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Abstract 

Integrated photonic devices are at the basis of modern optical communications but their design remains a 

time-consuming and mostly iterative process. Recent design methods employing optimization algorithms 

make it possible to simultaneously optimize a large number of parameters and generate non-trivial 

geometries and novel functionalities. However, these approaches give little insight on the influence of the 

design variables on device performance, nor address the possibility of degenerate designs with similar 

performance. Using machine learning methods, we demonstrate through the design of a vertical grating 

coupler that a large number of degenerate designs with regard to the primary objective (coupling 

efficiency) exist, but they have distinct properties in other performance criteria. Pattern recognition 

reveals the relationship between these designs and reduces the characterising variables from the original 

five to two. This finding enables the exhaustive yet efficient coverage of the design space, being mapped 

onto a 2-dimensional hyperplane. The interplay of the design parameters and multiple performance 

criteria then can be clearly visualized with a vastly reduced computational effort, allowing the designer to 

understand and balance competing design requirements. We believe this is the first time such a global 

perspective is presented for high dimensional design problems in integrated photonics, representing a 

major shift in how modern photonic design is approached. 
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Integrated photonic components perform complex optical functions that underlie modern optical 

communication networks and also have wide ranging applications in computing, automation, sensing and 

life sciences1,2. Despite the growing interest and use, photonic component design has largely remained a 

time-consuming process that relies on theoretical knowledge and physical intuition. For a desired 

functionality, an initial design is proposed according to particular physical concepts. The performance is 

evaluated semi-analytically or numerically, and typically optimized through a repetitive process of 

modifying a small set of parameters in a sequential manner. At the same time, novel photonic devices that 

employ increasingly complex geometries and metamaterials are continuously proposed3–5. In these 

scenarios, not only do the number of design parameters vastly increase but they are often strongly 

interrelated. Sequential optimization is no longer applicable and simultaneous optimization of multiple 

variables is required. Optimization tools such as the genetic algorithm6–8, particle swarm9,10, and gradient-

based optimization11–14 are increasingly used to search more efficiently for high-performance designs15. 

Inverse design methods have been proposed to tackle this challenges, demonstrating highly compact 

devices employing non-intuitive structures16–21. More recently, supervised machine learning methods such 

as the artificial neural network have begun to enter the fray in speeding up the search process22,23. While 

all these approaches represent significant improvement to the design flow, the resulting process still only 

leads to isolated designs optimized for a single primary performance criterion. This offers little physical 

insight on the influence and inter-dependence of the design parameters in determining the device 

performance. Although it is tacitly recognized that there may be other designs offering similar 

performance in terms of the primary criterion (i.e. degenerate designs), a practical methodology for 

generating all suitable device candidates does not yet exist. Consequently, careful balancing of different 

performance considerations – an indispensable task prior to fabrication, integration and system design – 

becomes difficult. A global perspective on the design space of such photonic devices is missing. 

We propose here that a suite of machine learning (ML) tools now widely available, including global 

optimization, supervised learning and unsupervised ML pattern recognition, can be applied to this 

purpose. Our objective is to create a methodology for building a global map of a multi-parameter design 

space while using a tractable amount of time and computational resources. This goal is fundamentally 

different from the current search-based methods targeting a single optimal design.  

As a first demonstration-of-concept, we analyze a vertical grating coupler in the silicon-on-insulator 

(SOI) platform. Grating couplers are a convenient way to couple light between an integrated photonic 

circuit and an optical fiber. To suppress the second order diffraction, gratings are typically designed to 

diffract light at an angle from the surface normal24. However, perfectly vertical emission is desirable as it 

would allow simpler packaging, and various designs have been proposed in the literature14,25–29. A recent 

design, optimized using particle swarm optimization, has been reported by Watanabe et al.10 and provides 

a good fiber-chip coupling efficiency and a fairly low level of back-reflections. This design consists of 

five subwavelength segments in each period that need to be simultaneously optimized and therefore 

provides a good target to demonstrate the potentiality of a machine-learning-based design approach. 

Applying a number of ML techniques, we discover that a large number of designs with state-of-the-art 

fiber coupling efficiency exist, and to a good approximation they all lie on a two-dimensional hyperplane, 

i.e. they can be described using only two relevant parameters instead of the original five. This discovery 

opens the possibility of an exhaustive mapping of the sub-space of good designs by scanning through this 

hyperplane as well as its orthogonal planes. The outcome of such scans provides a clear description of the 
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device behavior in terms of coupling efficiency, reflection and sensitivity to dimensional variations. 

Together, these results provide a comprehensive picture that enables informed decision-making based on 

the relative priorities of all relevant performance specifications and figures-of-merits for a particular 

application. To the best of our knowledge, this is the first time such a global perspective is obtained by 

leveraging unsupervised machine learning techniques for high dimensional design problems in integrated 

photonics 

 

Strategy for characterizing a multi-parameter design space 

Dealing with the design of multi-parameter devices commonly requires giving up the opportunity to 

obtain extensive information on the large parameter space due to constrains on computational resources. 

We tackle this problem by introducing a three-stage process. In the first stage we generate a sparse 

collection of devices (i.e. isolated points in the parameter space) all meeting a selected performance 

criterion. In the second stage we apply an unsupervised pattern recognition technique to analyse the 

relationship between these degenerate designs and explore whether a lower dimensional sub-space can be 

found to include all good design solutions meeting the performance criterion. In the last stage we perform 

a global mapping of the properties of the designs in this sub-space including additional performance 

metrics. 

 

Fig. 1 A three-stage approach for the characterization of the vertical grating coupler design space. a Global optimization (here, 

random restart followed by local search) is used to find a small collection of devices with high fiber coupling efficiency, depicted 

as dark red circles. A trained machine learning predictor is used in conjunction with the global optimizer to speed-up the search 

by quickly providing grating design candidates with nearly vertical emission as starting points for the optimizer (depicted as red 

squares). b Dimensionality reduction (principal component analysis) is employed to reveal the reduced parameter space of the 

designs with good performance, characterized by a low-dimensional hyperplane as depicted by the black contour. c Devices 

belonging to the reduced parameter space can be exhaustively evaluated with respect to different performance criteria (dark red 

area). 
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A vertical grating coupler with five segments per period is taken as the study case10. As shown in Fig. 1a, 

global optimization is used to search for a set of designs with state-of-the-art fiber coupling efficiency. A  

supervised machine learning predictor is also trained to predict the diffraction angle of this relatively 

complex structure, speeding up the search process. Such a predictor has the potential of being applied also 

to other performance criteria. For the second and key step, principal component analysis30 (PCA) is used 

(Fig. 1b) to analyze the relationship between the designs found in stage 1. PCA is an unsupervised 

machine learning patter recognition technique that has been used widely and successfully across various 

engineering and science disciplines31–34 and is implemented in most scientific computing platforms (e.g. 

Matlab, R, etc.). It finds a sequence of best linear approximations to the dataset (based on minimizing the 

least squared errors) and the results explicitly show how many orthogonal linear projections are needed to 

represent the dataset within a certain level of accuracy. If a lower dimensional sub-space is found and 

 

Fig. 2 a Schematic representation of the grating coupler structure. The guided light is vertically diffracted by a grating realized 

periodically interleaving a pillar of height 220 nm and an L-shaped section partially etched to 110 nm. The blazing effect of the 

L-shape ensures a high vertical directionality while the pillars are designed to suppress back-reflections by destructive 

interference. The five design parameters L1-L5 defines the original five-dimensional parameter space and the grating period Λ. b, 

c The procedure depicted in Fig.1a allows to find many high performance designs with a fiber coupling efficiency larger than 

0.74. Pictures show two three-dimensional projections of the five-dimensional parameter space. Dots represent the designs (L1-L5 

values) with the associated coupling efficiency encoded by different colours. These designs are approximately contained in a 

well-defined area of a hyperplane (reduced parameter space) discovered through a principal component analysis. The three-

dimensional projections of the reduced parameter space are shown in gray. The hyperplane is defined by the two vectors V1αβ and 

V2αβ and the appropriate point of origin. 
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validated to contain all good designs, the rest of the design space can be excluded from further 

investigation. We complete the investigation by performing an exhaustive evaluation of coupling 

efficiency, back-reflections and fabrication tolerance for all the designs included in the lower-dimensional 

sub-space, as shown in Fig. 1c. 

 

Discovery of comparable high-performance vertical grating designs 

The considered grating structure is illustrated in Fig. 2a. Each period of the grating consists of a pillar of 

220 nm in height and an L-shaped section partially etched to 110 nm10. The L-shape approximates the 

angled facet of a conventional blazed grating14 in a way that can be fabricated with standard lithography 

and etch methods. This blazing ensures that light is primarily diffracted upwards. The silicon pillars are 

used to suppress back-reflections by destructive interference. The structure dimensions (L1 … L5) define 

the five-dimensional design parameter space we explore in this work. 

As primary optimization objective we choose the coupling efficiency η of the diffracted TE-polarized 

light to a standard single mode optical fibre (SMF-28) placed vertically on top of the grating. Low back-

reflection is another important consideration in minimizing the impact of the grating to other upstream 

components in the system. These considerations lead to the formulation of the optimization problem for 

the first stage represented in Fig. 1a as: maximize�1⋯�5     � ⋯ �5                                                                                                                                           subject to     � � ⋯ �5 < −  �                          nm <  Λ <  μm; �� >  nm, � = ⋯ .   
 

These conditions maximize the coupling efficiency η and constrain the back-reflections r to be smaller 

than a defined threshold (-15 dB in this case). Additional constraints on the grating period Λ and the 
minimum feature size are included to confine the optimization to designs that are physically 

manufacturable using state-of-the-art silicon photonics fabrication processes. The wavelength of light is 

set at = 1550 nm. A highly-efficient Fourier-type 2-D eigenmode expansion simulator35 is used to 

compute the device performance. For additional computational details and description of the optimization 

algorithm, please refer to the section Methods. 

The optimization stage is halted after we obtain 45 good designs, defined here as gratings with coupling 

efficiency η greater than 0.74 and back-reflection less than -15 dB. These solutions are represented by the 

points in the five-dimensional parameter space [L1 … L5] shown in Figs. 2b and 2c through two 3-D 

projections, with the corresponding coupling efficiency encoded by the color of the markers. The 

visualizations suggest that good designs follow a certain pattern in the 5-D space that we attempt to learn 

in the next stage. 
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Sub-space identification through dimensionality reduction 

In this key stage we exploit PCA to study the relationship between the sparse set of solutions obtained 

solving the optimization problem (1). When PCA is applied to the pool of 45 good grating designs, two 

principal components are found to be sufficient to accurately represent the entire pool. That is, all good 

designs approximately lie on a 2-D hyperplane – the reduced parameter space – defined by the vectors 

V1αβ = [-0.043, 0.378, -2.082, 4.477, -3.021] and V2αβ = [-2.580, 1.081, -3.769, -0.386, 2.193]. The vector 

components are expressed in nanometers. The points belonging to this hyperplane can thus be written as �� = �� + �� + �                                                                                                                   (2) 

where the components of the vector Lk are the five dimensions Li,k for the k-th design and Cαβ  = 

[102,73,156, 243,156] is a constant vector that defines the reference origin on the hyperplane. Two scalar 

coefficients αk and βk are thus sufficient to completely describe the k-th design. The 2-D reduced 

parameter space (hyperplane) discovered by PCA is shown in Figs. 2b and 2c in gray on the same 

projections used to represent the 45 good designs.  

To quantify the “difference” between two different designs A and B, we use the Manhattan distance 

defined as ∑ |��, −  ��, |5�= . The error incurred by approximating the original sparse set of 45 good 

designs with the nearest corresponding design on the 2-D hyperplane in terms of the Manhattan distance 

is below 6 nm on average, with the worst case being below 12 nm. About the same average error is 

obtained if we randomly choose 5 designs as a basis for generating another hyperplane using the PCA 

analysis and then calculate the approximation error of the other 40 designs. Furthermore, a PCA-based 

approximation of 45 designs to 1-D incurs an average error of more than 50 nm, while a 3-D 

approximation incurs an average error of 3 nm. This warrants our choice of 2-D approximation as the 

error reduction by adding the second dimension is significant, while further addition of a third dimension 

leads to a very small improvement. 

We validate the PCA outcome by verifying that the projection on the reduced parameter space (the α-β 
hyperplane) is a sufficient representation of the entire sub-space of good gratings. First, we generate a 

uniform grid covering the α-β hyperplane. For each point [αk, βk] we obtain the corresponding point [L1,k 

… L5,k] in the original parameter space through equation (2) and compute the coupling efficiency η. The 

results are shown in Fig. 3a only for the designs with η > 0.7. Note that not all points on the α-β plane 

provide high coupling efficiency. A unit change in α or β corresponds to a Manhattan distance of 100 nm. 
A large region of good designs with η > 0.74 is enclosed by the black solid line. Remarkably, although all 

the good designs have similar coupling efficiencies ranging from = 0.74 to η = 0.76, the actual structure 

of the gratings can vary quite significantly, as discussed in detail in the next section. Without 

dimensionality reduction, there is no obvious way to identify a pattern that all good designs follow. 

As a further verification we generate two additional 2-D hyperplanes Γ-Π and X-Π that are orthogonal to 
each other and to the α-β plane. They provide two different “cuts” through the reduced parameter space α-

β and their projections are shown in Fig. 3a with dashed black lines. We generate a uniform grid on Γ-Π 
and X-Π and simulate the coupling efficiency of the corresponding grating design. Coupling efficiencies 

η > 0.7 are plotted in Figs. 3b and 3c correspondingly. The intersection with the α-β hyperplane is marked 

with a white dashed line. The axes use the same scale as in Fig. 3a: a unit variation on X, Γ or Π 
corresponds to a Manhattan distance of 100 nm. When projected on Γ-Π and X-Π hyperplanes, the 5-D  
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Fig. 3 Exhaustive exploration of the (reduced) parameter space. a Reducing the design parameters from the original five Li to the 

two principal component coefficients α and β makes a full exploration of the sub-space of good designs achievable with modest 

computation resources. The map shows the coupling efficiency across the α-β hyperplane for η > 0.70. The large sub-space of 

good designs with η > 0.74 is enclosed by the black line. Two designs with comparable coupling efficiency are marked along 

with the designs reported in ref. 10. b, c The coupling efficiency simulated across two 2-D hyperplanes (Γ-Π and X-Π) 
orthogonal to the α-β hyperplane (whose intersections are shown with dashed white lines). Their intersections on the α-β plane 

are shown in a as well with dashed black lines. On these orthogonal planes, the sub-space of good designs reduces to a thin stripe 

confirming that it is approximately a 2-D geometrical structure. Design 3 represents the global optimum in both Γ-Π and X-Π 
projections: It has a coupling efficiency of 0.765, less than 0.5% better than the top designs represented exactly in the α-β 
hyperplane.  d The back-reflection r simulated across the α-β hyperplane. e-g Scale schematics of the designs 1-3 marked in a-d. 

The segment dimensions are remarkably different between the three designs but these gratings have essentially the same fiber 

coupling efficiency η (0.760, 0.756, and 0.765, respectively). h, i 2D-FDTD simulations of (h) coupling efficiency and (i) back-

reflection as a function of wavelength for designs 1-3. All three have a 1-dB bandwidth that is larger than the telecommunication 

C band (1530 nm – 1565 nm, green shaded area). Design 2 affords very low back-reflections around 1550 nm but it can only be 

maintained within a narrow wavelength band. In contrast, the back-reflection of design 1 and 3 has a weaker dependence on 

wavelength, oscillating only between -26 dB and -17 dB within C band, but a lower back-reflection cannot be achieved. 
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sub-space of good designs essentially reduces to a thin stripe whose thickness depends on the range of 

accepted coupling efficiencies η. This confirms that this sub-space is approximately a 2-D geometrical 

structure. Although we observe that it appears slightly curved (see the Γ-Π projection, Fig. 3b), it is still 

well approximated by the α-β hyperplane which has the advantage of being a simple linear structure. 

A similar optimization and PCA analysis is performed for grating coupler designs for the optical 

communication O band (1260 nm to 1360 nm). We found that 5 designs are sufficient to define the 

reduced parameter space through PCA as anticipated from our experience described above. All high 

performance designs can be accurately represented on a 2-D hyperplane as well, incurring an average 

approximation error smaller than 2 nm. These results indicate the existence of such hyperplanes is a 

general property of these gratings. Details are provided in Supplementary. 

 

Global mapping of the design sub-space 

Through PCA we obtain a compact representation of the sub-space of all good designs (i.e. those designs 

meeting the coupling efficiency criterion) by reducing the number of design parameters from the original 

five segment length Li to the two principal component coefficients α and β. Now it becomes feasible to 

adopt a more classical design approach and perform an exhaustive mapping of designs in the sub-space 

not only for the primary criterion originally chosen as the optimization objective (the coupling 

efficiency), but also other performance metrics. This provides the designer a complete picture of the 

device behaviour allowing informed trade-offs, which leads to the identification of the best designing area 

– and ultimately of the best design – that fits specific application needs. 

Along with the coupling efficiency mapping shown in Fig. 3a, we evaluate here two additional criteria 

throughout the sub-space, i.e. back-reflections and tolerance to fabrication uncertainty. Back-reflections 

are included in the optimization problem (1) only as a constraint but are not optimized. Figure 3d reports 

the back-reflection r using the same axes’ scale and range as in Fig. 3a.The black solid line marks the area 

with η > 0.74 for reference. The possibility to use the reduced parameter space to efficiently mapping 

back-reflections allows the designer to obtain additional insight on the device behaviour and discover a 

design area with particularly low back-reflections around the point with α = 2 and β = 0. 

Two designs with comparable η are then selected for further examination and are marked on Figs. 3a and 

3d as design 1 and 2. The design proposed in ref. 10, which was found through particle swarm 

optimization, also belongs to the sub-space of good solutions and its location on the α-β hyperplane is 

marked for reference. Structures of designs 1 and 2 are shown in Figs. 3e and 3f. Despite the very 

different design (especially for the L-shaped structure) and slightly different period both gratings 1 and 2 

have a highly directional vertical emission. Design 1 has a maximum coupling efficiency of 0.760 and a 

back-reflection of -21 dB. Design 2 has a slightly lower coupling efficiency (0.756) but it is located in the 

design space area with the lowest back-reflections (Fig. 3b, about -40 dB) making it the preferred choice 

when both coupling efficiency and back-reflection are considered. As reference, the design 3 marked in 

Figs. 3b and 3c is the global optimum in both Γ-Π and X-Π projections (not exactly represented in α-β). 
Its structure is plotted in Fig. 3g. This design has a coupling efficiency of 0.765, less than 0.5% better 

than the top designs represented exactly in the α-β hyperplane. 
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As an additional comparison of the performance for designs 1-3, Figs. 3h and 3i plot the two performance 

criteria η and r as a function of wavelength, now computed using 2D-FDTD (finite-difference-time-

domain) method as a cross-check. Results agree well with that predicted by the Fourier-type 2-D 

simulator. All three designs have a 1-dB bandwidth larger than the telecommunication C band (1530 nm – 

1565 nm, green shaded area) with design 2 slightly out-performing the other two.  Regarding back-

reflections, the behaviour of the three designs is remarkably different (Fig. 3i). As expected back-

reflections of design 2 near 1550 nm are very low, which is particularly important for coupling to a laser. 

However a reflection of less than -30 dB can only be achieved within a 7-nm wavelength band. In 

contrast, the reflection of design 1 and 3 oscillates between -26 dB and -17 dB within the entire C band, 

but lower reflections cannot be achieved. 

It is of particular interest also to investigate how the behaviour of the good gratings changes due to the 

unavoidable uncertainty generated by the fabrication. In particular, we assume a width deviation δ for 
both shallow and deeply etched sections caused by variabilities in the etch process. A good measure of the 

sensitivity of coupling efficiency and back-reflections to this variability is provided by a quantity denoted 

here as degradation derivative. This quantity is obtained by averaging the two directional derivatives with 

respect to positive and negative values of δ (see Methods). Given the results of the PCA, calculating this 

quantity for coupling efficiency and back-reflections can be done efficiently by scanning the limited 

region of good designs on the α-β hyperplane.  

The computed values of the two degradation derivatives are shown in Figs. 4a and 4b. The black solid 

line contour marks the area with η > 0.74. The location of design 1 and design 2 described in Fig. 3 are 

shown as well. A high value of the degradation suggests a high sensitivity to width deviations. For the 

coupling efficiency, a particularly sensitive region is found close to design 1. On the contrary, the back-

reflection is more sensitive to width deviations in the region close to designs 2. This region has a large 

overlap with the region of minimum back-reflection shown in Fig. 3d, making design 2 and surrounding 

designs high-performing when back-reflection is considered, but with stringent fabrication requirements. 

Design 3 is not marked in this figure since it is slightly above the α-β plane. In Supplementary we provide 

a direct verification of these results through a polynomial-chaos-based stochastic analysis15.  

 

Fig. 4 Tolerance to fabrication uncertainty. The α-β hyperplane is exploited to investigate the sensitivity of possible good designs 

to fabrication uncertainty, assumed to be a width deviation for both shallow and deeply etched sections in the grating. The maps 

show the value of the degradation derivative for (a) coupling efficiency and (b) back-reflections across the sub-space of good 

designs (η > 0.74, black solid line contour). Coupling efficiency of design 1 is very sensitive to width deviations compared to 

design 2. The opposite occurs for back-reflections, where design 2 has a much higher sensitivity than design 1. 
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Conclusion 

The exploration and optimization of a high-dimensional design space in integrated photonics brings new 

challenges. The existence of large and possibly continuous set of degenerate designs with regard to a 

single performance parameter is the norm rather than the exception, but the comprehension of such a 

large design space is extremely difficult. In a change of perspective, in this Article machine learning 

pattern recognition methods are leveraged to describe and efficiently visualize the entire sub-space of 

degenerate good designs. Through designing a vertical grating coupler with state-of-the-art fiber coupling 

efficiency and obtain an initial small set of good design, we have demonstrated how the use of 

dimensionality reduction allows to identify two characterizing design parameters instead of the original 

five, significantly scaling down the complexity of the problem. Compared to global optimization 

techniques, this approach enabled an exhaustive mapping of the sub-space of good designs and the 

discovery of many designs with comparable fiber coupling efficiency but with significant differences in 

other performance criteria, such as back-reflections and tolerance to fabrication uncertainty. 

We believe that the presented approach to design space exploration and comprehension, primarily based 

on the dimensionality reduction methods, is applicable to a wide range of problems. The use of principal 

component analysis is by no means limiting as the literature on machine learning dimensionality 

reduction extends well beyond linear methods, e.g. Kernel PCA36, Principal manifolds37 and 

Autoencoders38 just to mention a few. Furthermore, the results of dimensionality reduction techniques, 

that are statistical in nature, can lead to physical insights and reveal novel behavioral patterns of a 

particular device type that may be inconspicuous from the first principles. 

 

Methods 

Grating coupler simulation. The simulation of coupling efficiency and back-reflections for each design 

of the grating coupler is performed exploiting either a 2-D vectorial Fourier eigenmode expansion 

simulator35 or a commercial 2D-FDTD solver. We consider a structure including silicon substrate, 2- m 
buried oxide, 220-nm-thick silicon core and a silica overcladding of 1.5 m. Silicon and silica indices are 
assumed to be 3.45 and 1.45 at  =1550 nm. The mode of a standard single-mode optical fiber SMF-28 

vertically coupled on top of the grating is modeled with a Gaussian function with a mode-field-diameter 

of 10.4 m (  = 1550 nm). The fiber facet is assumed to be in direct contact with the top of the 
overcladding and its longitudinal position along the grating is optimized for each design to maximize the 

coupling efficiency. Coupling efficiency is calculated as the overlap integral between the simulated field 

diffracted upwards by the grating and the Gaussian function. 

Machine learning enhanced optimization. We implemented a random-restart local search as the global 

search technique for the optimization problem (1), although other global search algorithms could also be 

used. For each initial random design small perturbations are made until a better solution in terms of 

coupling efficiency is found and a line search is exploited to seek further improvement until convergence. 

The process then repeats until no improvement is found in the perturbation stage.  

Following an initial optimization round with random-restart where a small collection of good designs was 

obtained, we trained a supervised machine learning model, specifically gradient boosted trees, to predict 



11 
 

if the radiation angle of a structure is within 5° of vertical. Once trained, we used the predictor to sample 

random designs that are nearly vertical while rejecting other random designs. Only near vertical emitting 

designs proceed to the local search stage as described above. The use of the predictor in the optimization 

led to approximately 250% increase in optimizer speed to find new designs meeting the coupling 

efficiency criteria η > 0.74 

The performance of the general purpose machine learning predictor is comparable to that of a predictor 

based on the scalar grating equation relating the section lengths, effective indices and the radiation angle: 

∑ ���� = + � sin 5
�= ⋅ ∑ ��5

�= , 
where �,  are constants related to the wavelength and the overcladding effective index, �� is the effective 

index of the i-th section, �� is the length of the i-th section, and  is the radiation angle. Given the 

simulated data ( , �� , one can use linear regression to estimate all the constants and then use those to 

predict the radiation angle of the structure for any combination of the section lengths. Despite the fact that 

the general machine learning predictor is not aware of this approximation, its predictions are comparable 

to those using the above model. Furthermore, this approach can be applied to predict other quantities that 

cannot be described by simple closed-form expressions.  

Hyperplanes definitions. As can be seen in equation (2), all the described hyperplanes are defined by 

three 5-D vectors V1, V2 and C, the latter being the reference origin within the hyperplane. For the two 

orthogonal hyperplanes Γ-Π and X-Π the vectors are found following linear algebra calculations by 

enforcing that the hyperplanes pass through certain points in space while being orthogonal to each other 

and orthogonal to the α-β hyperplane. The vectors are V1ΓΠ = [9.45, -0.35, -6.13, 45.95, -38.35] nm, V2ΓΠ 

= [-22.48, 33.08, 9.87, -17.87, -28.78] nm, C ΓΠ = [85, 84, 110, 289, 138] nm, V1XΠ = [-25.92, 11.96, -

44.16, 10.05, 12.61] nm, V2XΠ = V2ΓΠ, and C XΠ = [85, 84, 110, 284, 142].  

Uncertainty model. For the investigation of design tolerance to fabrication uncertainty we assume a 

width deviation δ for both shallow and deeply etched sections, thus  

L1’ = L1 – δ;   L2’ = L2 + δ;   L3’ = L3 – δ;   L4’ = L4;   L5’ = L5 + δ.                                                          

We define a degradation derivative that is computed by averaging two directional derivatives, assuming 

that over and under-etch are equally likely (positive and negative values of δ can in general affect the 

device performance differently). Calculating the common derivative would not be informative as for 

locally optimized devices it would be close to zero. For coupling efficiency, we are interested in 

calculating 

 � (�+)�+ + � �−−�− . 
A similar quantity is defined for back-reflections.  
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