
https://doi.org/10.4224/8913213

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 

first page of the publication for their contact information. 

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien 

DOI ci-dessous.

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

JohnnyVon : self-replicating Automata in continuous two-dimensional 

space
Smith, Arnold; Turney, Peter; Ewaschuk, Robert

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=3d1426e0-b7b7-453f-859f-3a2a246c7df9

https://publications-cnrc.canada.ca/fra/voir/objet/?id=3d1426e0-b7b7-453f-859f-3a2a246c7df9



 

 

 

 

 

 

 

 

National Research
Council Canada 
 
Institute for 
Information Technology

 

Conseil national
de recherches Canada 
 
Institut de technologie 
de l’information

JohnnyVon: Self-Replicating Automata in Continuous 

2D Space * 

 
Smith, A., Turney, P. and Ewaschuk, R.  
August 2002 

 

 

 

 

 

 

 

 

* published in NRC/ERB 1099 August 2002, 26 Pages. NRC 44953.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright 2002 by 
National Research Council of Canada 

 
Permission is granted to quote short excerpts and to reproduce figures and tables from this report, 
provided that the source of such material is fully acknowledged. 

 

 



  
National Research  

Council Canada 
Conseil national  

de recherches Canada 
ERB-1099 

NRC-44953 

 Institute for  

Information Technology 

Institut de technologie 

de l’information 

 

 

© Copyright 2002 by 
National Research Council of Canada 

 

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,  
provided that the source of such materials is fully acknowledged. 

 

 

 

JohnnyVon: Self-Replicating Automata  
in Continuous Two-Dimensional Space  
 

 

 

Arnold Smith, National Research Council Canada 

Peter Turney, National Research Council Canada 

Robert Ewaschuk, University of Waterloo 

 

 

August 29, 2002 

 

 

 

 

 

 

 

 

 

Note: This report originally contained colour figures. If you have a black-and-white copy of the 
report, you are missing important information. 

 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  2 

 

Table of Contents 
 

Abstract...........................................................................................................................3 

1 Introduction .............................................................................................................3 

2 Related Work ..........................................................................................................4 

2.1 Self-Replicating Cellular Automata ..................................................................4 

2.2 Mobile Automata..............................................................................................5 

2.3 Physical Models of Self-Replication .................................................................5 

3 JohnnyVon ..............................................................................................................5 

3.1 Informal Description.........................................................................................6 

3.2 Definitions........................................................................................................6 

3.3 Fields...............................................................................................................7 

3.4 Physics ............................................................................................................9 

3.4.1 Brownian Motion ....................................................................................10 

3.4.2 Viscosity ................................................................................................10 

3.4.3 Attractive Force......................................................................................10 

3.4.4 Repulsive Force.....................................................................................10 

3.4.5 Straightening Force................................................................................11 

3.4.6 Spring Dampening .................................................................................11 

3.5 Splitting..........................................................................................................11 

3.6 States ............................................................................................................12 

3.7 Time ..............................................................................................................13 

3.8 Implementation ..............................................................................................14 

4 Experiments ..........................................................................................................14 

4.1 Seeded Replication........................................................................................14 

4.2 Spontaneous Replication...............................................................................21 

5 Interpretation of Experiments.................................................................................22 

6 Limitations and Future Work..................................................................................23 

7 Applications...........................................................................................................24 

8 Conclusion ............................................................................................................24 

References ...................................................................................................................25 

 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  3 

 

 

Abstract 
JohnnyVon is an implementation of self-replicating automata in continuous two-
dimensional space. Two types of particles drift about in a virtual liquid. The particles are 
automata with discrete internal states but continuous external relationships. Their 
internal states are governed by finite state machines but their external relationships are 
governed by a simulated physics that includes brownian motion, viscosity, and spring-
like attractive and repulsive forces. The particles can be assembled into patterns that 
can encode arbitrary strings of bits. We demonstrate that, if an arbitrary “seed” pattern is 
put in a “soup” of separate individual particles, the pattern will replicate by assembling 
the individual particles into copies of itself. We also show that, given sufficient time, a 
soup of separate individual particles will eventually spontaneously form self-replicating 
patterns. We discuss the implications of JohnnyVon for research in nanotechnology, 
theoretical biology, and artificial life. 

1 Introduction 
John von Neumann is well known for his work on self-replicating cellular automata [10]. 
His ultimate goal, however, was to design self-replicating physical machines, and cellular 
automata were simply the first step towards the goal. Before his untimely death, he had 
sketched some of the other steps. One step was to move away from the discrete space 
of cellular automata to the continuous space of classical physics (pages 91-99 of [10]). 
Following the path sketched by von Neumann, we have developed JohnnyVon, an 
implementation of self-replicating automata in continuous two-dimensional space. 

JohnnyVon consists of a virtual “soup” of two types of particles that drift about in a 
simulated liquid. The particles are automata with discrete internal states that are 
regulated by finite state machines. Although the particles are internally discrete, the 
external relationships among the particles are continuous. Force fields mediate the 
interactions among the particles, enabling them to form and break bonds with one 
another. A pattern encoding an arbitrary string of bits can be assembled from these two 
types of particles, by bonding them into a chain. When a soup of separate individual 
particles is “seeded” with an assembled pattern, the pattern will replicate itself by 
assembling the separate particles into a new chain.1  

The design of JohnnyVon was inspired by DNA and RNA. The individual automata are 
intended to be like codons and the assembled patterns are like strands of DNA or RNA. 
The simulated physics in JohnnyVon corresponds (very roughly) to the physics inside 
cells. The design was also influenced by our interest in nanotechnology. The automata 
in JohnnyVon can be seen as tiny nanobots, floating in a liquid vat, assembling 
structures in a manufacturing plant. Another source of guidance in our design was, of 
course, the research on self-replicating cellular automata, which has thrived and 
matured greatly since von Neumann's pioneering work. In particular, although the broad 
outline of JohnnyVon is derived from physics and biology, the detailed design of the 
system borrows much from automata theory. The basic entities in JohnnyVon are 

                                                
1
 The copies are mirror images; however, that is not a problem. This point is discussed in 

Section 5. 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  4 

 

essentially finite automata, although they move in a continuous space and are affected 
by smoothly-varying force fields. 

We discuss related work in Section 2. JohnnyVon is most closely related to research on 
self-replicating cellular automata. A significant difference is that the automata in 
JohnnyVon are mobile. There is some related work on mobile automata that move in a 
two-dimensional space, but this work does not investigate self-replication and does not 
involve a continuous space. In many respects, JohnnyVon is most similar to the work of 
Lionel and Roger Penrose, who created self-replicating machines using pieces of 
plywood [4]. 

JohnnyVon is described in detail in Section 3. The motion of the automata is determined 
by a simulated physics that includes brownian motion, viscosity, and spring-like 
attractive and repulsive forces. The behaviours and interactions of the automata are 
determined by a small number of internal states and state transition rules. 

We present two experiments in Section 4. First, we show that an arbitrary seed structure 
can assemble copies of itself, using individual automata as building blocks. Second, we 
show that a soup of separate individual automata can spontaneously form self-
replicating structures, although we have deliberately designed JohnnyVon so that this is 
a relatively rare event. 

Section 5 is our interpretation of the experiments. Section 6 is concerned with limitations 
of JohnnyVon and future work. Some potential applications of this line of research are 
given in Section 7 and we conclude in Section 8. 

2 Related Work 
JohnnyVon is related to research in self-replicating automata, mobile automata, and 
physical models of self-replication. 

2.1 Self-Replicating Cellular Automata 
Since von Neumann’s pioneering work [10], after a hiatus, research in self-replicating 
cellular automata is now flourishing [2], [5], [7], [8], [9]. Most of this work has involved 
two-dimensional cellular automata. A two-dimensional grid of cells forms a discrete 
space, which is infinite and unbounded in the abstract, but is necessarily finite in a 
computer implementation. The cells are (usually identical) finite state machines, in which 
a cell’s state depends on the states of its neighbours, according to a set of 
(deterministic) state transition rules. The system begins with each cell in an initial state 
(chosen by the user) and the states change synchronously in discrete time steps. With 
carefully selected transition rules, it is possible to create self-replicating patterns. The 
initial states of the cells are “seeded” with a certain pattern (usually the pattern is a small 
loop). Over time, the pattern spreads from the seed to nearby cells, eventually filling the 
available space. 

Although this work has influenced and guided us, JohnnyVon is different in several 
ways. The automata in JohnnyVon are (essentially) finite state machines, but they are 
mobile, rather than being locked in a grid. The automata move in a continuous two-
dimensional space, rather than a discrete space (but time in JohnnyVon is still discrete). 
The states of the automata are mainly discrete and finite, but each automaton has a 
position and a velocity, and the force fields around the tips of each particle have smooth 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  5 

 

 

gradients, all of which are represented with floating point numbers.2 The movements of 
the automata are governed by a simple simulated physics. We claim that these 
differences from self-replicating cellular automata make JohnnyVon more realistic, and 
thus more suitable for guiding work on self-replicating nanotechnology and research on 
the origins of life and related issues in theoretical biology. Aside from the increased 
realism, JohnnyVon is interesting simply because it is significantly different from cellular 
automata.  

2.2 Mobile Automata 
There has been other research on mobile automata (e.g., bio-machines [3] and 
generalized mobile automata [11]), combining Turing machines with cellular automata. 
Turing machines move from cell to cell in an N-dimensional grid space, changing the 
states of the cells and possibly interacting with each other. However, unlike JohnnyVon, 
this work has used a discrete space. As far as we know, JohnnyVon is the first system 
that demonstrates self-replication with mobile automata in a continuous space.  

2.3 Physical Models of Self-Replication 
Lionel Penrose, with the help of his son, Roger, made actual physical models of self-
replicating machines, using pieces of plywood [4]. His models are similar to JohnnyVon 
in several ways. Both involve simple units that can be assembled into self-replicating 
patterns. In both, the units move in a continuous space. Another shared element is the 
harnessing of random motion for replication. JohnnyVon uses simulated brownian 
motion and Penrose required the plywood units to be placed in a box that was then 
shaken back and forth. Penrose described both one-dimensional and two-dimensional 
models, in which motion is restricted to a line or to a plane. 

An obvious difference between the Penrose models and JohnnyVon is that the former 
are physical whereas the latter is computational. One advantage of a computational 
model is that experiments are perfectly repeatable, given the same initial conditions and 
the same random number seed. Another advantage is the ability to rapidly modify the 
computational model, to explore alternative models.  

A limitation of the Penrose models is that the basic units are all identical, so they cannot 
use binary encoding. They could encode information by length (the number of units in an 
assembled pattern), but the mechanism for ensuring that length is replicated faithfully is 
built in to the physical structure of the units. Thus altering the length involves building 
new units. On the other hand, JohnnyVon can encode an arbitrary binary string without 
making any changes to the basic units. 

3 JohnnyVon 
We begin the description of JohnnyVon with an informal discussion of the model. We 
then define some terminology, followed with an outline of the attractive and repulsive 
fields that govern the interactions among the automata. The fourth subsection sketches 
the simulated physics and the fifth subsection explains how the automata decide when 

                                                
2
 We discuss in Section 3.5 the extent to which the automata in JohnnyVon are finite state 

machines. 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  6 

 

to split apart. The sixth subsection considers the states of the automata and the seventh 
subsection discusses the treatment of time in JohnnyVon. The final subsection is 
concerned with the implementation of JohnnyVon. 

3.1 Informal Description 
The design of JohnnyVon was based on the idea that strings (chains) of particles, of 
arbitrary length, should be capable of forming spontaneously, and once formed, they 
should be relatively stable. Each particle is a T-shaped structure. Particles form strings 
by bonding together at the tips of the horizontal arms of the T structures. Strings 
replicate by attracting randomly floating particles to the tips of the vertical arms of the T 
structures and holding them in place until they join together to form a replica of the 
original string. 

Bonds between particles in a string can be broken apart by brownian motion (due to 
random collisions with virtual molecules of the containing fluid) and by jostling from other 
particles. Particles can also bond to form a string by chance, without a seed string, if two 
T structures meet under suitable conditions. Strings that are randomly broken or formed 
can be viewed as mutations. We intentionally designed JohnnyVon so that mutations are 
relatively rare, although they are possible. Faithful replication is intended to be much 
more common than mutation. 

The attractive fields around particles have limited ranges, which can shrink or expand. 
This is one of the mechanisms that we use to ensure faithful replication. The fields shrink 
when we want to discourage bonding that could cause mutations and the fields expand 
when we want to encourage bonding that should lead to faithful replication.  

A mechanism is needed to recognize when a string has attracted and assembled a full 
copy of itself.  Without this, each seed string would attract a single copy, but the seed 
and its copy would remain bonded together forever. Therefore the automata send 
signals to their neighbours in the string, to determine whether a full copy has been 
assembled. When the right signal is received, a particle releases the bond on the vertical 
arm of the T structure and pushes its corresponding particle away.  

3.2 Definitions 
The following definitions will facilitate our subsequent discussion. To better understand 
these definitions, it may be helpful to look ahead to Table 1 and the figures in Section 4. 

Codon: a T-shaped object that can encode one bit of information. There are two types 
of codons, type 0 codons and type 1 codons.  

Container: the space that contains the codons. Codons move about in a two-
dimensional continuous space, bounded by a grey box. The centers of the codons are 
confined to the interior of the grey box.  

Liquid: a virtual liquid that fills the container. The trajectory of a codon is determined by 
brownian motion (random drift due to the liquid) and by interaction with other codons and 
the walls of the container. The liquid has a viscosity that dampens the momentum of the 
codons. 

Soup: liquid with codons in it. 

Field: an attractive or repulsive area associated with a codon. The range of a field is 
indicated by a coloured circle. In addition to attracting or repelling, a field can also exert 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  7 

 

 

a straightening force, which twists the codons to align their arms linearly. The fields 
behave somewhat like springs. 

Arm: a black line in a codon that begins in the middle of the codon and ends in the 
center of a coloured field. 

Tip: the outer end of an arm, where the red, blue, green, and purple fields are centered. 

Middle: the inner ends of the arms, where the three arms join together. This is not the 
geometrical center of the codon, but it is treated as the center of mass in the physical 
simulation.  

Red (blue, purple, green) arm: an arm that ends in a red (blue, purple, green) field. 

Bond: two codons can bond together when the field of one codon intersects the field of 
another. Not all fields can bond. This is described in detail later. 

Red (blue, purple, green) neighbour: the codon that is bonded to the red (blue, purple, 
green) arm of a given codon. 

Single strand: a chain of codons that are red and blue neighbours of each other. 

Double strand: two single strands that are purple and green neighbours of each other. 

Small (large) field: a field may be in one of two possible states, small or large. These 
terms refer to the radius of the circle that delimits the range of the field.  

Free codon: a codon with no bonds. 

Time: the number of steps that have been executed since the initialization of 
JohnnyVon. The initial configuration is called step 0 (or time 0).  

3.3 Fields 
The codons have attractive and repulsive fields, as shown in Table 1. These fields 
determine how codons interact with each other to form strands. There are five types of 
fields, which we have named according to the colours that we use to display the codons 
in JohnnyVon’s user interface (purple, green, blue, red, yellow). All five fields have two 
possible states, called large and small, according to the radius of the circle that delimits 
the range of the field. All fields in a free codon are small. 

Table 2 gives the state transition rules for the field states. Fields switch between small 
and large as bonds are formed and broken.  

The interactions among the fields are listed in Table 3. Fields can pull codons together, 
push them apart, or twist them to align their arms.  



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  8 

 

Table 1. The two types of codons and their field states. The fields of a free codon are always 
small. The fields become large only when codons bond together, as described in the next table. A 
codon’s fields may be in a mixture of states (one field may be small and another large). Note that 
the circles are not drawn to scale, since the small fields would be invisibly small at this scale. 

 Type 0 codons 
(purple codons) 

Type 1 codons 
(green codons) 

All fields in 
their small 
states 

  

All fields in 
their large 
states 

  

Table 2. State transitions in fields. Fields can change from small to large or vice versa, but they 
never change colour. 

Current field state Next field state Transition rules 

small red large red  

small blue large blue 

If a small blue field touches a small red field and the arms 
of their respective codons are aligned linearly to within ± 
�

/256 radians, then both fields switch to their large states 
and their codons are designated as being bonded 
together. As long as the two fields continue to intersect, at 
any angle, they remain in the bonded state, and any third 
field that intersects with the two fields will be ignored. 

large red small red 

large blue small blue 

If jostling causes a large red field to lose contact with its 
bonded large blue field, then both fields switch to their 
small states and their codons are no longer designated as 
being bonded. 

small green large green 

small purple large purple 

If a codon’s red or blue fields are bonded, then its green or 
purple field switches to its large state. 

large green small green 

large purple small purple 

If neither of a codon’s red or blue fields are bonded, then 
its green or purple field becomes small. 

small yellow large yellow If a double strand is ready to split, then the yellow fields of 
all of the codons in the double strand become large (this is 
described in more detail later). 

large yellow small yellow If a yellow field has been large for 150 time units, then it 
returns to its small state. 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  9 

 

 

Table 3. The behaviour of the fields. Fields have no effect on each other unless their circles 
intersect. If the behaviour of a pair of fields is not listed in this table, it means that pair of fields 
has no interaction (they ignore each other). The designations “Field 1” and “Field 2” in this table 
are arbitrary, since the relationships between the fields are symmetrical.   

Field 1 Field 2 Interaction between fields 

small red small blue If a small blue field touches a small red field and the arms of their 
respective codons are aligned linearly to within ± 

�
/256 radians, 

then both fields switch to their large states and their codons are 
designated as being bonded together. As long as the two fields 
continue to intersect, at any angle, they remain bonded, and any 
third field that intersects with the two fields will be ignored. 

large red large blue When a large red field is designated as bonded with a large blue 
field, an attractive force pulls the tip of the red arm towards the tip 
of the blue arm and a straightening force twists the codons to align 
their arms linearly. 

small purple small green 

small purple large green 

large purple small green 

When a purple field touches a green field and the arms of their 
respective codons are aligned linearly to within ± 

�
/3 radians, they 

are designated as being bonded. As long as the two fields 
continue to intersect, at any angle, they remain bonded, and any 
third field that intersects with the two fields will be ignored. An 
attractive force pulls the tip of the purple arm towards the tip of the 
green arm and a straightening force twists the codons to align their 
arms linearly. When a small purple field bonds with a small green 
field, their bond is typically quickly ripped apart by brownian 
motion. The bonds between two large fields or one large field and 
one small field are more robust; they can withstand interference 
from brownian motion. 

large purple large green A large purple field and a large green field cannot initiate a new 
bond; they can only maintain an existing bond. If they do not have 
an existing bond, carried over from before they became large, then 
they ignore each other. Otherwise, as long as the two fields 
continue to intersect, at any angle, they remain bonded, and any 
third field that intersects with the two fields will be ignored. An 
attractive force pulls the tip of the purple arm towards the tip of the 
green arm and a straightening force twists the codons to align their 
arms linearly. 

large yellow large yellow When two large yellow fields intersect, a repulsive force pushes 
them apart. The repulsive force stops acting when the fields no 
longer intersect or when the fields switch to their small states. 
However, when the repulsive force stops acting, the codons will 
continue to move apart, until their momentum has been dissipated 
by the viscosity of the liquid. For yellow fields, unlike the other 
fields, there is nothing that corresponds to designated bonded 
pairs. Thus, if there are three or more intersecting large yellow 
fields, they will all repel each other.  

3.4 Physics 
JohnnyVon runs in a sequence of discrete time steps. Each codon has a position (x-axis 
location, y-axis location, and angle) and a velocity (x-axis velocity, y-axis velocity, and 
angular velocity) in two-dimensional space. Although time is measured in whole 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  10 

 

numbers, position and velocity are represented with floating point numbers. (We discuss 
time in more detail in Section 3.7.) Each codon has one unit of mass. 

The internal state changes of a codon are triggered by the presence and state of 
neighbouring codons. One codon “senses” another when it comes within range of one of 
its force fields. It could be said that the force fields are also sensing fields, and when one 
of these fields expands, its sensing ability expands equally.  

We think of the container as holding a thin layer of liquid, so although the space is two-
dimensional, codons are allowed to slide over one another (it could be called a 2.5D 
space). This simplifies computation, since we do not need to be concerned with 
detecting collisions between codons. It also facilitates replication, since free codons can 
move anywhere in the container, so it is not possible for them to get trapped behind a 
wall of strands. 

It is interesting to note that strands are emergent structures that depend only on the local 
interactions of individual codons. There is no data structure that represents strands; 
each codon is treated separately and interacts only with its immediate neighbours.  

3.4.1 Brownian Motion 
Codons move in a virtual liquid. Brownian motion is simulated by applying a random 
change to each codon’s (linear and angular) velocity at each time step. This random 
velocity change may be thought of as the result of a collision with a molecule of the 
liquid, but we do not explicitly model the liquid’s molecules in JohnnyVon. 

3.4.2 Viscosity 
We implement a simple model of viscosity in the virtual liquid. With each time step, a 
codon’s velocity is adjusted towards zero by multiplying the velocity by a fractional 
factor. One factor is applied for x-axis and y-axis velocity (linear viscosity) and another 
factor is applied for angular velocity (angular viscosity). 

3.4.3 Attractive Force 
When two codons are bonded, an attractive force pulls their bonded arms together. This 
force acts like a spring joining the tips of the bonded arms. The strength of the spring 
force increases linearly with the distance between the tips, until the distance is greater 
than the sum of the radii of the fields, at which point the bond is broken. The spring force 
modifies both the linear and angular velocities of the bonded codons. (The angular 
velocity is modified because the force acts on the codon tip, rather than on the center of 
mass.) 

3.4.4 Repulsive Force 
The repulsive force also acts like a spring, joining the centers of the yellow fields, 
pushing the codons apart. The strength of the spring force decreases linearly with the 
distance between the centers of the yellow fields, until the distance is greater than the 
sum of the radii of the fields, at which point the force ceases. The spring force modifies 
both the linear and angular velocities of the bonded codons. 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  11 

 

 

3.4.5 Straightening Force 
When two codons are bonded, a straightening force twists them to align their bonded 
arms linearly. This force is purely rotational; it has no linear component. The two bonded 
codons rotate about their middles, so that their bonded arms lie along the line that joins 
their middles. The straightening force for a given codon is linearly proportional to the 
angle between the bonded arm of the given codon and the line joining the middle of the 
given codon to the middle of the other codon. 

3.4.6 Spring Dampening 
The motion due to the attractive and straightening forces is dampened, in a way that is 
similar to the viscosity that is applied to brownian motion. The dampening prevents 
unlimited oscillation. No dampening is applied to the repulsive force, since oscillation is 
not a problem with repulsion. The linear velocities of a bonded pair of codons are 
dampened towards the average of their linear velocities, by a fractional factor (linear 
dampening). The angular velocities of a bonded pair of codons are dampened towards 
zero, by another fractional factor (angular dampening). 

3.5 Splitting 
When a complete double strand forms, the yellow fields switch to their large states and 
split the double strand into two single strands. The decision to split is controlled by a 
purely local process. Each codon has an internal state that is determined by the states of 
its neighbours. When a codon enters a certain internal state, its yellow field switches to 
the large state. The splitting is determined by a combination of two state variables, the 
strand_location_state and the splitting_state.  

The strand_location_state has three possible values: 

0 = Initial state: I do not think I am at the end of a (possibly incomplete) 
double strand. 

1 =  I think I might be located at the end of a (possibly incomplete) 
double strand. 

2 =  My green or purple neighbour also thinks it might be at the end of a 
(possibly incomplete) double strand. 

An incomplete double strand occurs when a single strand has partially replicated. On 
one side, there is the original single strand, and, attached to it, there are one or more 
single codons or shorter single strands. The state transition rules for 
strand_location_state are designed so that a codon can only be in state 2 when it is at 
one of the two extreme ends of a (complete or incomplete) double strand.  

The splitting_state also has three possible values: 

x = Initial state: I am not ready to split. 

y = I am ready to split. 

z = I am now splitting. 

A codon’s yellow field switches to the large yellow state when splitting_state becomes z. 

The following tables give the rules for state transitions. Table 4 lists the rules for 
strand_location_state and Table 5 provides the rules for splitting_state.  



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  12 

 

Table 4. Transition rules for strand_location_state. When strand_location_state is 2, the given 
codon must actually be at one end of a (possibly incomplete) double strand. During the replication 
process, if a strand has not yet fully replicated, there will be gaps in the strand, and the codons 
situated at the edges of these gaps will be stuck in state 1 until the gaps are filled, at which time 
they will switch to state 0. 

Current state Next state Transition rules for strand_location_state 

0 1 If (I have exactly one red or blue neighbour) and (I have a purple or 
green neighbour), then I switch from state 0 to state 1. 

1 0 If (I do not have exactly one red or blue neighbour) or (I do not have 
a green or purple neighbour), then I switch from state 1 to state 0. 

1 2 If (I have exactly one red or blue neighbour) and (I have a green or 
purple neighbour) and (my green or purple neighbour is in state 1 or 
2), then I switch from state 1 to state 2. 

2 0 If (I do not have exactly one red or blue neighbour) or (I do not have 
a green or purple neighbour) or (my green or purple neighbour is in 
state 0), then I switch from state 2 to state 0. 

Table 5. Transition rules for splitting_state. A strand begins with all codons in the x state. When 
the strand is complete, one end of the strand (the end with no red neighbour) enters the y state, 
and the y state then spreads down the strand to the other end (the end with no blue neighbour). If 
the double strand is incomplete, the codons next to the gap will have their strand_location_state 
set to 1, which will block the spread of the y state. When the y state spreads all the way to the 
other end, in either of the two single strands, the double strand must be complete. Therefore, 
when the y state reaches the other end (the end with no blue neighbour), the end codon enters 
the z state, and the z state spreads back down to the first end (the end with no red neighbour). 

Current state Next state Transition rules for splitting_state 

x y If [(my strand_location_state is 2) and (my green or purple 
neighbour’s strand_location_state is 2) and (I have no red 
neighbour)] or [(my strand_location_state is not 1) and (my green or 
purple neighbour’s strand_location_state is not 1) and (my red 
neighbour’s splitting_state is y)], then I switch from state x to state 
y. 

y z If [(my strand_location_state is 2) and (my green or purple 
neighbour’s strand_location_state is 2) and (I have no blue 
neighbour)] or [(my strand_location_state is not 1) and (my green or 
purple neighbour’s strand_location_state is not 1) and (my blue 
neighbour’s splitting_state is z)], then I switch from state y to state 
z. 

z x If [(I have no red neighbour) and (I have been in state z for 150 time 
units)] or [my red neighbour is in state x], then I switch from state z 
to state x. 

3.6 States 
The state of a codon in JohnnyVon is represented by a vector, rather than a scalar. The 
state vector of a codon has 16 elements:  

• 3 floating point variables for position (x-axis location, y-axis location, angle) 

• 3 floating point variables for velocity (x-axis velocity, y-axis velocity, angular velocity) 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  13 

 

 

• 5 binary variables for field size (blue, red, green, purple, and yellow field size) 

• 3 whole-number-valued variables (one for each arm of the codon) for “pointers” that 
identify the codon to which a given arm is bonded (if any) 

• 1 three-valued variable for strand_location_state 

• 1 three-valued variable for splitting_state 

The seven-dimensional finite-valued sub-vector, consisting of the five binary variables 
and the two three-valued variables, is the part of each codon that corresponds to the 
traditional notion of a finite state machine. This seven-dimensional sub-vector has a total 
of 25 × 32 = 288 possible states.3 

Chou and Reggia demonstrated the emergence of self-replicating structures in two-
dimensional cellular automata, using 256 states per cell [1]. The state values were 
divided into “data fields”, which were treated separately. In other words, Chou and 
Reggia used state vectors, like JohnnyVon, rather than state scalars. We agree with 
Chou and Reggia that state vectors facilitate the design of state machines. 

The remaining nine variables in the state vector (position, velocity, bond pointers) 
represent information about external relationships among codons, rather than the 
internal states of the codons. For example, the absolute position of a codon is not 
important; the interactions of the codons are determined by their relative positions. 
These nine variables are analogous to the grid in cellular automata. As far as internal 
states alone are concerned, the codons are finite state machines. It is their external 
relationships that make the codons significantly different from cellular automata. 

3.7 Time 
For the discrete elements in the state vector, there is a natural relation between changes 
in state and increments of time, when each unit of time is one step in the execution of 
JohnnyVon. For the continuous elements in the state vector (position and velocity), the 
time scale is somewhat arbitrary. The physical rules that are used to update the position 
and velocity are continuous functions of continuous time. In a computational simulation 
of a continuous process, it is necessary to sample the process at a succession of 
discrete intervals. In JohnnyVon, the parameter timestep_duration determines the 
temporal resolution of the simulation. The parameter may be seen as determining how 
finely continuous time is sliced into discrete intervals, or, equivalently, it may be seen as 
determining how much action takes place from one step of the simulation to the next. 
Changing the value of the parameter is equivalent to rescaling the magnitudes of the 
forces.  

A small value for timestep_duration yields a fine temporal resolution (i.e., a small amount 
of action between steps) and a large value yields a coarse temporal resolution. If the 
value is too small, the simulation will be computationally inefficient; many CPU cycles 
will be wasted on making the simulation unnecessarily precise. On the other hand, if the 
value is too large, the simulation may become unstable; the behaviour of the objects in 
the simulation may be a very poor approximation to the intended continuous physical 
dynamics.  

                                                
3
 Some combinations of states are not actually possible. See Tables 2 to 5. 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  14 

 

The actual value that we use for timestep_duration has no meaning outside of the 
context of the (arbitrary) values that we chose for the magnitudes of the various physical 
parameters (force field strengths, viscosity, brownian motion, etc.). We set 
timestep_duration by adjusting it until it seemed that we had found a good balance 
between computational efficiency and physical accuracy.  

When comparing different runs of JohnnyVon, with different values for 
timestep_duration, we found it useful to normalize time by multiplying the number of 
steps by timestep_duration. For example, if you halve the value of timestep_duration, 
then half as much action takes place from one time step to the next, so it takes twice as 
many time steps for a certain amount of action to occur. Therefore, as JohnnyVon runs, 
it reports both the number of time steps and the normalized time (the product of the step 
number and timestep_duration). However, in the following experiments, we only report 
the number of steps, since the normalized time has no meaning when taken out of 
context.  

3.8 Implementation 
JohnnyVon is implemented in Java. The source code is available under the GNU 
General Public License (GPL) at http://extractor.iit.nrc.ca/johnnyvon/. 

We originally implemented JohnnyVon in C++. The current version is in Java because 
we found it difficult to make the C++ version portable across different operating systems. 
Informal testing suggests that the Java version runs at about 75% of the speed of the 
C++ version. We believe that the slight loss of speed in the Java version is easily offset 
by the gain in portability and maintainability. 

4 Experiments 
In our first experiment, we seed a soup of free codons with a pattern and show that the 
pattern is replicated. In the second experiment, we show that a soup of free codons, 
given sufficient time, will spontaneously generate self-replicating patterns. 

4.1 Seeded Replication 
Figures 1 to 7 show a typical run of JohnnyVon with a seed strand of eight codons and a 
soup of 80 free codons. Over many runs, with different random number seeds, we have 
observed that the seed strand reliably replicates.  

 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  15 

 

 

 

Figure 1. Step 250. This screenshot shows JohnnyVon near the start of a run, after 250 steps 
have passed. A soup of free codons (randomly located) has been seeded with a single strand of  
eight codons (placed near the center). The strand of eight codons encodes the binary string 
“00011001” (0 is purple, 1 is green). In the strand, the red fields are covering the corresponding 
blue fields of the red neighbours.  

 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  16 

 

 

 

 

Figure 2. Step 6,325. Six codons have bonded with the seed strand, but they have not yet formed 
any red-blue bonds. 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  17 

 

 

 

 

 

Figure 3. Step 18,400. Eight codons have bonded with the seed strand, but these eight codons 
have not yet formed a complete strand. One red-blue bond is missing. These bonds can only 
form when the red and blue arms meet linearly to within ± 

�
/256 radians. This happens very 

rarely when the codons are drifting freely, but it happens dependably when the codons are held in 
position by the purple-green bonds. 

 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  18 

 

 

 

 

Figure 4. Step 22,000. The eight codons formed their red-blue bonds, making a complete strand 
of eight codons. This caused the yellow fields in the double strand to switch to their large states, 
breaking the bonds between the two single strands and pushing them apart. In this screenshot, 
the yellow fields are still large. After a few more time units have passed, they will return to their 
small states. Note that the seed strand encodes “00011001”, but the daughter strand encodes 
“01100111”. This is discussed in Section 5. 

 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  19 

 

 

 

 

 

Figure 5. Step 25,950. We now have two single strands, and they have started to form bonds with 
the free codons.  

 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  20 

 

 

 

 

Figure 6. Step 30,850. The daughter strand has replicated itself, producing a granddaughter. The 
original seed strand and the granddaughter encode the same bit string. 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  21 

 

 

 

 

 

Figure 7. Step 127,950. There are only a few free codons left. Eventually they will bond with the 
strands, leaving a stable soup of partially completed double strands. The elapsed real-time from 
step 250 (Figure 1) to step 127,950 (Figure 7) was approximately 45 minutes.  

4.2 Spontaneous Replication 
JohnnyVon was intentionally designed so that life (self-replicating patterns) can arise 
from non-life (free codons without a seed), but only rarely. It is difficult for red-blue bonds 
to form, due to the narrow angle at which the arms must meet (± � /256 radians – see 
Table 2). These bonds are very unlikely to form unless the codons are held in position by 
green-purple bonds. However, given sufficient time, two free codons will eventually 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  22 

 

come into contact in such a way that a red-blue bond is formed and a self-replicating 
strand of length two is created. Figure 8 shows an example. 

 

 

Figure 8. Step 164,450. A strand of length two has spontaneously formed from a soup of 88 free 
codons. Very shortly after forming, it replicated. The elapsed real-time from step 0 to step 
164,450 was about 15 minutes. This is less real-time per step than the previous experiment 
because there are fewer calculations when there are no bonds between the codons. 

5 Interpretation of Experiments 
The first experiment shows that a pattern containing arbitrary information can replicate 
itself. Note that all codon interactions in JohnnyVon are local; no global control system is 
needed. (This is also true of the various implementations of self-replicating cellular 
automata.) 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  23 

 

 

It is apparent in Figure 7 that (approximately) half of the single strands are mirror images 
of the original seed strand (in Figure 1). More precisely, let X be an arbitrary sequence of 
0s and 1s that we want to encode. Let n(X) be the string that results when every 0 in X is 
replaced with 1 and every 1 in X is replaced with 0. Let r(X) be the string that results 
when the order of the characters in X is reversed. When a strand with the pattern X 
replicates, the resulting new strand will have the pattern r(n(X)). Therefore, if we seed a 
soup of free codons with a pattern X, then the final result will consist of about 50% 
strands with the pattern X and 50% with the pattern r(n(X)).  

Penrose anticipated this problem [4]. He suggested it could be avoided by making the 
pattern symmetrical. Let c(X, Y) be the string that results when the string Y is 
concatenated to the end of string X. Let g(X) be c(X, r(n(X))). Note that g(X) is equal to 
its negative mirror image, r(n(g(X))). That is, if g(X) replicates, the resulting string is 
exactly g(X) itself. The function g(X) enables us to encode any arbitrary string X in such 
a way that replication will not alter the pattern. 100% of the final strands will be copies of 
g(X).  

The second experiment shows that self-replicating patterns can spontaneously arise. 
The strands in this case are of length two, but it is possible in principle for mutations to 
extend the length of the strands (although we have not observed this). 

Strands of length two have an evolutionary advantage over longer strands, since they 
can replicate faster. On rare occasions, when running JohnnyVon with a seed of length 
eight (as in Section 4.1), a strand of length two has spontaneously appeared. The 
length-two strand quickly out-replicates the length-eight strand and soon predominates. 

We have intentionally designed JohnnyVon so that its most likely behaviour is to 
faithfully replicate a given seed strand. However, we have allowed a small possibility of 
red-blue bonds forming without a seed pattern, which allows both spontaneous 
generation of life and mutation of existing strands. (The probability of mutation can be 
increased or decreased by adjusting the red-blue bonding angle above or below its 
current value of ± � /256 radians.) Since there is selection (for rapid replication), 
JohnnyVon fully supports evolution: there is inheritance, mutation, and selection. 

Cellular automata can also support self-replication [2], [5], [8], [10], evolution [6], and 
spontaneous generation of life from non-life [1]. The novelty in JohnnyVon is that these 
three features appear in a computer simulation that includes continuous space and 
virtual physics. We believe that this is an important step towards building physical 
machines with these features. 

6 Limitations and Future Work 
One area we intend to look at is the degree to which the internal codon states can be 
simplified while still exhibiting the basic features of stability and self-replication. We 
make no claim that we have found the simplest codon structure that will exhibit the 
intended behaviours.  

JohnnyVon contains only genotypes (genetic code) with no phenotypes (bodies). The 
only evolutionary selection that JohnnyVon currently supports is selection for shorter 
strands, since they can replicate faster than longer strands. In order to support more 
interesting selection, we would like to introduce phenotypes. In natural life, DNA can be 
read in two different ways. During reproduction, DNA is copied verbatim, but during 
growth, DNA is read as instructions for building proteins. We would like to introduce this 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  24 

 

same distinction into a future version of JohnnyVon. One approach would be to add new 
“protein” particles to complement the existing codon particles. Free protein particles 
would bond to a strand of codons, which would act as a template for assembling the 
proteins. Once a string of proteins has been assembled, it would separate from the 
codon strand and then it would fold into a shape, analogous to the way that real proteins 
fold. To achieve interesting evolution, the environment could be structured so that 
certain protein shapes have an evolutionary advantage, which somehow results in 
increased replication for the corresponding codon strands. 

Another limitation of JohnnyVon is the simplistic virtual physics. Many of our 
simplifications were designed to make the computation tractable. For example, 
electrostatic attraction and repulsion in the real world have an infinite range, but all of the 
fields in JohnnyVon have quite limited ranges (relative to the size of the container). Our 
codons can only interact when their fields are in contact with one another, so it is not 
necessary to calculate the forces between every pair of codons. This significantly 
reduces the computation, especially when there are many free codons. The trajectory of 
a free codon is determined solely by brownian motion and viscosity.  

However, it is likely possible to significantly increase the realism of JohnnyVon without 
sacrificing speed. This is another area for future work. It may be that the direction taken 
will depend on the application. The changes that would make JohnnyVon more realistic 
for a biologist, for example, may be different from the changes that would be appropriate 
for a nanotechnologist. 

Finally, it may be worthwhile to develop a 3D version of JohnnyVon. The current 2.5D 
space might be insufficiently realistic for some applications. 

7 Applications 
JohnnyVon was designed with nanotechnology in mind. We hope that it may some day 
be possible to implement the codons in JohnnyVon (or some distant descendant of 
JohnnyVon) as nanomachines. We imagine that the two types of codons could be mass 
produced by some kind of macroscopic manufacturing process, and then sprinkled in to 
a vat of liquid. A seed strand could be dropped in the vat, and the nanomachines would 
quickly replicate the seed. This imaginary scenario might never become reality, but the 
success of the experiments in Section 4 lends some plausibility to this project.  

JohnnyVon may also contribute to theoretical biology, by increasing our understanding 
of natural life. As Penrose mentioned, models of this kind may help us to understand the 
origins of life on Earth [4]. JohnnyVon was designed to allow life to arise from non-life 
(as we saw in Section 4.2). Of course, we have no idea whether this model is anything 
like the actual origin of life on Earth, but it seems possible.  

Finally, we should not overlook the entertainment value of JohnnyVon. We believe it 
would make a great screen saver. 

8 Conclusion 
JohnnyVon includes the following features: 

• automata that move in a continuous 2.5D space 

• self-replication of seed patterns 

• spontaneous generation of life (self-replication) from non-life (free codons) 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  25 

 

 

• evolution (inheritance, mutation, and selection) 

• virtual physics (brownian motion, viscosity, attraction, repulsion, dampening) 

• the ability to encode arbitrary bit strings in self-replicating patterns 

• local interactions (no global control structures) 

JohnnyVon is the first computational simulation to combine all of these features. 

Von Neumann sketched a path that begins with self-replicating cellular automata and 
ends with self-replicating physical machines. We agree with von Neumann that, at some 
point along this path, it is necessary to move away from discrete space models, towards 
continuous space models. JohnnyVon is such a step. 

References 

[1] Chou, H.-H., and Reggia, J.A. (1997). Emergence of self-replicating structures in a 
cellular automata space. Physica D, 110, 252-276. 

[2] Langton, C.G. (1984). Self-reproduction in cellular automata. Physica D, 10, 134-
144. 

[3] Lerena, P., and Courant, M. (1996). Bio-machines. In Proceedings of Artificial Life V 
(Poster), Nara, Japan.  

[4] Penrose, L.S. (1959). Self-reproducing machines. Scientific American, 200 (6), 105-
114. 

[5] Reggia, J.A., Lohn, J.D., and Chou, H.-H. (1998). Self-replicating structures: 
Evolution, emergence and computation. Artificial Life, 4 (3), 283-302. 

[6] Sayama, H. (1998). Constructing Evolutionary Systems on a Simple Deterministic 
Cellular Automata Space. Ph.D. Dissertation, Department of Information Science, 
Graduate School of Science, University of Tokyo. 

[7] Sayama, H. (1998). Introduction of structural dissolution into Langton's self-
reproducing loop. In C. Adami, R.K. Belew, H. Kitano, and C.E. Taylor, eds., 
Artificial Life VI: Proceedings of the Sixth International Conference on Artificial Life, 
114-122. Los Angeles, California: MIT Press. 

[8] Sipper, M. (1998). Fifty years of research on self-replication: An overview. Artificial 
Life, 4 (3), 237-257. 

[9] Tempesti, G., Mange, D., and Stauffer, A. (1998). Self-replicating and self-repairing 
multicellular automata. Artificial Life, 4 (3), 259-282. 



NRC/ERB-1099. JohnnyVon: Self-Replicating Automata in Continuous 2D Space 

 

Smith, Turney, Ewaschuk  26 

 

[10] von Neumann, J. (1966). Theory of Self-Reproducing Automata. Edited and 
completed by A.W. Burks. Urbana, IL: University of Illinois Press. 

[11] Wolfram, S. (2002). A New Kind of Science. Champaign, IL: Wolfram Media.  


