենք են ենչենք ենչեններին են ենչենք ենչենք ենչենք ենչենք ենչեն						
Estimated brea	king wav	Estimated breaking wave height computed for		th and wave peric	od.						
Rxy (tau) - cros	ss correls	Rxy (tau) - cross correlation function between		alf two signals are	two wave probe signalf two signals are identical, Rxy (tau) = 1.0.	.o.					
tau - time lag (s	s) betwee	tau - time lag (s) between ty(-ve is lead)									
Non-linear Wa	ve is defi	Non-linear Wave is defined as 0.7*H/L < 0	0.1TANH(kd) (ie: wave is	too close to brea	(ie: wave is too close to breaking to provide satisfactory solution using WAVETRAN)	ory solution u.	sing WAVE1	FRAN)			
Where: H = wave height (m	we heigh	nt (m)									
L = wav	e length	= wave length (m) = $2*PI/g*T_w^2$									
g = accé	sleration	= acceleration due to gravity (m/s ²)	s ²) = 9.808 m/s ²								
PI = 3.14159	4159										
$T_W = W\varepsilon$	T _w = wave period (s)	d (s)									
k = wav	k = wave number (m ⁻	er (m ⁻¹) = (4*Pl ²)/(g*T _w	g*Tw ²)								
d = wat	d = water depth (m	(m)									
% Wave Period	1 = (tau/i	% Wave Period = (tau/nominal wave period) *	od) * 100								
N/A = Not Avai T1	Т1, Т2 -	T2 - Start, End Segment Select Time	ent Select Time								-
Linear Data in BLACK,	BLACK,	Non-linear Data in RED	RED								

				1								
REGULAR W	WAVES -	- Data	Set 2:									
				an a na manana a ana ana ana ana ang ang ang ang		Est. Wave Breaking	Variation c	of basic wave	ve parameters:	ers:		
	11	T2	Wave Period	Wave Frequency	Wave Height	Wave Height		EW1	WW1	WW1	hw1	hW1
File Name	(s)	(s)	(s)	(Hz)	(m)	(m)	Hav (m)	Tav (s)	Hav (m)	Tav (s)	Hav (m)	Tav (s)
re: o	Flume	Mode (wav	0 deg. from	west wall), blanking walls	walls installed covering all north	h beaches.					
RD 001 001	_	60	2.00	0.50	0.10	0.61583	0.1095	1.998	0.0997	2.000	0.0968	2.001
RD 002 001	40	60	2.00	0.50	0.20	0.61583	0.2186	2.000	0.2018	1.999	0.1962	2.001
RD_003_001	40	60	2.00	0.50	0.30	0.61583	0.3173	2.000	0.2896	2.000	0.2943	2.001
RD_004_001	40	60	2.00	0.50	0.40	0.61583	0.4066	2.001	0.3926	1.999	0.3964	1.999
005		60	2.00	0.50	0.50	0.61583	0.4907	2.002	0.4776	2.001	0.4738	1.999
6		60	2.00	0.50	0.60	0.61583	0.5402	2.000	0.5388	1.998	0.5532	1.999
		60	2.00	0.50	0.70	0.61583	0.5766	2.002	0.6479	1.999	0.6328	1.997
008		65	1.67	0.60	0.05	0.43475	0.0456	1.670	0.0506	1.671	0.0491	1.671
600		65	1.67	0.60	0.10	0.43475	0.0982	1.669	0.0973	1.670	0.1031	1.671
010	45	65	1.67	0.60	0.15	0.43475	0.1426	1.670	0.1401	1.671	0.1505	1.670
5		65	1.67	0.60	0.20	0.43475	0.1908	1.669	0.1846	1.671	0.1982	1.670
012	45	65	1.67	0.60	0.25	0.43475	0.2438	1.671	0.2333	1.670	0.2543	1.670
13		65	1.67	0.60	0.30	0.43475	0.2812	1.668	0.2706	1.671	0.2947	1.669
		65	1.67	0.60	0.35	0.43475	0.3266	1.669	0.3000	1.670	0.3251	1.668
		65	1.67	0.60	0.40	0.43475	0.3626	1.671	0.3495	1.668	0.3679	1.668
RD 016 001	45	65	1.67	0.60	0.45	0.43475	0.4136	1.670	0.3907	1.670	0.4036	1.669
017		65	1.67	0.60	0.50	0.43475	0.4311	1.672	0.4447	1.668	0.4709	1.669
018		67	1.43	0.70	0.05	0.31914	0.0518	1.430	0.0519	1.429	0.0528	1.430
		67	1.43	0.70	0.10	0.31914	0.0977	1.430	0.0996	1.430	0.1016	1.430
020	_	67	1.43	0.70	0.15	0.31914	0.1471	1.431	0.1433	1.431	0.1533	1.431
021		67	1.43	0.70	0.20	0.31914	0.1858	1.429	0.1920	1.429	0.1938	1.429
022		67	1.43	0.70	0.25	0.31914	0.2335	1.429	0.2359	1.428	0.2462	1.429
023		67	1.43	0.70	0.30	0.31914	0.2791	1.429	0.2813	1.427	0.2749	1.426
		00	2.50	0.40	0.05	0.89024	0.1038	2.501	0.1010	2.498	0.1160	2.502
002	-	09	2.50	0.40	0.10	0.89024	0.2103	2.497	0.1994	2.501	0.2260	2.503
003	40	60	2.50	0.40	0.15	0.89024	0.3181	2.495	0.3027	2.502	0.3369	2.503
004		00	2.50	0.40	0.20	0.89024	0.4367	2.497	0.4018	2.501	0.4465	2.503
005		60	2.50	0.40	0.25	0.89024	0.5009	2.496	0.4640	2.504	0.5082	2.504
		80	2.50	0.40	0.30	0.89024	0.5587	2.500	0.5317	2.503	0.5904	2.505
200	_	60	2.50	0,40	0.35	0.89024	0.6304	2.500	0.6064	2.501	0.6889	2.505
	_	60	2.50	0.40	0.40	0.89024	0.7355	2.501	0.6801	2.504	0.7577	2.508
600	_	60	3.33	0.30	0.10	1.2151	0.1028	3.329	0.0901	3.304	0.1097	2.328
010		60	3.33	0.30	0.20	1.2151	0.1721	3.327	0.1558	3.315	0.1863	3.332
61	_	60	3.33	0.30	0.30	1.2151	0.3457	3,306	0.3292	3.293	0.3856	3.303
012		60	3.33	0.30	0.40	1.2151	0.3597	3.336	0.3251	3.329	0.3697	3.333
013		60	3.33	0.30	0.50	1.2151	0.5141	3.338	0.4503	3.332	0.5107	3.334
RS 014 001	40	e S	3 33	0.80	080	1 0161	×0000	00000				100 0

REGULAR WAVES	AVE	S - Dati	- Data Set 2:									
ana a su a						Eet Wave Breaking	Variation C	of hasin wa	Variation of hasic wave harameters	- suo		
	μ	T2	Wave Period	Wave Frequency	Wave Height	Wave Height	EW1	EW1	WW1	ww1	MW1	MW1
File Name	(s)	(s)	(s)	(Hz)	(m)	(m)	Hav (m)	Tav (s)	Hav (m)	Tav (s)	Hav (m)	Tav (s)
RS 015 001	40		4.00	0.25	0.05	1.3698	0.0348	3.979	0.0733	3.983	0.0472	3.986
RS 016 001			4.00	0.25	0.10	1.3698	0.0636	3.994	0.1286	3.990	0.0977	3.992
RS 017 001	-		4.00	0.25	0.15	1.3698	0.0909	4.009	0.1733	3.987	0.1405	3.997
RS_018_001	40		4.00	0.25	0.20	1.3698	0.1222	4,008	0.2343	3.986	0.1948	4.001
RS_019_001		<u> </u>	4.00	0.25	0.25	1.3698	0.1494	4.014	0.2844	3.988	0.2456	4.003
RS_020_001	40		4.00	0.25	0.30	1.3698	0.1812	4.008	0.3341	3.987	0.2978	4.006
RS_021_001	40	60	4.00	0.25	0.35	1.3698	0.2134	4.018	0.3722	3.996	0.3519	4.006
RS_022_001	40		4.00	0.25	0.40	1.3698	0.2510	4.016	0.4305	4.012	0.4060	4.007
RS_023_001	40		5.00	0.20	0.05	1.5046	0.0565	4.982	0.0543	5.021	0.0393	4.994
RS_024_001	40		5.00	0.20	0.10	1.5046	0.1332	4.990	0.1144	5.002	0.0974	4.991
RS_025_001	40		5.00	0,20	0.15	1.5046	0.1388	4.999	0.1152	5.012	0.1019	4.998
RS_026_001	40		5.00	0.20	0.20	1.5046	0.2791	4.997	0.2145	5.001	0.2154	4.997
RS 027 001	40		5.00	0.20	0.25	1.5046	0.3324	4.995	0.2496	5.003	0.2587	5.000
RS 028 001			6.67	0.15	0.05	1.6144	0.0312	5.782	0.0423	6.672	0.0289	6.632
RS 029 001	45	85	6.67	0.15	0.10	1.6144	0.0630	6.645	0.0850	6.694	0.0590	6.652
RS 030 002	60		6.67	0.15	0.15	1.6144	0.1327	6.661	0.1879	6.675	0.1356	6.672
				والمتعاد والمحافظ								
NOTE:												
Wave height,	wave	period	Wave height, wave period and wave direction a	n are nominal values.								
Estimated bre	aking	wave h	Estimated breaking wave height computed for	or user input water depth and wave period.	th and wave perio	d.						
N/A = Not Available	ailable			T1, T2 - Start, End Sei	gment Select Tim	Ð						
Linear Data in	BLA	CK, No	Linear Data in BLACK . Non-linear Data in REI	Ģ								

Appendix D Analysis Results: 'WAVETRAN' Irregular Waves

ς.

Transfer	ransfer	- IS	Transfer SW1 to NC1		Variation o	basic wav	Variation of basic wave parameters:	rs:
% Wave Rxy (tau)	čxy (tau)		tau	% Wave	SW1	SW1	SW1	SW1
Period			(s)	Period	Hav (m)	Tav (s)	Hmax (m)	Tmax (s)
NOTE: OEB in Flume Mode (waves generated 0 deg. from west wall), blanking walls installed covering all north beaches.	est wall), t		lanking wall	s installed	covering all	north beac	les.	
m, Modal Period = 2.6 s.	1 = 2.6 s.							
5.79 0.8926			-0.090376	4.04	0.1657	1.992	0.3972	3.654
7.04 0.8843 -			-0.094045	5.70	0.1708	2.013	0.2989	3.226
7.29 0.8735	-		-0.09844	5.84	0.1705	1.807	0.3519	3.001
6.07 0.9232 -(Ŷ	-0.079389	4.34	0.1745	1.981	0.3787	3.463
10.64 0.8604			-0.1705	10.35	0.1782	1.632	0.3952	2.356
6.12 0.8831 -(Y	-0.080354	4.29	0.1711	1.863	0.4070	3.193
10.28 0.7543 -			-0.17951	10.01	0.1459	1.605	0.2938	3.358
0.8696		1	-0.09893	5.82	0,1437	1.662	0.3598	2.813
6.03 0.9309 -0		9	-0.070585	3.80	0.1780	1.857	0.3189	2.951
0.8765		9	-0.019537	1.16	0.1675	1.931	0.3539	3.497
0.9169		\circ	0.042743	2.14	0.1532	1.922	0.3003	3.238
			-0.01319	0.63	0.2118	1.873	0.3625	2.909
1.18 0.9245 0			0.052024	2.69	0.1700	2.045	0.3787	3.328
2.41 0.8949 -		3	-0.008306	0.45	0.1821	1.685	0.4048	2.773
0.25 0.9020 0			0.016852	0.83	0.2030	2.037	0.3516	3.232
1.40 0.9269 0		0	0.030778	1.69	0.1709	1.566	0.4481	2.923
		0	0.004639	0.22	0.1820	1.766	0.3705	3.420
		0	0.060081	3.20	0.1585	1.694	0.3740	2.771
		0	0.087925	4.48	0.1525	1.753	0.4129	2.798

-					an Address and a state			
Variation of basic wave parameters:	sters:							
ATACA ATACA	5	NIALA	ANA/4	PCN	NC4	5N	FCIN	
			Turv I		To:: (a)		Tmov (c)	
		Ξk			aldae wollo	indefined on		
	ge	<u> </u>	deg. rrom west wall),		planking walls installed	s installed co	covering all norm peaches.	peacnes.
Nominal Significant W	"		Modal Period	= 2.6 s.				
022 0.1671	02	0.3730	3.604	0.1661	2.235	0.3657	3.598	
TEST_025 0.1639 2.028	28	0.3033	3.177	0.1357	1.649	0.2529	2.730	
TEST_028 0.1696 1.807	07	0.3522	3.045	0.1566	1.686	0.3724	3.243	
TEST_031 0.1518 1.733	33	0.3795	2.841	0.1668	1.831	0.4400	2.991	
TEST_034 0.1732 1.636	36	0.3967	2.370	0.1808	1.648	0.4480	2.610	
TEST_037 0.1737 1.963	63	0.4139	3.320	0.1768	1.873	0.4747	2.512	-
TEST_040 0.1374 1.606	06	0.2941	3.125	0.1362	1.794	0.2713	3.086	
TEST_043 0.1324 1.591	91	0.3536	2.751	0.1291	1.699	0.3380	2.707	
TEST_046 0.1658 1.847	47	0.2915	3.014	0.1666	1,858	0.3092	2.891	
TEST_086 0.1568 1.928	28	0.3368	3.487	0.1367	1.677	0.2936	3.052	
TEST_089 0.1470 1.923	23	0.2982	3.192	0.1441	1.994	0.2663	3.971	
TEST_092 0.2203 2.083	83	0.3365	3.226	0.2190	2.095	0.3794	2.993	
TEST_095 0.1559 1.943	43	0.3673	3.245	0.1528	1.931	0.4010	3.262	
TEST_098 0.1751 1.687	87	0.3921	3.170	0.1804	1.866	0.4049	3.143	
TEST_101 0.1937 2.042	42	0.3562	3.289	0.1944	2.022	0.3404	3.468	
TEST_104 0.1763 1.708	08	0.4321	2.996	0.1844	1.819	0.4540	2.981	
TEST_107 0.1862 1.859	59	0.3695	3.403	0.1800	2.097	0.3980	3.172	
TEST_110 0.1606 1.779	79	0.3674	2.809	0.1624	1.880	0.3684	2.835	
TEST_113 0.1442 1.675	75	0.4108	2.578	0.1572	1.964	0.3768	3.248	
NOTE: 0/ Mayo Daviad has hoon		as hoon defined as faul/Average Mave Deriod	Morada W/a		@ north cer	porth center wave prohe	ah	
DV V (faul) - cross correlation function between two wave probe signals	tion he	threen thro	Mava hroha	ξ		If two signa	ff two signals are identical Rvv (fall)	Rvv (tau) = 1.0
ryy (rau) - oloss colletation runch				old11a1o.				-
tau - time lag (s) between two wav	ave pro	two wave probe signals.						

Deta Set 1:III <th< th=""><th>Validation of GEDAP P</th><th>to uc</th><th>GE</th><th>DAP Pro</th><th>ogram 'V</th><th>VAVETI</th><th>RAN' - Ir</th><th>regular</th><th>Waves</th><th>rogram 'WAVETRAN' - Irregular Waves in the OEB:</th><th>Ш. Н</th><th></th><th></th></th<>	Validation of GEDAP P	to uc	GE	DAP Pro	ogram 'V	VAVETI	RAN' - Ir	regular	Waves	rogram 'WAVETRAN' - Irregular Waves in the OEB:	Ш. Н		
Set 1: Tansfer NW1 to NC1 Transfer SW1 to NC1 Variation of basic wave parameter 1 12 Rxy (au) su % wave SW1 SW1 SW1 anne 13 12 Rxy (au) su % wave SW1 SW1 SW1 anne 13 12 Rxy (au) su % wave SW1 SW1 SW1 SW1 0 13 14 15 Nia Nia Nia 0.3763 0.14301 5.56 0.1606 2.081 0.3440 325 45 75 Nia Nia Nia 0.3783 0.14301 5.56 0.1606 2.085 0.3440 325 45 75 Nia Nia 0.3817 0.14301 5.66 0.1561 0.3440 323 45 75 Nia Nia 0.3816 0.1537 1.057 0.2205 0.2864 333 45 75 Nia Nia Nia 0.3816 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>5 at 6</th><th></th><th></th><th></th></t<>										5 at 6			
T1 Tansfer NW1 to NC1 Transfer SW1 to NC1 Variation of basic wave parameter ame T1 T2 Rxy (tau) tau % wave Sw1 Sw1 </th <th></th>													
Tri Tr To Runstructure Ray (rau) Runstructure Runstructure <th></th> <th></th> <th></th> <th></th> <th>N1 to NC1</th> <th></th> <th>Trancfar S</th> <th>W1 to NC1</th> <th></th> <th>Variation o</th> <th>of hacic way</th> <th>ve naramet</th> <th>.s.</th>					N1 to NC1		Trancfar S	W1 to NC1		Variation o	of hacic way	ve naramet	.s.
ame (s) (s) <th></th> <th>Ţ</th> <th>-</th> <th></th> <th>fau</th> <th>% Wave</th> <th>Rxv (fair)</th> <th>fau</th> <th>% Wave</th> <th>SW1</th> <th>SW1</th> <th>SW1</th> <th>SW1</th>		Ţ	-		fau	% Wave	Rxv (fair)	fau	% Wave	SW1	SW1	SW1	SW1
CEB obligue waves generated 60 deg. from west wall, blanking walls removed. Commal Significant Wave Ht. = 0.283 m, Motal Period = 2.6 k. Commal Significant Wave Ht. = 0.283 m, Motal Period = 2.6 k. Commal Significant Wave Ht. = 0.283 m, Motal Period = 2.6 k. Commal Significant Wave Ht. = 0.283 m, Motal Period = 2.6 k. Commal Significant Wave Ht. = 0.283 m, Motal Period = 2.6 k. Commal Significant Wave Ht. = 0.283 m, Motal Period = 2.6 k. Commal Significant Wave Ht. = 0.283 m, Motal Period = 2.6 k. Commal Significant Wave Ht. = 0.283 m, Motal Period = 2.6 k. Commal Significant Wave Ht. = 0.283 m, Motal Period = 2.6 k. Commal Significant Wave Ht. = 0.283 m, Motal Period = 2.6 k. Commal Significant Wave Ht. = 0.283 m, Motal Period = 2.6 k. Commal Significant Wave Ht. = 0.284 m, O.3940 m, O.3440 m, O.3440 m, O.3440 m, O.3440 m, NiA m, NiA m, NiA m, NiA m, O.3690 m, O.1637 m, O.1593 m, O.306 m, O.3616 m, O.3441 m, O.3441 m, NiA m, NiA m, NiA m, O.3075 m, O.20538 m, 11.70 m, O.1460 m, D.4216 m, O.3466 m, O.3676 m, O.3676 m, O.3766 m, NiA m,	Filename	(s)	(s)	/	(s)	Period		(s)	Period	Hav (m)	Tav (s)	Hmax (m)	Tmax (s)
Nominal Significant Wave Ht. = 0.283 m. Modal Period = 2.6 s. 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 0.3655 0.3655 0.3655 0.3655 0.3655 0.3650 0.3373 333 45 75 N/A N/A	NOTE: OEB	obliqu	e wav		3d 60 deg. fi	rom west w	all, blanking	l walls remo	ved.				
321 40 NA NA NA 0.8760 -0.19219 10.25 0.1768 1.789 0.3695 1.789 0.3695 1.789 0.3695 1.789 0.3695 0.3695 1.361 1.891 0.3490 1.361 0.3490 2.361 0.3490 0.3491 0.3490 0.3491 0.3490 0.3491 0.3490 0.3491 0.3490 0.3491 0.3490 0.3491 0.3491 0.3491 0.3491 0.3491 0.3261 0.3491 0.3261 0.3696 0.3696 0.3696 0.3696 0.3693 0.331 0.3261 0.3261 0.3261 0.3261 0.331 0.331 0.331 0.331 0.331 0.331 0.331 0.331 0.3313	Nomi	nal Sig	Inifica		= 0.283 m,	Modal Peri	od = 2.6 s.						
323 45 75 NiA NiA NiA 0.813 -0.1644 5.56 0.1509 2.081 0.3441 325 45 75 NiA NiA NiA 0.8018 -0.164 8.35 0.1812 1.885 0.3491 327 45 75 NiA NiA NiA 0.8018 -0.1643 8.35 0.1812 1.882 0.3491 321 45 75 NiA NiA NiA 0.8016 -0.1633 1.882 0.3068 333 45 75 NiA NiA 0.8147 0.2013 10.00 0.1659 1.894 0.2105 333 45 75 NiA NiA NiA 0.7915 0.2053 1.700 0.1679 1.818 0.2066 333 45 75 NiA NiA NiA NiA NiA 1.700 0.1679 1.818 0.20505 334 15 NiA NiA NiA <	2	40	80	N/A	N/A	N/A	0.8760	-0.19219	10.25	0.1766	1.789	0.3695	2.596
325 45 75 NiA NiA 0.8783 -0.1643 8.35 0.1812 1.891 0.3490 327 45 75 NiA NiA NiA 0.8178 -0.16533 2.065 0.4658 0.0468 0.0491 0.03416 321 45 75 NiA NiA 0.8008 -0.16533 9.65 0.2040 0.4116 0.0416 331 45 75 NiA NiA 0.8064 -0.21033 9.63 1.694 0.2616 333 45 75 NiA NiA 0.801 -0.1795 0.1490 1.677 0.2040 0.4116 333 45 75 NiA NiA NiA 0.886 -0.21033 9.63 1.6644 0.2616 0.4616 333 45 75 NiA NiA 0.7915 -0.21033 1.070 0.1490 1.627 0.3373 331 45 75 NiA NiA NiA <		45	75	N/A	N/A	N/A	0.8313	-0.14804	5.56	0.1509	2.081	0.3441	3.291
327 45 75 N/A N/A N/A 0.8178 -0.16133 2.065 0.24658 0.24658 0.24658 0.24658 0.24657 0.23941 323 45 75 N/A N/A N/A 0.8680 -0.16337 9.69 0.1738 2.167 0.29410 0.4116 333 45 75 N/A N/A N/A 0.8680 -0.21037 10.60 0.1683 1.694 0.2416 333 45 75 N/A N/A N/A 0.7915 -0.21033 10.00 0.1669 0.2165 0.23056 333 45 75 N/A N/A 0.7375 -0.21033 10.00 0.1669 0.2616 0.2305 331 45 75 N/A N/A N/A 0.7375 0.2103 10.00 0.1694 0.2616 0.3373 331 45 75 N/A N/A N/A 0.7795 1.767 0.3167 0.32163	TEST 325	45	75	N/A	N/A	N/A	0.8783	-0.164	8.35	0.1812	1.891	0.3490	2.851
329 45 75 N/A N/A N/A 0.8800 -0.16583 7.68 0.1738 2.167 0.2941 331 45 75 N/A N/A N/A 0.8660 -0.16371 9.05 0.1593 1.882 0.3068 333 45 75 N/A N/A N/A 0.8164 -0.21033 10.00 0.1679 1.818 0.3066 333 45 75 N/A N/A N/A 0.7975 -0.21033 10.00 0.1679 1.818 0.3506 333 45 75 N/A N/A N/A 0.7975 -0.2033 10.00 0.1679 1.818 0.3506 339 45 75 N/A N/A N/A N/A N/A N/A N/A 331 45 75 N/A	TEST 327	45	75	N/A	N/A	N/A	0.8178	-0.16193	8.26	0.2123	2.085	0.4658	3.273
331 45 75 N/A N/A N/A 0.8680 0.16371 9.05 0.1593 1.882 0.3068 333 45 75 N/A N/A N/A 0.8417 -0.21033 9.63 0.2040 0.4116 333 45 75 N/A N/A N/A 0.9012 -0.17556 9.79 0.1563 1.606 0.4165 333 45 75 N/A N/A N/A 0.9012 -0.17556 9.79 0.1563 1.606 0.4165 334 45 75 N/A N/A N/A N/A N/A 0.7975 0.20538 11.70 0.1490 1.627 0.3373 341 40 N/A		45	75	N/A	N/A	N/A	0.8908	-0.16583	7.68	0.1738	2.167	0.2941	3.392
333 45 75 N/A N/A N/A 0.3547 -0.21033 9.63 0.2040 0.2416 0.2416 335 45 75 N/A N/A N/A 0.7619 -0.21033 10.00 0.1679 1.844 0.2616 337 45 75 N/A N/A N/A 0.886 -0.21033 10.00 0.1679 1.818 0.3705 339 45 75 N/A N/A N/A 0.7975 -0.21033 11.70 0.1490 1.818 0.3373 341 45 75 N/A N/A N/A N/A N/A 0.7975 0.3373 341 45 75 N/A		45	75	N/A	N/A	N/A	0.8680	-0.16377	9.05	0.1593	1.882	0.3068	3.330
335 45 75 N/A N/A N/A 0.7619 -0.21271 10.86 0.1683 1.694 0.2616 337 45 75 N/A N/A N/A 0.9012 -0.17956 9.79 0.1251 1.757 0.2705 337 45 75 N/A N/A N/A 0.9012 -0.17956 9.79 0.1679 1.818 0.3506 339 45 75 N/A N/A N/A 0.7975 -0.20538 11.70 0.1490 1.627 0.3373 241 45 75 N/A		45	75	N/A	N/A	N/A	0.8547	-0.21033	9.63	0.2040	2.040	0.4116	2.639
337 45 75 N/A N/A N/A 0.9012 -0.17956 9.79 0.1251 1.757 0.2705 339 45 75 N/A N/A N/A 0.975 -0.20538 11.70 0.1816 0.3506 341 45 75 N/A N/A N/A 0.7975 -0.20538 11.70 0.1809 1.818 0.3373 341 45 75 N/A N/A N/A N/A N/A 0.793 1.900 0.1671 0.3582 2.684 A N/A N/A </td <td></td> <td>45</td> <td>75</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>0.7619</td> <td>-0.21271</td> <td>10.86</td> <td>0.1683</td> <td>1.694</td> <td>0.2616</td> <td>2.928</td>		45	75	N/A	N/A	N/A	0.7619	-0.21271	10.86	0.1683	1.694	0.2616	2.928
339 45 75 NiA N/A N/A 0.7975 -0.21033 10.00 0.1679 1.818 0.3506 341 45 75 NiA N/A N/A 0.7975 -0.20538 11.70 0.1490 1.627 0.3373 341 45 75 N/A N/A 0.7975 -0.20538 11.70 0.1490 1.627 0.3373 1 N N/M N/M N/M N/M N/A N/A 1.670 0.1490 1.627 0.3373 1 N N/A 1.600 0.4140 3.511 N 1 N/A N/A N/A N/A N/A 0.1793 1.6160 0.3447 3.145 N N 1 N/A N/A N/A N/A 0.1791 1.958 0.3040 3.192 N N N N		45	75	N/A	N/A	N/A	0.9012	-0.17956	9.79	0.1251	1.757	0.2705	2.440
341 45 75 N/A N/A 0.7975 -0.20538 11.70 0.1490 1.627 0.3373 341 45 75 N/A N/A N/A 0.7975 -0.20538 11.70 0.1490 1.627 0.3373 1 N/M N/M N/M N/M N/M N/A 1.875 0.3582 2.684 0.3373 1 N/A N/A N/A N/A N/A 0.1732 1.875 0.3582 2.684 0.3263 1 N/A N/A N/A N/A 0.1734 2.158 0.3145 3.145 1 N/A N/A N/A N/A 0.1734 2.158 0.3145 3.145 1 N/A N/A N/A N/A N/A 0.1734 2.158 0.3145 3.145 1 N/A N/A N/A 0.1734 <td></td> <td>45</td> <td>75</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>0.8886</td> <td>-0.21033</td> <td>10.00</td> <td>0.1679</td> <td>1.818</td> <td>0.3506</td> <td>2.754</td>		45	75	N/A	N/A	N/A	0.8886	-0.21033	10.00	0.1679	1.818	0.3506	2.754
NW1 NW1 NC1 NC1 <td></td> <td>45</td> <td>75</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>0.7975</td> <td>-0.20538</td> <td>11.70</td> <td>0.1490</td> <td>1.627</td> <td>0.3373</td> <td>3.075</td>		45	75	N/A	N/A	N/A	0.7975	-0.20538	11.70	0.1490	1.627	0.3373	3.075
NW1 NW1 NW1 NC1 NC1 <td></td>													
Image Image <th< th=""><th></th><th></th><th></th><th>NW1</th><th>١Ŵ</th><th>NW1</th><th>IWI</th><th>NC1</th><th>NC1</th><th>sci</th><th>NC1</th><th></th><th></th></th<>				NW1	١Ŵ	NW1	IWI	NC1	NC1	sci	NC1		
N/Å N/A N/A 0.1732 1.875 0.3582 2.684 N/A N/A N/A 0.1671 2.661 0.2502 4.121 N/A N/A N/A 0.1795 1.963 0.4104 3.511 N/A N/A N/A 0.1795 1.963 0.4104 3.511 N/A N/A N/A 0.1734 2.158 0.3298 4.075 N/A N/A N/A 0.1751 1.810 0.3447 3.145 N/A N/A N/A 0.1751 1.958 0.3604 3.192 N/A N/A N/A 0.1751 1.958 0.3604 3.192 N/A N/A N/A 0.1737 2.104 0.3642 3.192 N/A N/A N/A 0.1737 2.104 0.3642 3.192 N/A N/A N/A 0.1737 2.104 0.3642 3.192 N/A N/A N/A N/A 0.1				Hav (m)	Tav (s)	Hmax (m)	Tmax (s)	Hav (m)	Tav (s)	Hmax (m)	Tmax (s)		
N/A N/A N/A 0.1671 2.661 0.2502 4.121 N/A N/A N/A 0.1795 1.963 0.4104 3.511 N/A N/A N/A 0.1795 1.963 0.4104 3.511 N/A N/A N/A 0.1734 2.158 0.3298 4.075 N/A N/A N/A 0.1734 2.158 0.3298 4.075 N/A N/A N/A 0.1751 1.810 0.3447 3.145 N/A N/A N/A 0.1751 1.958 0.3604 3.192 N/A N/A N/A 0.1737 2.104 0.3542 3.192 N/A N/A N/A 0.1321 1.835 0.2810 2.5569 N/A N/A N/A 0.1321 1.756 0.3188 3.508 N/A N/A N/A 0.1491 1.756 0.3188 3.508 N/A N/A N/A 0.1491 <td< td=""><td></td><td></td><td></td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>0.1732</td><td>1.875</td><td>0.3582</td><td>2.684</td><td></td><td></td></td<>				N/A	N/A	N/A	N/A	0.1732	1.875	0.3582	2.684		
N/A N/A N/A 0.1795 1.963 0.4104 3.511 N/A N/A N/A 0.1938 1.960 0.4419 3.241 N/A N/A N/A 0.1734 2.158 0.3298 4.075 N/A N/A N/A 0.1734 2.158 0.3298 4.075 N/A N/A N/A 0.1751 1.810 0.3447 3.145 N/A N/A N/A 0.1751 1.958 0.4040 3.859 N/A N/A N/A 0.1731 1.958 0.3604 3.192 N/A N/A N/A 0.1321 1.835 0.2810 2.559 N/A N/A N/A 0.1321 1.835 0.2104 2.5569 N/A N/A N/A 0.1491 1.756 0.3188 3.508 N/A N/A N/A 0.1491 1.756 0.3188 3.508 N/A N/A N/A 0.1491 <td< td=""><td></td><td></td><td></td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>0.1671</td><td>2.661</td><td>0.2502</td><td>4.121</td><td></td><td></td></td<>				N/A	N/A	N/A	N/A	0.1671	2.661	0.2502	4.121		
N/A N/A N/A 0.1938 1.960 0.4419 3.241 3.241 N/A N/A N/A 0.1734 2.158 0.3298 4.075 3.145 N/A N/A N/A 0.1734 2.158 0.3298 4.075 3.145 N/A N/A N/A 0.1751 1.810 0.3447 3.145 3.145 N/A N/A N/A 0.1751 1.958 0.3604 3.192 3.859 N/A N/A N/A 0.1737 2.104 3.559 3.211 3.859 3.508 5.508 5.508 5.508 <t< td=""><td></td><td></td><td></td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>0.1795</td><td>1.963</td><td>0.4104</td><td>3.511</td><td></td><td></td></t<>				N/A	N/A	N/A	N/A	0.1795	1.963	0.4104	3.511		
N/A N/A N/A 0.1734 2.158 0.3298 4.075 1 N/A N/A N/A 0.1590 1.810 0.3447 3.145 1 N/A N/A N/A 0.1590 1.810 0.3447 3.145 1 N/A N/A N/A 0.1751 1.958 0.3604 3.192 1 N/A N/A N/A 0.1737 2.104 0.3542 3.211 1 N/A N/A N/A 0.1321 1.835 0.3542 3.211 1 N/A N/A N/A 0.1321 1.756 0.3188 3.508 1 N/A N/A N/A 0.1491 1.756 0.3188 3.508 1 N/A N/A N/A 0.1491 1.756 0.3188 3.508 1 MA N/A N/A N/A 0.1491 1.756 0.3188 3.508 1 MA N/A N/A				N/A	N/A	N/A	N/A	0.1938	1.960	0.4419	3.241		
N/A N/A N/A 0.1590 1.810 0.3447 3.145 N/A N/A N/A 0.1999 2.185 0.4040 3.859 N/A N/A N/A 0.1751 1.958 0.3604 3.192 N/A N/A N/A 0.1751 1.958 0.3604 3.192 N/A N/A N/A 0.1321 1.835 0.2810 2.559 N/A N/A N/A 0.1321 1.835 0.2810 2.559 N/A N/A N/A 0.1321 1.835 0.3542 3.211 N/A N/A N/A 0.1491 1.756 0.3188 3.508 M/A N/A N/A 0.1491 1.756 0.3188 3.508 MA N/A N/A 0.1491 1.756 0.3188 3.508 Moth center wave probe 0.04040 center wave probe 0.04040 1.756 0.3188 3.508				N/A	N/A	N/A	N/A	0.1734	2.158	0.3298	4.075		
N/A N/A N/A 0.1999 2.185 0.4040 3.859 N/A N/A N/A 0.1751 1.958 0.3604 3.192 N/A N/A N/A 0.1731 1.958 0.3604 3.192 N/A N/A N/A 0.1737 2.104 0.3542 3.211 N/A N/A N/A 0.1737 2.104 0.3542 3.213 N/A N/A N/A 0.1491 1.756 0.3188 3.508 N/A N/A N/A 0.1491 1.756 0.3188 3.508 M/A N/A N/A 0.1491 1.756 0.3188 3.508 Modelined as tau/Average Wave Period @ north center wave probe 0.3188 3.508 0.308 0.3188 0.3508 on between two wave probe signals. If two signals are identical, Rxy (tau) = 0.600000000000000000000000000000000000				N/A	N/A	N/A	N/A	0.1590	1.810	0.3447	3.145		
N/A N/A N/A 0.1751 1.958 0.3604 3.192 N/A N/A N/A 0.1321 1.835 0.2810 2.559 N/A N/A N/A 0.1737 2.104 0.2810 2.559 N/A N/A N/A 0.1737 2.104 0.3542 3.211 N/A N/A N/A 0.1491 1.756 0.3188 3.508 N/A N/A N/A 0.1491 1.756 0.3188 3.508 of fined as tau/Average Wave Period @ north center wave probe 0.03188 3.508 0.0000 on between two wave probe signals. If two signals are identical, Rxy (tau) = 0.0000000000000000000000000000000000				N/A	N/A	N/A	N/A	0.1999	2.185	0.4040	3.859		
N/A N/A N/A 0.1321 1.835 0.2810 2.559 N/A N/A N/A 0.1737 2.104 0.2510 2.559 N/A N/A N/A 0.1737 2.104 0.3542 3.211 N/A N/A N/A 0.1491 1.756 0.3188 3.508 defined as tau/Average Nave Period 0.04th center wave probe 3.508 on between two wave probe signals. If two signals are identical, Rxy (tau) =				N/A	N/A	N/A	N/A	0.1751	1.958	0.3604	3.192		
N/A N/A N/A 0.1737 2.104 0.3542 3.211 N/A N/A N/A 0.1491 1.756 0.3188 3.508 Aefined as tau/Average Wave Period @ north center wave probe Month center wave probe N/A N/A 1.756 0.3188 3.508 Aefined as tau/Average Wave Period @ north center wave probe If two signals are identical, Rxy (tau) = 16 16 16 10				N/A	N/A	N/A	N/A	0.1321	1.835	0.2810	2.559		
N/A N/A N/A 0.1491 1.756 0.3188 3.508 defined as tau/Average Wave Period @ north center wave probe				N/A	N/A	N/A	N/A	0.1737	2.104	0.3542	3.211		
defined as tau/Average Wave Period @ north center wave probe on between two wave probe signals. If two signals are identical, Rxy (tau) = /e probe signals.				N/A	N/A	N/A	N/A	0.1491	1.756	0.3188	3.508		
defined as tau/Average Wave Period @ north center wave probe on between two wave probe signals. If two signals are identical, Rxy (tau) = /e probe signals.													
on between two wave probe signals. If two signals are identical, Rxy (tau) = //e probe signals.	NOTE: % V	Vave P	eriod		efined as tai	u/Average	Wave Perio		enter wave	probe			
	Rxy (tau) - c	ross co	orrelat		between tw	vo wave pro	be signals.		If two sign:	als are ident	ical, Rxy (ta	П	
	tau - time la	g (s) b€	etweel		probe signa	ls.							

Validation of GEDAP	n of	GED,	AP Program		'WAVETRAN' - Irregular Waves in the	- Irregu	lar Wave	s in the	OEB:		
IRREGULAR WAVES - Data S	WAVE	S - Dat	Ð								
)		Mean	Mean	Sig. Wave	Transfer E	Transfer EW1 to MW1		Transfer V	Transfer WW1 to MW1	
	Ţ	T2	Freq.	Period	Height	Rxy (tau)	tau	% Wave	Rxy (tau)	tau	% Wave
Filename	(s)	(s)	(Hz)	(s)	(m)		(s)	Period		(s)	Period
NOTE: OEB i	in Flum	ne Mode	in Flume Mode (waves gen	generated 0 deg	E •	vall), blankin	from west wall), blanking walls install	lled covering	all north	beaches.	
IR_001_001	60	100	0.40	2.50	0.10	0.9752	0.033579	1.74	0.9616	-0.025031	1.29
IR_002_001	60	100	0.40	2.50	0.20	0.9569	0.064106	3.20	0.9376	-0.044568	2.22
IR_003_001	60	100	0.40	2.50	0.30	0.9259	0.089748	4.00	0.9216	-0.057999	2.58
IR_004_001	60	100	0.40	2.50	0.40	0.9302	0.11661	4.88	0.9105	-0.071431	2.99
IR_005_001	60	100	0.40	2.50	0.50	0.9397	0.1044	4.39	0.9121	-0.08242	3.47
IR_006_001	60	100	0.40	2.50	0.60	0.9115	0.11661	4.89	0.9107	-0.1105	4.63
IR_007_001	60	100	0.50	2.00	0.05	0.9626	-0.018926	1.10	0.9785	0.042127	2.45
IR_008_001	60	100	0.50	2.00	0.10	0.9508	0.033579	2.12	0.9262	-0.034799	2.20
IR_009_001	60	100	0.50	2.00	0.15	0.9055	0.098295	5.70	0.8849	-0.073873	4.29
IR_010_001	60	100	0.50	2.00	0.20	0.9668	0.043348	2.05	0.9576	-0.038462	1.82
IR_011_001	60	100	0.50	2.00	0.25	0.9149	0.088526	4.70	0.8549	-0.079978	4.25
IR_012_001	60	100	0.50	2.00	0.30	0.9160	0.09219	4.38	0.8515	-0.087304	4.15
IR_013_001	60	100	0.50	2.00	0.35	0.9272	0.10806	5.13	0.8091	-0.10196	4.84
IR_014_001	60	100	0.50	2.00	0.40	0.9172	0.12394	6.22	0.813	-0.12149	6.09
IR_015_001	60	100	0.60	1.67	0.05	0.9434	-0.029915	2.49	0.9074	-0.017705	1.47
016	60	100	0.60	1.67	0.10	0.9130	0.027474	2.22	0.8501	-0.057999	4.68
IR_017_001	60	100	0.60	1.67	0.15	0.7684	0.14469	10.98	0.7516	-0.13615	10.33
IR_018_001	60	100	0.60	1.67	0.20	0.7966	0.15446	10.98	0.6904	-0.16667	11.85
IR_019_001	60	100	0.60	1.67	0.25	0.8688	0.10562	6.98	0.7066	-0.18377	12.14
IR_020_001	60	100	0.60	1.67	0.30	0.8654	0.1276	7.80	0.7366	-0.15935	9.75
IR_021_001	09	100	0.70	1.43	0.05	0.9326	-0.050673	4.63	0.9503	0.078758	7.19
IR_022_001	60	100	0.70	1.43	0.10	0.7710	0.14958	14.94	0.7172	-0.1569	15.67
IR_023_001	60	100	0.70	1.43	0.15	0.7936	0.087305	6.96	0.7616	-0.10074	8.03
IR_024_001	60	100	0.70	1.43	0.20	0.8373	0.095853	7.72	0.7348	-0.097073	7.82

IRREGULAR WAVES - Data Set 2:	AVES - Data	Set 2:								· · · · · · · · · · · · · · · · · · ·		
	Mean	Maan	Sir Wave	Variation	Variation of basic wave narameters:	ia naramat					-	
	Fred	Period	Height	EW1	WW1	WW1	WW1	WM1	MW1	MW1	MW1	MW1
Filename	(Hz)	(s)	(m)	Tmax (s)	Hav (m)	Tav (s)	Hmax (m)	Tmax (s)	Hav (m)	Tav (s)	Hmax (m)	Tmax (s)
<u>=</u> .	Flume Mode ((waves generated	0 deg. f	rom west wall)	, blanking	walls installed	led covering	all north beaches.	aches.			
IR 001 001	0.40	2.50	0.10	2.701	0.0675	1.715	0.1119	2.786	0.0730	1.933	0.1372	2.768
IR 002 001	0.40	2.50	0.20	2.829	0.1408	1.991	0.2405	2.883	0.1476	2.005	0.2444	2.777
IR 003 001	0.40	2.50	0.30	2.891	0.2002	1.995	0.3364	2.870	0.2329	2.246	0.3914	3.384
IR 004 001	0.40	2.50	0.40	3.288	0.2685	2.103	0.4294	2.663	0.3108	2.388	0.4947	3.279
IR_005_001	0.40	2.50	0.50	2.655	0.3211	2.101	0.5471	2.733	0.3390	2.377	0.6124	3.378
IR_006_001	0.40	2.50	0.60	3.080	0.3290	1.997	0.6056	2.693	0.3954	2.387	0.6800	3.228
IR 007 001	0.50	2.00	0.05	2.613	0.0302	1.713	0.0573	3.217	0.0307	1.716	0.0592	3.090
IR 008 001	0.50	2.00	0.10	2.860	0.0639	1.521	0.1183	2.633	0.0688	1.585	0.1292	2.994
IR 009 001	0.50	2.00	0.15	2.791	0.1024	1.712	0.1710	2.983	0.1098	1.723	0.1905	3.157
IR 010 001	0.50	2.00	0.20	2.898	0.1148	1.801	0.2035	3.133	0.1328	2.117	0.2171	3.059
IR_011_001	0.50	2.00	0.25	2.972	0.1599	1.805	0.2646	3.297	0.1614	1.883	0.2915	2.870
IR_012_001	0.50	2.00	0.30	2.851	0.1870	1.805	0.3393	3.191	0.2044	2.106	0.3600	2.988
IR_013_001	0.50	2.00	0.35	2.725	0.2118	1.800	0.3924	2.537	0.2280	2.106	0.3715	2.799
IR_014_001	0.50	2.00	0,40	2.773	0.2429	1.889	0.3860	2.960	0.2432	1.994	0.4364	2.888
IR_015_001	0.60	1.67	0.05	2.163	0.0292	1.132	0.0594	1.948	0.0272	1.203	0.0554	2.396
IR_016_001	0.60	1.67	0.10	2.224	0.0524	1.167	0.1146	2.043	0.0517	1.240	0.1052	2.058
IR_017_001	0.60	1.67	0.15	2.532	0.0790	1.211	0.1515	2.224	0.0847	1.318	0.1852	2.273
IR_018_001	09.0	1.67	0.20	2.140	0.1021	1.342	0.2097	2.256	0.1005	1.407	0.2422	2.419
IR 019 001	0.60	1.67	0.25	2.411	0.1225	1.447	0.2858	2.285	0.1202	1.514	0.2632	2.318
IR_020_001	0.60	1.67	0.30	2.346	0.1446	1.508	0.3169	2.340	0.1438	1.635	0.3094	2.606
IR_021_001	0.70	1.43	0.05	1.972	0.0308	1.034	0.0569	1.656	0.0271	1.095	0.0485	2.038
IR_022_001	0.70	1.43	0.10	1.794	0.0516	0.984	0.1129	1.773	0.0534	1.001	0.1181	1.783
IR_023_001	0.70	1.43	0.15	1.652	0.0700	1.071	0.1559	2.245	0.0777	1.255	0.1711	2.056
IR_024_001	0.70	1.43	0.20	1.973	0.0919	1.192	0.2067	1.984	0.0898	1.242	0.1994	1.883
									-			
NOTE: % Wave	% Wave Period has been defined	been defined	as tau/Aver	age Wave Period	8	north center wave probe	ve probe					
Rxy (tau) - cross	- cross correlation function between two wav	unction betwe	wav	e probe signals.	ls.		If two signals		are identical, Rxy (tau)	u) = 1.0.		
tau - time lag (s) between two wave probe signals.) between two	wave probe	signals.									