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Extracting coupling and loss coefficients

from a ring resonator

W. R. McKinnon, D.-X. Xu, C. Storey, E. Post, A. Densmore, A. Delâge,

P. Waldron, J. H. Schmid, and S. Janz

Institute for Microstructural Sciences, National Research Council of Canada, 1200 Montreal

Road, Ottawa, Ontario, Canada, K1A 0R6

ross.mckinnon@nrc-cnrc.gc.ca

Abstract: A method is developed for extracting the coupling and loss coef-

ficients of ring resonators from the peak widths, depths, and spacings of the

resonances of a single resonator. Although the formulas used do not distin-

guish which coefficient is coupling and which is loss, it is shown how these

coefficients can be disentangled based on how they vary with wavelength or

device parameters.

OCIS codes: (130.3120) Integrated optics devices; (220.0220) Optical design and fabrica-

tion; (230.5750) Resonators; (130.6010) Sensors; (120.0120) Instrumentation, measurement,

and metrology.

References and links

1. D. Po, S.F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15, 9600-9605

(2007)

2. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi and J.-P. Laine, “Microring resonator channel dropping filters,” J.

Lightwave Technol. 15, 998-1005 (1997).
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1. Introduction

Ring resonators are an important optical component in modulators and switches [1], filters [2],

and sensors [3]. Their properties have been extensively studied and are treated in two recent

monographs [4], [5].

The performance of a ring resonator is determined by two coefficients: the self-coupling

coefficient t, which specifies the fraction of the amplitude transmitted on each pass of light

through the coupler; and the loss coefficient α , which specifies the fraction of the amplitude

transmitted per pass around the ring. In optimizing the design of a ring resonator, it is important

to extract and distinguish these coefficients, as they are governed by different factors in design

and fabrication. So far, most determinations of α and t from experimental measurements have

been based on a single resonance [6] - [8], or on special structures that are more complicated

than a single ring [8]. For the transmission past a simple ring resonator with a single coupler,

α and t enter the expression for the lineshape symmetrically [9], so that the same resonance

profile is produced if the two coefficients are interchanged. As a result, it cannot be determined

which extracted coefficient is α and which is t from the analysis of a single resonance [8].

More complicated structures have been proposed to disentangle the two coefficients [6]. This

involves comparing different devices, and assuming that the devices have identical couplers.

Here we show that an alternative approach is to examine how the coefficients vary with wave-

length or with device dimensions. In a ring with a directional coupler (DC), t varies approxi-

mately sinusoidally with wavelength [10]. On the other hand, α is not expected to depend this

strongly on λ when the bending losses are small. (For the devices in silicon-on-insulator (SOI)

considered here, the bending losses should be small for radii larger than 5 µm.) Alternatively,

if devices with different sizes of couplers or optical path length are available, the coefficients

can be identified by how they vary between devices. Resonators with different path lengths but

similar couplers should have similar t but different α , for example.

Through analyzing SOI photonic wire ring resonators with a range of design parameters,

we demonstrate how to extract and distinguish α and t through the dependence on λ . We

give examples where this method works well in a single device when the cross-coupling is

strong enough, and we show how to extend the method to the case of weaker cross-coupling by

comparing devices with different radii or coupler geometry.

Our approach does not involve the measurement of phase. If the phase is determined, it is

possible to distinguish whether the ring is undercoupled (t > α) or overcoupled (t < α) [5],

[11], and thus disentangle t and α . Such measurements require additional equipment such as a

network analyzer [11], or more complex devices such as rings coupled to Mach-Zehnder inter-

ferometers [5]. Our approach requires only intensity measurements using a variable wavelength

source on isolated resonators.

In the following, Section 2 reviews the equations of the resonances of a ring resonator, and

gives expressions for the self-coupling and loss coefficients in terms of the finesse and the depth

of the resonances. Section 3 discusses the measurements and data analysis. Section 4 considers

several devices that illustrate the concepts.

2. Theory

We begin by reviewing the theory of a simple ring resonator, to clarify the meaning of the

coefficients. Figure 1 shows schematically a ring resonator with a single directional coupler

(DC), and gives the notation used. For the coupler in Fig. 1b, the fields b and b′ at the outputs

are related to the fields a and a′ at the inputs by self-coupling coefficients tc and t ′c, and the

cross-coupling coefficients κc and κ ′
c, according to Eqs. (1) and (2):

b = tca+κ ′
ca′; (1)
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b′ = t ′ca′ +κca. (2)

If the output b′ is coupled back to the input a′ as in Fig. 1a, through a coefficient t ′r, then a′ is

given by Eq. (3):

a′ = t ′rb
′. (3)

Substituting Eq. (3) into Eq. (2) gives Eq. (4):

b =
tc − (tct

′
c −κcκ ′

c)t
′
r

1− t ′ct ′r
a. (4)

κ

κ

Fig. 1. Ring resonator with a directional coupler (DC): (a) schematic of the DC-coupled

resonator and (b) expanded view of the coupler, showing the notation used in the text for the

fields (a, b, a′, and b), the self-coupling coefficients tc and t ′c, the cross-coupling coefficients

κc and κ ′
c, and the transmission t ′r around the ring.

The next step in the derivation is to eliminate the factor tct
′
c−κcκ ′

c in Eq. (4). In most previous

derivations, it was assumed that the coupler is lossless [4], [5], but this is not a necessary

assumption [12] and will not be made here. Since energy is conserved, the following Eq. (5)

holds, as discussed, for example, in Ref. [13]:

|b|2 + |b′|2 = α2
c |a|2 +α ′2

c |a′|2. (5)

For generality, two separate loss functions αc and α ′
c for the coupler have been introduced, al-

though usually by symmetry these two functions are equal. Scattering into radiation modes and

absorption can contribute to αc or α ′
c. Note it has been assumed that reflections are negligible.

Substituting b and b′ from Eq. (1) and Eq. (2) into Eq. (5) gives the following relations,

Eqs. (6), (7), and (8):

|tc|2 + |κc|2 = α2
c ; (6)

|t ′c|2 + |κ ′
c|2 = α ′2

c ; (7)

t∗c κ ′
c +κ∗

c t ′c = 0. (8)

Equations (7) and (8) lead to the following relation Eq. (9), which can be used in Eq. (4):

tct
′
c −κcκ ′

c = (t ′ct
′∗
c +κ ′

cκ ′∗
c )

tc

t ′∗c
= α ′2

c

tc

t ′∗c
. (9)

To simplify the final result, we introduce the phases φ ′
r and φ ′

c through Eqs. (10) and (11):

t ′r = |t ′r|eiφ ′
r ; (10)

t ′c = |t ′c|eiφ ′
c , (11)
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and define the following coefficients in Eqs. (12), (13), (14), and (15):

t ≡ |t ′c|/α ′
c; (12)

κ ≡ |κ ′
c|/α ′

c; (13)

α ≡ |t ′r|α ′
c; (14)

φ ≡ φ ′
c +φ ′

r. (15)

Then Eq. (4) can be rewritten as Eq. (16):

b

a
=

(

t −αeiφ

1−αteiφ

)

tc

t ′∗c
α ′

ce−iφ ′
c . (16)

Taking the absolute square of Eq. (16) gives Eq. (17):

T ≡
∣

∣

∣

∣

∣

b

a

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

tc

t ′∗c

∣

∣

∣

∣

∣

2

α ′
c

2

(

t2 +α2 −2αt cosφ

1+α2t2 −2αt cosφ

)

=

∣

∣

∣

∣

∣

tc

t ′∗c

∣

∣

∣

∣

∣

2

α ′
c

2
T , (17)

where the factor T is defined as Eq. (18):

T ≡
(

t2 +α2 −2αt cosφ

1+α2t2 −2αt cosφ

)

. (18)

The quantities t2 and κ2 are the power splitting ratios of the coupler, and from Eq. (8) satisfy

t2 +κ2 = 1. The quantity α2 is the power loss factor, and includes both propagation loss in the

ring and loss in the coupler [14]. The factor T determines the shape of the resonances [9]; the

other factors in Eq. (17) vary more slowly with wavelength,

Because |αc|2 and |t ′r|2 appear in T only through the product α2, the individual contributions

|αc|2 and |t ′r|2 cannot be extracted from the shape of the resonances alone. In cases where the

loss does not depend on λ , αc and tr can be separated in principle by measuring T at special

wavelengths [10]. Alternatively, if all losses in the rest of the optical circuit could be accounted

for, then the absolute value of T could be measured and αc could be determined from Eq. (17)

once α and t are known. We will not pursue either of these approaches here, and so only

determine the total loss coefficient α .

As a function of wavelength, T has a series of resonances; the transmission drops at those

wavelengths where field amplitude builds up in the ring. The coefficients α and t can be related

to the width and depth of the resonances [7]. Let ΔλFWHM be the full width at half maximum

of a given resonance, and ΔλFSR be the free spectral range (the wavelength separation between

that peak and the adjacent peaks). The finesse F is defined by Eq. (19)

F ≡ ΔλFSR/ΔλFWHM, (19)

and the extinction ratio is defined by Eq. (20)

E ≡ Tmax/Tmin. (20)

Then the following relations Eqs. (21) and (22) follow from Eq. (18) for T :

E =

[

(α + t)

(α − t)

(1−αt)

(1+αt)

]2

; (21)

cos(π/F ) =
2αt

1+α2t2
. (22)
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These expressions reflect well-known properties of a ring resonator [4], [5]: if α = t, then

Tmin = 0 and E goes to infinity; if αt = 1 (which requires both α = 1 and t = 1), then Tmax = Tmin

and F goes to infinity.

Equation 22 can be solved for the product αt, and that result can be substituted into Eq. (21).

The result is a quadratic equation that yields α and t as the two roots. The result can be written

in terms of the following two quantities A and B, defined by Eqs. (23) and (24):

A ≡ cos(π/F )

1+ sin(π/F )
; (23)

B ≡ 1−
[

1− cos(π/F )

1+ cos(π/F )

]

1

E
. (24)

In terms of these, α and t are given by Eq. (25):

(α, t) =

(

A

B

)1/2

±
(

A

B
−A

)1/2

. (25)

Because α and t can be interchanged in T in Eq. (18), they appear as the two roots of a

quadratic equation with no indication of which root corresponds to which quantity. Additional

information is needed to identify them. As will be shown in Section 4, if the resonances are

measured over a wide enough range of wavelength, α and t may be distinguishable by their

dependence on wavelength. For a directional coupler of physical length Lc and a coupling length

Lπ (the distance over which light is transferred from one arm of the coupler to the other), t is

given by Eq. (26) [10]:

t =

∣

∣

∣

∣

cos

(

πLc

2Lπ

)∣

∣

∣

∣

. (26)

For directional couplers Lπ decreases with λ [10]; in the wavelengths and devices studied here,

1/Lπ can be expanded reasonably accurately to first order in λ , leading to Eq. (27):

t ≃
∣

∣cos(a0 +a1λ )
∣

∣, (27)

where a0 and a1 are constants. When the cross-coupling is strong, the characteristic sinusoidal

variation is clear enough to distinguish t from α , as shown below.

Alternatively, t and α could be distinguished by their dependence on device geometry, if dif-

ferent geometries are available. For example, keeping the same coupler geometry but increasing

the radius of the ring will leave t unchanged (to within tolerances in the fabrication) but will

change α . For small rings, when bending losses dominate, α will decrease as the ring is made

smaller. For large rings, where propagation losses dominate, α will decrease as the ring is made

larger.

Silicon photonic wires are known to be highly dispersive, as confirmed from the increase

of ΔλFSR with wavelength in our devices. The effects of dispersion are included in the above

analysis, because ΔλFSR and ΔλFWHM are both related to the group index [10]. In principle,

both F and E are only related to quantities α and t for individual resonances, as shown in

Eqs. (21) and (22). In practice, when values of ΔλFSR are obtained from the separation between

adjacent resonances, the dispersion is inevitably averaged over a non-zero range in wavelength,

particularly for resonators with large ΔλFSR. In the devices studied here, however, this averaging

introduces only small errors. For the smallest resonators (radius 5 µm), the FSR (∼ 15 nm)

changes only by about 3% between two adjacent resonance peaks.
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3. Device fabrication and measurement

Ring resonators with directional couplers were fabricated as described in Ref. [3]. Devices were

fabricated on Unibond SOI wafers with 2 µm thick buried oxide and 0.26 µm thick silicon

core, with waveguides nominally 0.45 µm wide. Results from a selection of these resonators

are shown below. The nominal gap in the DC section was 0.2 µm to 0.5 µm, and the length of

the coupling section was 1 µm to 10 µm. All the devices discussed here had a single coupler

and one input/output waveguide. (The analysis can be applied to add-drop devices, but this is

not reported here.) The devices were fabricated as part of a study of biosensors, and many have

long path lengths in a small footprint; results for folded or “hairpin” resonators are discussed

below. The devices were covered with SU8 photoresist unless noted otherwise. Inverse tapers

down to 150 nm in width were used at both the input and output facets to improve the coupling

efficiency. These tapers also reduce the Fabry-Perot oscillations; without them, the oscillations

can produce additional noise in the extracted values of α and t.

The devices were tested using a tunable laser coupled to the input facet via a polarization

maintaining tapered fiber. An objective of 10 times magnification was used on the output side

to collect the transmitted signal. The laser output was set to 1 mW, and the system has a setup

loss of approximately −5 dB, which was not subtracted in the spectra shown below. The laser

wavelength was scanned in steps of 1.5 pm to 20 pm. (The largest step was acceptable for

broader resonances, but not for all devices.)

For each resonance in the measured spectrum, four quantities were determined: Tmax, Tmin,

ΔλFWHM, and the wavelength of the minimum transmission. The value of ΔλFSR was found

from the spacing between peaks or by assigning a peak index m to each peak and fitting λ (m)
to a polynomial in m. Then α and t were derived for each peak using Eq. (25).

4. Results and analysis

This section gives some examples of how α and t determined from Eq. (25) can be disentangled.

We start with a case where the strong variation of t with λ in the directional coupler makes it

easy to distinguish t and α . Two devices are shown, with different path lengths of the ring. Then

a device with even stronger cross-coupling is shown to illustrate further the sinusoidal variation

of t with λ . Finally, devices with weaker cross-coupling are compared, to show how different

path lengths and coupler lengths can be used to separate t and α .

4.1. Coupler separation 0.3 µm

Figure 2 shows the transmission of a folded or “hairpin” resonator. The device, shown in the

insert, has a path length of 367.1 µm; the straight section of the coupler is 5 µm long and the

two waveguides in the coupler are separated by 0.3 µm edge-to-edge. As shown in the inserts

in the figure, ΔλFWHM is smaller at the lower wavelengths than at the higher wavelengths.

Figure 3 shows 1/E = Tmin/Tmax and 1/F = ΔλFWHM/ΔλFSR determined from Fig. 2, and

Fig. 4 shows the quantities α and t calculated from E and F . As discussed above, which curve

is α and which is t in Fig. 4 is not determined from the calculation, but the points obviously

separate into two smoothly varying curves corresponding to the two quantities. In this case, one

quantity is roughly independent of λ , and the other is decreasing with λ . The loss function α is

expected to be a weak function of λ in this device. Therefore the designation of α and t in Fig. 4

was chosen so α corresponds to the curve that is almost independent of λ . On the other hand, t

can vary with λ through Eq. (27); the solid line corresponds to a fit to t from this equation. The

values of t are consistent with the dimensions of the coupler, as discussed in Ref. [10].

To confirm the assignments in Fig. 4, we consider a device with the same coupler and a

longer path, where α should be smaller and t similar to Fig. 4. Figure 5 shows the resonance
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Fig. 2. Resonance spectrum for a folded resonator (shown schematically in the insert at the

lower right) with cavity length 367.08 µm, coupler length 5 µm, and nominal separation

0.3 µm of the waveguides in the coupler. The minimum radius of curvature is 5 µm. The

upper inserts show three expanded views over a 1-nm range centered at 1471 nm, 1522 nm,

and 1571 nm.
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Fig. 3. Inverse of the extinction ratio E = Tmax/Tmin (open squares) and inverse of the

finesse F = ΔλFSR/ΔλFWHM (closed circles), for the spectrum shown in Fig. 2.
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Fig. 4. Self-coupling coefficient t (open squares) and loss coefficient α (closed circles) for

the resonator spectrum in Fig. 2. The solid line through the squares shows a fit to Eq. (27),

with a0 = −5.52 and a1 = 4.14 µm−1.

spectrum for such a device, from the same fabrication run, and Fig. 6 shows the corresponding

t and α . Again, the branches were assigned so that the quantity varying most with λ is assigned

to t. The curves for t in Fig. 4 and Fig. 6 are similar, supporting the assignment of those curves

to t. At the wavelength where α and t cross in Fig. 6, the resonances in Fig. 5 are deepest,

corresponding to critical coupling where α ≃ t and E ≃−25 dB.
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Fig. 5. Resonance spectrum for a folded resonator (shown schematically in the insert on the

lower right) with cavity length 1112.7 µm, and the same coupler dimensions and minimum

radius of curvature as the resonator in Fig. 2. The insert on the lower left shows an expanded

view in a 1-nm range about 1515 nm.
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Fig. 6. Self-coupling coefficient t (open squares) and loss coefficient α (closed circles) for

the resonator spectrum in Fig. 5. The solid line through the squares shows a fit to Eq. (27),

with a0 = −5.90 and a1 = 4.40 µm−1.

4.2. Coupler separation 0.2 µm

Figure 7 shows the resonance spectrum for a device with a longer DC coupler (10 µm) and a

smaller separation (0.2 µm) than in the earlier examples. The spectrum has deep resonances

near 1520 nm, and no resonances near 1560 nm. Figure 8 shows t and α from this device.

Again, the branches were assigned so that α is roughly independent of wavelength. This devices

shows both critical coupling (near 1520 nm), as well as a region where t approaches unity (near

1560 nm), where the resonances disappear. Since the depth of the resonances is less than the

noise level in Fig. 7 near 1560 nm, no values can be extracted for E and F , and consequently

the coefficients in Fig. 8 show a gap in the wavelength range 1560 nm to 1570 nm, where t ≃ 1.

This device serves as a good example to illustrate the method, but for many applications the

coupling is unnecessarily strong. A similar device was analyzed in more detail in Ref. [10].

As discussed in Ref. [10], Lπ decreases with λ . For shorter couplers (as in the devices in

Fig. 4 or Fig. 6), the argument of the cosine in Eq. (16) for t is less than π/2, and t therefore

decreases with λ . In the device in Fig. 8, however, the longer Lc and the smaller separation

produces Lc > Lπ , so that t increases with λ , passes through a maximum (at Lc = 2Lπ ), and

decreases again.

The coefficients α and t in Fig. 8 appear to be discontinuous near 1520 nm. This is a conse-

quence of the “anticrossing” of the two roots of Eq. (25). The difference between the two roots

is, from Eq. (15), given by Eq. (28):

|α − t| = 2

√

A

B

√
1−B ∝

1√
E

, (28)

where the proportionality follows from the definition of B in Eq. (14). If stray light enters the

detector and prevents E from rising above some limiting value E0, then the two roots will not

be equal at critical coupling, but rather will differ by an amount proportional to 1/
√

E0. Thus

when the assignment of t and α is switched between the two branches, there is an apparent

discontinuity in the two quantities. It would be straightforward to correct for this by determining

the intensity of the stray light and subtracting it from the measured intensity.
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Fig. 7. Resonance spectrum for a resonator with racetrack geometry (shown schematically

in the insert) with radius 50 µm, cavity length 334.16 µm, coupler length 10 µm, and

nominal separation 0.2 µm of the waveguides in the coupler.
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Fig. 8. Self-coupling coefficient t (open squares) and loss coefficient α (closed circles) for

the resonator spectrum in Fig. 7. The solid line through the squares shows a fit to Eq. (27),

with a0 = −15.05 and a1 = 11.61 µm−1.
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4.3. Coupler separation 0.4 µm and 0.5 µm

If the resonators have low loss and the cross-coupling is weaker than in the previous examples,

both t and α may be near unity. Then it is more difficult to separate t and α based on the

wavelength dependence alone. Instead, a series of devices of different dimensions or different

coupling geometry can be used.

As an example, Fig. 9 shows six resonators with racetrack geometry, similar to that shown in

the insert to Fig. 7. Three design parameters, namely radius R, coupler length Lc, and coupler

spacing Sc, are noted in each panel in the figure as (R,Lc,Sc), all in micrometers. The four

devices in the left and middle panels all have R = 5 µm, and Lc and Sc take on the four possible

combinations of Lc = 1 µm or Lc = 5 µm and Sc = 0.4 µm or Sc = 0.5 µm. These four devices

should therefore have similar α , and different t. The devices in the right-most panels have a

smaller R = 2 µm, and the same values of Lc and Sc as the devices in the middle panels. For

these two smaller devices, t should be similar to that for the devices in the middle panels. On

the other hand, α of these smaller devices could be either larger than α of the other four devices

if bending loss dominates, or smaller if propagation loss dominates.

Figure 9b shows α and t extracted from the spectra, and assigned to give a consistent picture

for all six devices. The losses are similar in all four left and center panels. The coupling in those

panels varies consistently with the values of Sc and Lc. For Sc = 0.5 µm and Lc = 1 µm, t is

largest and varies the least with λ . Conversely, for Sc = 0.4 µm and Lc = 5 µm, t is smallest

and varies most with λ of the four devices. (Note the assignment of α and t for the upper left

device is arbitrary because the two quantities are so similar at each λ .)

Once these assignments are made, t in the smaller devices (right panels) can be identified

by comparing with the middle panels, leaving α as the other curve. The losses are higher in

the smaller device, not smaller, implying that bending losses are the dominant losses in devices

with R = 2 µm. This is consistent with numerical calculations [15].

5. Conclusions

We have developed a simple method to extract the loss and self-coupling coefficients of simple

(all-pass) ring resonators, using the spectral dependence of the transmission of a single res-

onator (or a comparison of a few resonators with different design parameters). Although the

self-coupling and loss coefficients at a given wavelength can be extracted from the shape and

spacing of the resonance at that wavelength, the analysis does not distinguish coupling from

loss. It is possible to disentangle the two quantities with more complicated structures, but such

devices might not be available. We have shown how the two coefficients can be disentangled

based on their behavior with wavelength, with further information if necessary from variations

in the device geometry. Although this can require devices with different coupler geometry or

path length, such variations in design are often available as part of a search for the optimum

parameters for the application one has in mind.
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Fig. 9. (a) Resonance spectrum for six racetrack resonators. The three values in parentheses

in each panel give the values of radius R, coupler length Lc, and separation Sc between the

waveguides, all in micrometers. These devices were not covered with SU-8 photoresist.

(b) Self-coupling coefficient t (open squares) and loss coefficient α (closed circles) for the

resonator spectra in Fig. 9. The solid line through the squares shows fits to the expression in

Eq. (27). From left to right, then top to bottom, the values of a0 are −1.96, −6.03, −4.49,

−1.86, −2.99, and −3.31; the values of a1 are 1.44, 4.27, 3.22, 1.31, 2.15, and 2.33 µm−1.
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