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0.1  SUMMARY 
 
In order to interpret the electrical output signals from a dynamometer (dyno), precise 
calibration is required.  Furthermore, when a system of multiple dynos is constructed, 
additional calibration must be done to account for interactional inaccuracies.  
 
In order to properly calibrate a dyno system, a theoretical calculation of loads is 
performed with its results compared alongside the actual measured load values.  This 
process was performed on the podded propeller setup as part of the “Podded Propellers in 
Ice” project. 
 
The next, and most enlightening step is the construction of a calibration matrix using a 
linear least squares approximation.  This matrix represents the transformation of 
measured load values to their adjusted accurate values.  When applied to raw dyno data, 
the matrix yields properly adjusted data, accounting for inaccuracies due to multi-dyno 
interaction.   
 
As expected, a certain degree of error is present in the matrix coefficients.  This error is 
acceptable when expressed as a percentage of the dynamometer ranges. 
 
The following information is currently being examined for the purposes of direct 
application in “Podded Propellers in Ice” test results.  
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1  INTRODUCTION 
 
Dynamometers (dynos), while very valuable scientific tools, require calibration in order 
to produce meaningful data output.  Calibrations are performed by applying known forces 
in various configurations.  The theoretical induced forces are calculated using statics 
methods and compared to the dyno readings.  This process enables the construction of a 
transformation matrix.  Contained in the matrix are the coefficients required to convert 
the dyno readings to meaningful force and moment values. 
 
1.1  Factory Calibration 
 
A dynamometer consists of a network of wires carrying an electrical current.  As the 
wires are strained (due to a force/moment) the dimensions of the wire (cross-sectional 
area. length) are slightly altered, therefore changing the electrical signal by a small 
amount).  This voltage change alone is of little use in a mechanical sense.  But once we 
establish a calibration equation, this voltage reading becomes a direct indicator of applied 
force/moment.  There exists an equation of the form 
 

OCCVF +=  
   where F = force applied 
             V = voltage output 

          C = calibration coefficient 
             Co = y-intercept (i.e. value of F when R=0) 
 
This equation is determined by the manufacturer prior to distribution of the dyno for use 
in the field.  For the purposes of the “Podded Propellers in Ice” study we require a system 
of three dynos, strategically located for optimum analysis.  Once the dynos are arranged 
properly (section 2) a further calibration is required to account for affects due to the 
interaction of the dynos in a system (cross-talk etc.).  This additional calibration is 
described in detail in the following sections.      
 
   
 
2  SETUP 
 
   
The propeller/shaft is fitted with 3 dynos – one attached to the blade, one on the forward 
end of the shaft, and one on the aft end of the shaft.  As mentioned above each of these 
dynos were independently calibrated at the factory where they were fabricated.   
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Figure 1 - Single Dynamometer 

 
After the system of dynos is put together to suit the needs of the project, further 
calibration is required in order to evaluate the behavior of the dynos as a system.  
Problems such as cross-talk are common and must be accounted for though calibration.   
 
   
The components are combined to form the system seen below:   
 

 
Figure 2 - Dynamometer system setup 

 
 

 
 
During calibrations, the following frames of reference were used for each component: 
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Figure 3 - Frames of Reference for Dynos 

 
It is essential to note that the propeller blade is rotated to various angles (θ) during the 
calibrations.  Therefore the above blade reference frame is not fixed relative to the shaft; 
rather it is rotating about its own y-axis as the blade rotates.    
 
3  STATICS CALCULATIONS 
 
 
In order to calibrate the dyno system, the measured forces/moments must be compared to 
the theoretical (ideal) values.  During calibration, known forces are applied at the center 
of the propeller, these forces must be transferred to the dyno locations using theoretical 
statics methods.  The six principal equations of statics are: 
 
ΣFx = 0   ΣMx = 0    
ΣFy = 0   ΣMy = 0 
ΣFz = 0   ΣMz = 0 
 
 
Using these six relationships along with reasonable simplifying assumptions such as rigid 
body mechanics, the theoretical values can be found for the forward and aft dynos and 
compared to the actual measured loads.     
 
 
 
The blade dyno presents a different challenge in that it is rotating, thus trigonometric 
relationships are employed to describe the forces and moments as functions of the angle 
of rotation (θ).  See appendix A for the comprehensive data/calculation spreadsheet. The 
results for the statics calculations are included in the following sections (Note that 
subscripts “B,F,A” represent the blade, forward, and aft dyno values respectively.  A force 
with no subscript represents an applied load during calibration): 
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3.1  Blade Dyno 
 
After calculation, the blade dyno transformation equations (equations which transfer 
loads from applied reference frame to blade reference frame) were found to be: 
 
FxB = -FxCosθ - FySinθ 
 
FyB = Fz
 
FzB = -FyCosθ + FxSinθ 
 
MxB = MyCosθ + MxSinθ 
 
MyB = Mz 
 
MzB = MyCosθ - MxSinθ 
 
 
As expected, a certain degree of error is associated with these calculations when 
compared to the measured values.  These errors are:  
 
 Blade      
 Fx Fy Fz Mx My Mz 
        
Averages Difference 0.970 0.312 0.948 0.721 0.231 0.077
Max Difference 55.667 57.420 94.712 21.173 13.241 16.819
Dyno Range 2780.000 2540.000 4490.000 112.900 113.000 113.700

Max Error % 2.002 2.261 2.109 18.754 11.718 14.792
Average Error% 0.035 0.012 0.021 0.638 0.204 0.068

 
Several max error values create concern for accuracy in the test.  Fortunately, the average 
error values seem to fall into an acceptable range.   
 
3.2  Forward Dyno 
 
The forward dyno transformation equations are: 
 
FxF = -1.2871Fx – 2.215My
 
FyF = 2.218Mx
 
FzF ≈ -Fz        (approx.) 
 
MxF = 0.107Mx
 
MyF = 0.0621Fx + 0.107My
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MzA = 0  (shaft is free to rotate) 
 
Notice that in this case a translation of forces is required as apposed to the rotation seen 
in section 3.1. 
 
 
Forward dyno error: 
 
 Forward     
     Fx   Fy     Fz     Mx      My 
      
Averages Difference -3.754 -0.965 -10.295 -0.049 0.465
Max Difference 209.113 45.965 79.921 3.229 11.117
Dyno Range 2690.0 2700.0 4490.0 121.4 105.9
Max Error % 7.774 1.702 1.780 2.660 10.498
Average Error% 0.140 0.036 0.229 0.041 0.439
 
 
 3.3  Aft Dyno 
 
Aft dyno transformation equations: 
 
FxA = 0.2871Fx + 2.215My
 
FyA = 2.218Mx
 
FzA = bizarre readings (data not considered) 
 
MxA = 0.1492Mx
 
MyA = not functioning properly (data not considered) 
 
MzA = 0  (shaft is free to rotate) 
 
With error: 
 
 Aft   
     Fx     Fy     Mx 
    
Averages Difference 2.939 0.577 0.020
Max Difference 59.582 37.244 2.429
Dyno Range 2230.0 2240.0 56.4
Max Error % 2.672 1.663 4.306
Average Error% 0.132 0.026 0.036
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3.4  Shaft Torque 
 
Shaft Torque = Mz
 
The error here is also fairly reasonable, yet perhaps more inconsistent than the blade dyno 
values: 
  
 
 Torque 
  
  
Averages Difference 0.269 
Max Difference 10.769 
Dyno Range 165.1 
Max Error % 6.523 
Average Error% 0.163 
  
  
4  CORRELATION GRAPHS 
 
When theoretical values are graphed against measured values, a trend should appear 
indicating that the measured values are reasonable and valid.  Ideally the graph would 
have a slope of 1.0 and a correlation factor of 1.0 as seen in the theoretical example 
below : 
 

Forward Dyno

y = x
R2 = 1
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As expected, this perfect trend does not appear in “real world” data.  Instead, less 
dramatic, yet significant trends are sought in order to measure the degree of resemblance 
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between measured and calculated (theoretical) data.  A realistic trend may resemble the 
following: 
 
 
 
 

Shaft Torque

y = 0.8008x - 0.2315
R2 = 0.8196
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 See appendix B for the blade dyno, forward dyno, aft dyno, and shaft torque graphs 
constructed from measured and calculated data. 
 
        
5  THE CALIBRATION MATRIX 
 
Denoting the number of calibration data as m, the calculated theoretical loads as P, and 
the measured loads as R, we are able to construct a calibration matrix.  This matrix 
contains coefficients which can be used directly in the field to produce sensible, useful 
data output from the dynos.   
 
5.1  Linear Least Squares Method 
 
The linear least squares method was employed in the construction of the calibration 
matrix.  Two slightly different forms were explored which will be discussed in the 
following two sections. 
 
5.1.1  MatLab least squares function method 
 
The first method used to calculate the calibration matrices involves the explicit least 
squares function in MatLab.  This is an iterative process, ideal for computer use, in which 
a tolerance is specified.  MatLab iterates the procedure until the required tolerance 
(accuracy) is achieved.  In basic form the code reads: 
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X = LSQR(A,B, TOL, MAXIT) 
 

Where the matrix algebra equation 
 

AX = B 
 
must be satisfied by solving for X.  The tolerance is assigned to TOL and the maximum 
number of iterations is assigned to MAXIT.  The finished code reads as follows: 
 
 
 
 
P_loads_12ch 
R_loads_12ch 
 
   F = P'; 
   Amean = R'; 
 
    N = size(F,1); 
    Imin = 1; 
    Imax = 920; 
 
    tol = 0.0001; 
    maxiter = 20; 
 
    for irow = 1:9 
        x = lsqr(Amean(Imin:Imax,1:9),F(Imin:Imax,irow),tol,maxiter); 
         
        CalMtx(irow,:) = x'; 
    end 
    CalMtx = inv(CalMtx) 
 
For an in-depth explanation of the MatLab function “LSQR”, consult a MatLab manual.   
When applied to the blade dyno case with a 6-channel system where P represents 
calculated loads and R represents measured loads we have:   
 
X = 
       Fx       Fy          Fz             Mx         My            Mz
    1.2739   -0.0312    0.0509    0.7771    1.1262   -0.0570 
   -0.0580    1.0225   -0.0005   -0.2578   -0.4933    0.0035 
   -0.3046    0.0659    1.0945    0.8037   -1.6174    0.5645 
    0.0122    0.0451    0.0151    1.7710   -0.0694    0.0325 
    0.8529   -0.0318    0.0254    0.2649    5.6040   -0.0491 
    0.2490   -0.0093    0.0071    0.0970    1.2804    0.6257 
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The 9-channel forward/aft/torque matrix appears as 
 
 
 
X = 
 
  1.0e+003 * 
 
         Forward      Aft 
              Fx           Fy            Fz           Mx            My          Fx           Fy        Mx   Torque 
   Fx   -0.1054    0.0054    0.0001   -0.1300   -2.2086    0.0009   -0.0056  0.0835  0.0002 
   Fy  -0.0419    0.0061    0.0000   -0.1462   -0.8677    0.0000   -0.0080  0.0930  0.0003 
    Fz  0.3319   -0.0050    0.0009    0.3759    6.8807    0.0003    0.0262  -0.2238  -0.0006 
   Mx -0.0026    0.0003    0.0000   -0.0066   -0.0530    0.0000   -0.0004  0.0049  0.0000 
   My -0.0019    0.0007    0.0000   -0.0216   -0.0392   -0.0000   -0.0012  0.0147  0.0000 
    Fx  0.1774   -0.0046   -0.0000    0.1993    3.6788    0.0004    0.0133  -0.1403  -0.0005 
    Fy  0.0897   -0.0019    0.0000    0.1230    1.8577    0.0003    0.0082  -0.0608  -0.0004 
    Mx 0.0090   -0.0005   -0.0000    0.0174    0.1859   -0.0000    0.0009  -0.0082  -0.0000 
  Trq.-0.0167    0.0003   -0.0000   -0.0200   -0.3454   -0.0000   -0.0014  0.126    0.0010 
 
This method produced error values which create concern.  For this reason, we explore a 
second approach. 
 
 
5.1.2  Least squares matrix algebra method 
 
The second method is also a least squares approximation, but taken from first principles. 
The following matrix relationship is used to solve for matrix “C”: 
 
C6,6 = (P6,m)(Rm,6)T[(R6,m)(Rm,6)T]-1 

 

This method was found to yield the most meaningful results.  Therefore this method will 
be employed in full and discussed in detail.  The above equation applies to a 6-channel 
system, which expands to:   
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A 6x6 matrix is therefore composed of calibration coefficients ci,j.  These entries 
represent the relative contributions of each channel to one and other, thus: 
 
Fx(actual) = Fxc1,1 + Fyc1,2 + Fzc1,3 + Mxc1,4 +Myc1,5 + Mzc1,6
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Ideally, the calibration matrix should resemble the 6x6 identity matrix 
 

1  0  0  0  0  0 
0  1  0  0  0  0 
0  0  1  0  0  0 
0  0  0  1  0  0 
0  0  0  0  1  0 
0  0  0  0  0  1 

 
Due to various error sources and load cell cross talk, as well as unavoidable secondary 
stresses, this is not the case.   
 
After the matrix is constructed, residual values are calculated.  These residual values are 
obtained using the equation 

 
Residual = P – (C* R) 

 
as a measure of the accuracy of calibration matrix C.   
 
It is important to note that at early stages of calculations, significant amounts of data 
appeared to be “outlying data” and created difficulty in the formation of calibration 
matrices.  For this reason, some data has been disregarded to enable MatLab to properly 
construct the matrices.  With this said, the remaining data represents the initial population 
fairly well and is indicative of the correct, accurate values.  As mentioned earlier, 
abnormal readings are expected due to various error sources.   
 
When blade dyno data is used, the above least squares expression produces the following 
matrix of coefficients: 
                                                                                    
C = 
           Fx                  Fy                 Fz                  Mx              My                Mz
  Fx   0.9112    0.0402   -0.0327   -0.3547   -0.1931    0.1131 
  Fy  -0.0179    0.9743   -0.0027    0.1375    0.0913   -0.0045 
  Fz   0.0958   -0.0289    0.9113   -0.4794    0.4081   -0.7564 
  Mx -0.0106   -0.0248   -0.0075    0.5688    0.0101   -0.0229 
  My -0.1386    0.0008    0.0012    0.0294    0.2069    0.0010 
  Mz -0.0767    0.0013    0.0013   -0.0014   -0.3413    1.5634 
 
Residual values for the blade dyno are: 
 
Residual Minimum = 
    0.0019    0.0001    0.0045    0.0000    0.0000    0.0000 
Residual Maximum = 
   50.0289   57.7510   86.8366   12.6245   13.9002   13.1683 
Residual Mean = 
   -0.6048    0.2696    1.2362    0.5620    0.1434   -0.3020 
(0.021%) ( 0.0101%) (0.013%)(1.095%)(0.127%)(0.266%) 
Residual Standard Deviation = 
    8.1404    5.1960    8.9139    3.6143    1.6967    3.9505 
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Graphs of residual values can be found in appendix C.  The above values are quite 
reasonable and reflect the expected trend of dominant diagonal coefficients.  Continuing 
with this principal, the forward dyno transformation matrix (excluding Mz for accuracy 
{see below}) is: 
 
C = 
            Fx                  Fy                 Fz                  Mx              My                
   Fx  1.4433    1.3890   -0.0274  -23.9980    7.7752 
   Fy - 0.1305    0.2085   -0.0019    7.6337   -3.3540 
   Fz   0.1444   -2.0040    1.1347   35.0696    2.8613 
   Mx -0.0047    0.0048    0.0001    0.4329   -0.1263 
   MY-0.0693   -0.0669    0.0013    1.1547   -0.3682 
 
With residual values: 
 
Residual Minimum = 
 0.0249    0.0048    0.1163    0.0001    0.0004 
Residual Maximum = 
   99.7688   38.7314   74.2447    1.9203   11.0347 
Residual Mean = 
   -0.1109    0.2802   -7.3671    0.0179    0.0047 
Residual Standard Deviation = 
   26.5143    8.3904   25.5028    0.4307    1.2777 
 
 
It is clear from these values that the forward dyno readings show less consistent trends 
then their blade dyno counterparts.  As stated above, the Mz channel is not included in the 
matrix due to its inaccuracy.  In theory, all Mz values for both the forward and aft dynos 
have a magnitude of zero because the shaft is free to rotate within the dyno.  
Unfortunately the measured values are non-zero and thus create difficulties in the matrix 
construction in MatLab.  The inaccuracies involved with the forward and aft dynos are 
due to many factors which are unavoidable in the real world.  These include, slight 
deflections in the material that is assumed rigid, internal residual stresses, and those error 
sources mentioned above.  For this reason, a more in-depth analysis of force/moment 
relationships has been conducted yielding several calibration matrices in order to better 
understand their interdependence.  If shaft torque is included in the above matrix, the 
coefficients become: 
 
 
C = 
           Fx                  Fy                 Fz                  Mx              My           Torque 
   Fx   1.4531    1.5401   -0.0273  -26.1735   7.9559   -0.1806 
   Fy  -0.1262    0.2749   -0.0018    6.6783   -3.2747   -0.0793 
   Fz     0.1360   -2.1355    1.1346   36.9626    2.7041    0.1572 
   Mx -0.0046    0.0069    0.0001    0.4033   -0.1238   -0.0025 
   My -0.0698   -0.0743    0.0013    1.2599   -0.3770    0.0087 
   Trq 0.0052    0.0979   -0.0000   -1.4008    0.0998    1.0294 
 
Residual Minimum = 
    0.0178    0.0028    0.0539    0.0010    0.0003    0.0001 
Residual Maximum = 
   99.5213   38.8239   74.2615    1.9155   11.0406   10.6234 
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Residual Mean = 
   -0.1354    0.2695   -7.3458    0.0175    0.0059    0.3534 
Residual Standard Deviation = 
   26.4938    8.3784   25.4930    0.4305    1.2767    2.7175 
 
The following 9x9 matrix shows the relationship between forward dyno, aft dyno and 
torque dyno readings, along with shaft torque: 
C =  
           Fx                  Fy                 Fz                  Mx              My                 Fx                  Fy                 Mx                Torque 
  Fx   1.4857    1.6034    0.0059  -32.9238    5.0791    0.8946   -3.1520    29.4884    -0.2444 
  Fy   -0.1233    0.3440    0.0000    6.6181   -3.1690    0.0132   -0.0145    2.3200      -0.0720 
  Fz      0.1330   -3.1018    1.1256   32.2797    3.9780   -0.9278   -1.5089   -12.9292   -0.2891 
  Mx  -0.0043    0.0095    0.0002    0.3810   -0.1074   -0.0024   -0.0079    0.1785     -0.0032 
  My  -0.0714   -0.0772   -0.0003    1.5832   -0.2402   -0.0426    0.1512    -1.4156     0.0118 
   Fx  -0.2813   -2.6136   -0.0249   43.3719   -0.4739    0.1497    1.6107   -22.1049   0.3081 
   Fy  -0.0079   -0.0721   -0.0080   -6.5431    0.9888   -0.2324    0.6787   -3.5605      0.1184 
   Mx  0.0036    0.0068   -0.0005   -0.5646    0.1670   -0.0184    0.0199    0.2083       0.0061 
   Trq 0.0025    0.1623    0.0001   -1.6592   -0.1217    0.0526    0.0714    0.1574      1.0211 
 
 
 
Residual Minimum = 
    0.0155    0.0054    0.0214    0.0002    0.0007    0.0006    0.0045    0.0003    0.0021 
Residual Maximum = 
  252.9647   39.2329   67.0010    1.9236   11.2014   79.6470   37.1281   2.7809   10.4908 
Residual Mean = 
   -0.4987    0.2784   -7.4005     0.0185    0.0232   -1.6091   -0.6742    -0.0407    0.3063 
 (0.019%)  (0.010%) (0.165%) (0.015%) (0.022%)(0.072%)(0.030%)(0.072%)(0.186%) 
Residual Standard Deviation = 
   26.8538    8.3290   24.4951    0.4275    1.2952   14.7402    8.7776       0.6262    2.9986 
 
 
 
         
Excluding moments, the above matrix appears as 
 
C = 
               Forward                               Aft 
               Fx                  Fy                 Fz                  Fx                  Fy                                         
    Fx   1.2917   -0.4410   -0.0066    1.1054   -1.4603 
     Fy    0.0142    0.7231   -0.0087   -0.0210    0.1497 
     Fz    0.0135   -1.0781    1.1299   -0.6266   -2.1908 
     Fx   -0.2321   -0.0290   -0.0167    0.1638    0.1017 
     Fy     -0.0569   -0.4585   -0.0002   -0.2570    0.4237 
 
Residual Minimum = 
    0.0006    0.0009    0.0326    0.0016    0.0008 
Residual Maximum = 
   80.6085   38.9721   67.2584   64.5211   37.8689 
Residual Mean = 
   -0.8733    0.6096   -8.0169   -1.9048   -0.7813 
Residual Standard Deviation = 
   25.4299    8.5219   25.0765   16.0090    8.9337  
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Finally, the inclusion of Shaft Torque yields 
 
C = 
        Forward                               Aft 
              Fx                  Fy                 Fz                  Fx                  Fy            Torque                            
    Fx   1.2957   -0.4145   -0.0075    1.1502   -1.3914    0.1232 
     Fy   0.0096    0.6926   -0.0076   -0.0728    0.0701   -0.1424 
     Fz  -0.0021   -1.1825    1.1335   -0.8038   -2.4628   -0.4865 
     Fx  -0.2337   -0.0401   -0.0163    0.1449    0.0728   -0.0517 
     Fy  -0.0514   -0.4216   -0.0015   -0.1944    0.5199    0.1720 
     Trq0.0017     0.0712    0.0002    0.0355   0.1122     1.0569 
 
 
 
 
Residual Minimum = 
    0.0190    0.0021    0.0296    0.0120    0.0007    0.0011 
Residual Maximum = 
   79.9189   39.3595   66.0330   64.6480   37.7489   10.4638 
Residual Mean = 
   -0.8476    0.5799   -8.1185   -1.9156   -0.7454    0.3621 
Residual Standard Deviation = 
   25.4213    8.4860   24.8928   16.0051    8.8839    2.7049 
 
 
6  CONCLUSIONS 
 
The blade dyno, as expected, displays the strongest trends between calculated and 
measured values.  The transformation matrix method of section 5.1.2 produces reasonable 
coefficients which will likely be used directly in determining podded propeller ice 
loadings in ice tank tests.  The MatLab “LSQR” function method of section 5.1.1 appears 
to be more sensitive to outlying data and therefore reflects less consistent coefficients.    
As stated above the reasonable accuracy of these blade dyno values are expected because 
minimal force transformation is required from the location of applied force to the blade 
dyno reference frame.  It is simply a mater of rotation with respect to θ. 
 
The forward and aft dynos have presented a considerably larger task in establishing a 
suitable trend.  As mentioned above, this is largely due to unavoidable inaccuracies, as 
well as several simplifying assumptions involved in the statics calculations.  While many 
considerable trends exist, the calibration matrix contains several coefficients of large 
values, which suggests that others of smaller value can be neglected.  This issue is 
currently under investigation and a closer study of the MatLab code itself will uncover 
the significance of this range of values.  
 
There are still noticeable error values and poor trends in certain areas of the data 
collection.  If greater precision is required in the study, it is suggested that additional 
work be performed in the hopes of establishing an even more accurate data set for the 
future. 
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APPENDIX A – COMPLETE STATICS CALCULATIONS 
 

See podcalibrations2.xls [DataCals2 and DataBlade] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX B – CORRELATION GRAPHS 
 

See podcalibrations2.xls [Graphs2 and BladeGraphs] 
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APPENDIX C – RESIDUALS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
Blade Dyno – 6 Channel 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
Forward Dyno – 5 Channel 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
Forward/Aft/Shaft Torque – 9 Channel 
 

 



 

 


