
Publisher’s version  /   Version de l'éditeur: 

Proceedings of the 15th IBPSA Conference, August 7-9, 2017, San Francisco, 
CA, USA, pp. 394-402, 2017-08-09

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 

first page of the publication for their contact information. 

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / 

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

The effect of zone level occupancy characteristics on adaptive controls
Gunay, Burak; O'Brien, William; Beausoleil-Morrison, Ian; Shen, Weiming; 
Newsham, Guy; Macdonald, Iain

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=22bb315d-0b4e-427e-80a5-b1f1444289ab

https://publications-cnrc.canada.ca/fra/voir/objet/?id=22bb315d-0b4e-427e-80a5-b1f1444289ab



PREPRINT Proceedings of the 15th IBPSA Conference

San Francisco, CA, USA, Aug. 7-9, 2017

394

The effect of zone level occupancy characteristics on adaptive controls 
 

H. Burak Gunay1,2, William O’Brien2, Ian Beausoleil-Morrison3, Weiming Shen2, Guy Newsham2, Iain Macdonald2 
1Civil and Environmental Engineering, Carleton University, Ottawa, Canada 

2Construction Portfolio, National Research Council, Ottawa, Canada 
2Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada 

 

 

 

 

Abstract 

The objective of this paper is to examine the energy and 

comfort impact of the HVAC equipment granularity in 

offices through building performance simulation. To this 

end, the occupancy data gathered from 37 private offices 

in Ottawa, Canada were analysed. For each occupant, 

four parameters that play an important role over the 

HVAC operation were extracted. These parameters are 

the earliest expected arrival time, the latest expected 

departure time, the latest expected arrival time, and the 

longest expected duration of intermediate vacancy. 

Through random sampling from the 37 occupants, 

hypothetical zones with varying numbers of occupants 

were created, and EnergyPlus simulations were 

conducted. Results indicate that the earliest expected 

arrival time in one-person zones is on average two hours 

later than it is in twelve-person zones. Similarly, the 

latest expected departure time in one-person zones is on 

average two hours earlier than it is in twelve-person 

zones. Heating and cooling energy use with adaptive 

occupancy-based temperature setback scheduling in one-

person zones is estimated to be 20% less than it is in 

twelve-person zones. 

Keywords: Occupancy; HVAC; Energy use; Adaptive 

controls 

Introduction 

More than 25% of North American workforce reports 

having the ability to change their arrival and departure 

times for work (McMenamin 2007; Zeytinoglu et al. 

2009). As a result, personal preferences and habits 

translate into diverse zone level occupancy profiles. 

Some occupants prefer to arrive as early as 5 am and 

others as late as 12 pm (Kelly et al. 2011) and occupancy 

may even extend to weekends and holidays (Sun et al. 

2014). Mahdavi et al. (2008) monitored 48 offices in 

different types of buildings: a university building, a large 

office complex, and a government building. In all office 

types, it was found that the workstations were 

unoccupied at least half of the time, and the occupancy 

differed significantly from one office space to another. 

Similar observations were reported in other studies 

(Wang et al. 2005; Davis III and Nutter 2010; Gunay 

2016; Gunay et al. 2016).  

Inter-occupant diversity in occupants’ presence patterns 
plays an important role on zone temperature setback and 

air-handling unit (AHU) on-off scheduling decisions, 

and thus on energy use and comfort. Operators tend to 

override equipment schedules upon complaints; and to 

avoid complaints, control technicians tend to program 

conservatively long operating hours (Gunay et al. 2015). 

As a result, a significant portion of the energy use in 

commercial buildings is dedicated to conditioning 

unoccupied spaces (Masoso and Grobler 2010; Gunay 

2016). 

In several studies, opportunities to learn from recurring 

occupancy patterns using various sensor networks and 

adapt heating, ventilation, and air-conditioning (HVAC) 

equipment schedules accordingly were investigated (i.e., 

auto-scheduling, adaptive controls) (Agarwal et al. 2010; 

Yang and Becerik-Gerber 2014; Yang and Becerik-

Gerber 2014; D’Oca and Hong 2015; Gunay et al. 2015; 

Gunay 2016). These studies demonstrated that 

substantial energy savings can be achieved by applying 

localized comfort conditions based on individual 

occupancy schedules, particularly in intermittently used 

spaces. However, as the number of workers using the 

offices in a thermal zone increase, the probability that 

the zone remains occupied for longer periods will 

increase. Optimal zone temperature setback and AHU 

on-off scheduling decisions become dependent on the 

granularity of primary and secondary HVAC equipment. 

This calls the potential of occupancy-learning adaptive 

controls in multi-occupant spaces into question. 

The objective of this paper is to better understand the 

energy and comfort impact of HVAC equipment 

granularity in office buildings. To this end, the 

occupancy data gathered from 37 private office spaces 

were analysed. Hypothetical zones at varying numbers 

of occupants were created by randomly sampling from 

this occupant population. Consequently, each of these 

zones attained different occupancy characteristics 

relevant to HVAC controls (e.g., earliest expected arrival 

and latest expected departure times). EnergyPlus 

simulations were conducted for each of these random 

occupancy and corresponding HVAC equipment 

scheduling scenarios. The energy-savings potential of 

the occupancy-learning adaptive controls was reported at 

varying zone sizes. HVAC equipment granularity 

recommendations were developed for the design of new 

office buildings. 

Analyses of the occupancy data 

The dataset includes motion detector measurements from 

37 private office spaces from two different academic 

office buildings in Ottawa, Canada. The data were 

collected for one year in 13 of the offices and for nine 

months in 24 of the offices. Of these offices, ten were 
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used by full-time staff with administrative duties. The 

rest were full-time faculty members. Note that the 

faculty members had flexible work schedules interrupted 

with irregular absences as they were also engaged in 

work outside their offices (e.g., meetings, conferences, 

teaching, and work from home). The administrative staff 

had relatively more rigid work schedules. 

Each of the 37 offices had a commercial thermostat 

integrated to the same building automation system 

(BAS). Each thermostat contained a passive-infrared 

(PIR) motion sensor (5 m range and 100° horizontal and 

80° vertical coverage). The PIR motion sensors’ 
movement detections were collected per event basis and 

stored in a commercial BAS archiver. The occupancy 

data records in each room were generated from the 

movement detections using the adaptive time delay 

algorithm (Nagy et al. 2015). The principle behind the 

adaptive time delay algorithm to generate occupancy 

data records from PIR motion sensors was introduced in 

Nagy et al. (2015); and its appropriateness was verified 

against a ground-truth occupancy data record Gunay et 

al. (2016). Although it is likely that there were brief 

periods with more than one occupant in these offices 

(e.g., meetings), the primary users of these offices were 

assumed to be present at all times where at least one 

occupant was detected. Therefore, the occupancy data 

records from these 37 private offices were assumed to 

represent 37 different individuals. Note that visits shorter 

than 30 min between 12 am and 4 am were attributed to 

the cleaning staff, and corresponding data were 

discarded from the data records. 

 
Figure 1: Cumulative probability of observing a first arrival on 

a weekday for the 37 occupants. The likelihoods at midnight do 

not reach one because of the absent weekdays. 

Time of the first arrival and last departure events for 

each occupied weekday were extracted from individual 

occupancy data records. Figure 1 presents the 

cumulative likelihood of observing a first arrival on a 

weekday. For all of the occupants, the probability of 

observing the first arrival on a weekday before 6 am was 

negligible. The probability of observing a first arrival on 

a weekday was between 0.30 and 0.95 (on average 0.70). 

In other words, the ratios of absent weekdays were 

between 0.05 and 0.70 (on average 0.30) (see Figure 2). 

For most occupants the last departures exhibit a bimodal 

behaviour Figure 3. The occupants tend to depart either 

earlier than 12 pm or later than 4 pm. On average, 90% 

of the last departures took place before 7 pm. However, 

this value ranged from 4 pm to 8 pm for different 

individuals. It is worth mentioning that the temperature 

setback schedule in the buildings from which the 

occupancy data were gathered ranges from 10 pm to 6 

am. This underlines the potential to reduce HVAC 

equipment operation hours substantially upon high 

fidelity occupancy data information. 

  
Figure 2: Ratio of absent weekdays for the 37 occupants. 

 
Figure 3: Cumulative probability of observing a last departure 

on a weekday for the 37 occupants. 

 
Figure 4: The probability that an intermediate vacancy period 

lasts longer than a given period (e.g., lifetime of a break). 
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Figure 5: The relationship among the occupancy parameters of different individuals: earliest expected arrival time (tarr,early), latest 

expected arrival time (tarr,late), latest expected departure time (tdpt,late), and longest expected duration of intermediate break (Dabs,long). 

The Pearson correlation coefficients (ρ) are annotated on the scatter plots, and the mean (μ) and standard deviation (σ) of the 

parameters are annotated on the histogram plots. 

Figure 4 presents 37 survival plots predicting the 

lifetime of an intermediate vacancy (break) period for 

the monitored occupants. Results indicate that on 

average 90% of the intermediate breaks last shorter than 

2 h. From one occupant to another, this value varied 

between 1 and 4 h. 

Adaptive occupancy-learning controls 

Modern energy standards and codes (e.g., NRC 2015; 

ASHRAE 2016) encourage the use of occupancy sensors 

in new construction office buildings. As a result, real-

time zone level occupancy information is available in the 

control network databases of many buildings. By using 

the real-time zone-level occupancy information, the 

adaptive occupancy-learning control (Gunay 2016) puts 

forward four key occupancy parameters with utmost 

importance for HVAC equipment scheduling: the 

earliest expected arrival time (tarr,early), latest expected 

arrival time (tarr,late), latest expected departure time 

(tdpt,late), and the longest expected duration of 

intermediate absence (Dabs,long). 

On weekdays, it applies temperature setback under four 

different conditions: (1) if current time is earlier than 

tarr,early, (2) if current time exceeds tarr,late and the occupant 

has not arrived yet, (3) if current time exceeds tdpt,late, and 

(4) if the zone is vacated for longer than Dabs,long. In this 

study, an expected occupancy event (arrival, departure, 

breaks) is defined as an event with over 90% chance of 

occurrence. For example, if tdpt,late is 6 pm, it means that 

there is less than 10% chance to observe a departure 

after 6 pm. Similarly, if Dabs,long is 3 h, it means that there 
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is less than 10% chance to observe an intermediate break 

longer than 3 h. 

Each of the 37 occupants of the current study had a 

unique set of these four parameters. Figure 5 presents the 

correlation of individuals’ occupancy characteristics in 
terms of these four parameters. The positive correlation 

between tarr,early and tdpt,late indicates that those who arrive 

early tend to depart early. It appears that the earliest 

arrival habits exhibit no relationship with the choices of 

duration of intermediate breaks. Somewhat surprisingly, 

those who have late arrival habits tend to take longer 

intermediate breaks. Note that the relationships between 

these parameters play an important role on the overall 

zone occupancy characteristics. For example, if an 

individual with early arrival habits tends to depart earlier 

than others do, his placement in a zone will likely affect 

the optimal start of the HVAC equipment. However, if 

an individual with early arrival habits tends to depart 

later than others do, his placement in a zone will likely 

affect both optimal start and stop times of the HVAC 

equipment. 

In many of the existing commercial buildings, multiple 

occupants share a terminal HVAC unit. In multi-

occupant spaces, as the number of occupants assigned 

per zone increases, the probability that a zone remains 

occupied for longer periods increases because those who 

have the earliest and latest arrival/departure habits will 

determine the overall zone occupancy characteristics. 

Figure 6 presents the influence of the number of zones 

available per occupant in terms of the four occupancy 

parameters (tarr,early, tarr,late, tdpt,late, Dabs,long). The results 

shown in Figure 6 were calculated by randomly selecting 

from the 37 occupants in groups of 12 to 1 – 

representing one zone per twelve occupants to one zone 

for each occupant. For each zone size, random sampling 

was repeated 250 times. This number was determined 

after ensuring that the sample populations attain 

repeatable characteristics. Meaning that when 250 

groups of 12 individuals are formed by sampling from 

the parent 37 occupants ( 7), each time the process is 

repeated the mean and the variance of the four 

occupancy parameters remain relatively unchanged. 

Figure 6 present only the mean of these parameters. The 

results indicate that zone sizing substantially affects the 

occupancy characteristics. For example, on average, the 

earliest expected arrival time in a twelve-person zone is 

about two hours earlier than a one-person zone. 

Similarly, the latest expected departure time in a twelve-

person zone appears to be two hours later than it is in 

zones comprising of private spaces. Consequently, the 

energy-savings potential of adaptive controls is expected 

to diminish in multi-occupant spaces as the uniqueness 

of the occupancy characteristics diminish. 

Estimating energy-savings potential 

To estimate the influence of zone sizing on the energy-

savings potential of adaptive controls, EnergyPlus 

simulations were conducted. The EnergyPlus model 

represents 12 adjacent 3x3 m private office spaces with 

south-facing exterior windows and walls in Ottawa, 

Canada. Each of these offices was assumed to be used by 

a single occupant. The physical properties of the 

envelope and windows were selected in compliance with 

ASHRAE 90.1 (2016) for climate zone 6 (see Table 1). 

In line with the National Energy Code of Canada (NRC 

2015), infiltration rates were assumed constant at a rate 

of 0.2 L/s-m2 (normalized with the exterior surface area). 

The heating and cooling were assumed to be provided by 

an ideal air-based HVAC system with practical limits 

applied to its capacity, airflow rate and supply air 

temperatures (see Table 1). 

 
Figure 6: Impact of the number of thermal zones available per 

person on the five occupancy parameters. 

Heating was modelled to be available from November to 

April, and cooling was assumed available for rest of the 

year. When the outdoor air temperature is advantageous 

for cooling, the supply airflow rate was increased to a 

maximum of 100 L/s-m2 per room (i.e., economizer 

cycle). For ventilation purposes, outdoor air was 

introduced at a rate of 10 L/s to each private room during 

scheduled operating hours. Sensible heat recovery at 

70% efficiency was assumed to preheat the outdoor air, 

when needed. The relative humidity was maintained at a 

minimum of 30% (ASHRAE 2015). During the 

simulations, a standard weather year for Ottawa (CWEC 

2015) was used. The simulation timestep size was 15 

min. 

Lighting power intensity was assumed 10 W/m2
 

(ASHRAE 2016). Occupants were modelled to be 

responsible for light switch-on and blinds use actions 

(see Figure 7). Stochastic behaviour models predicting 

these actions were previously developed by using the 

data gathered from a subset of the 37 occupants of this 

study (Gunay 2016; Gunay et al. 2016). At each 

occupied timestep, occupants decide whether to turn on 

their lights or not (see Figure 7.a), and the lights are set 

to switch off automatically during vacancy periods. 

Once every two timesteps, occupants decide whether or 
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not to close their blinds (see Figure 7.b). Once blinds are 

deployed, the survival model shown in Figure 7.c is used 

to predict the duration the blinds in a room remains 

closed. For simplicity, the blinds were permitted in two 

states only: open or closed. The plug-in office equipment 

usage in each room was modelled as shown in Figure 

7.d. The plug loads during vacancy periods were 

selected as a function of the duration of absence. As a 

result, the plug loads during the intermediate breaks 

were similar to those during the occupied hours than 

after-hours and weekends. Note that each occupant is 

assigned to a unique set of behaviour models permitting 

him or her to undertake behaviours at different instances. 

As such, the blinds, lighting, and plug loads in each 

office were controlled in a unique manner. The occupant 

models were implemented by using the Energy 

Management System (EMS) application of EnergyPlus. 

Details about the data and methodologies used in 

developing and implementing these occupant behaviour 

models can be found elsewhere (Gunay 2016; Gunay et 

al. 2016; Gunay et al. 2016). Occupants’ clothing 
insulation levels were predicted using Schiavon and Lee 

(Schiavon and Lee 2013)’s model. The clothing level 
predictions were employed in thermal comfort 

calculations using Fanger (1970)’s model. 

The EnergyPlus model was simulated to investigate the 

energy impact of thermal zoning on adaptive occupancy-

learning controls and traditional controls. Six different 

thermal zoning scenarios were investigated: (1) heating 

and cooling in the twelve rooms were controlled through 

a single thermostat (one-zone model), (2) six adjacent 

rooms share a thermostat (two-zone model), (3) four 

adjacent rooms share a thermostat (three-zone model), 

(4) three adjacent rooms share a thermostat (four-zone 

model), (5) two adjacent rooms share a thermostat (six-

zone model), and (6) each room has a separate 

thermostat controlling the terminal HVAC equipment. 

Figure 8 presents these six test scenarios. In each run 

case, 12 of the annual occupancy time-series data from 

the 37 occupants were randomly selected and assigned to 

one of the 12 rooms. Given the randomness inherent in 

this selection process, the simulations were repeated 250 

times for each scenario. As mentioned earlier, this 

number was determined after a sensitivity study. 

Recall that the adaptive control scenarios were designed 

to apply temperature setback during weekdays under 

four different conditions: (1) before the earliest expected 

arrival time in the zone (tarr,early), (2) after the latest 

expected departure time in the zone (tdpt,late), (3) on 

unoccupied days after the latest expected arrival time 

(tarr,late), (4) on occupied days after a break longer than 

the longest expected duration of intermediate vacancy 

(Dabs,long). As discussed earlier, the occupancy 

parameters (tarr,early, tdpt,late, tarr,late, Dabs,long) defining these 

setback conditions vary depending on the zone size (see 

Figure 6). During the weekends, the temperature setback 

was applied to all of the zones by default. 

The six test scenarios were also studied by using a 

traditional weekday temperature setback approach. With 

this control approach, the setbacks were applied before 6 

am and after 8 pm on weekdays and on all weekends. 

These values were selected by looking at the earliest 

arrival and the latest departure habits of the 37 occupants 

of this study (Figure 6). In this traditional control 

approach, the temperature setback was also applied 

during the weekends.  

Table 1: Characteristics of the EnergyPlus model. 

Geometry 

Orientation South 

Floor 12 x 9 m2 adjacent square rooms 

Window 
60% of the exterior surface area 

60% of the floor area 

Envelope 

Ext. wall RSI 2.9 m2K/W 

Window 

U-factor 2.1 W/m2K 

SHGC 0.4 

Visible transmittance 0.5 

Infiltration 0.2 L/s-m2 of exterior surface 

Slab 200 mm lightweight concrete 

HVAC 

Heating 

21°C setpoint during operation 

18°C setpoint after-hours 

1 kW heating capacity per room 

100 L/s-room maximum airflow rate 

40°C maximum supply air temperature 

Sensible heat recovery 70% efficiency 

30% minimum RH during operation 

Cooling 

24°C setpoint during operation 

27°C setpoint after-hours 

1 kW cooling capacity per room 

100 L/s-room maximum airflow rate 

13°C minimum supply air temperature 

Economizer when outdoor temperature below 

setpoint 

Ventilation 
Minimum outdoor rate 10 L/s-room during 

operation 

Occupants 

Lighting 

Lighting power intensity 10 W/m2 

Discrete-time Markov model for light-switch on 

from Gunay et al. (Gunay et al. 2016) 

Auto-off with vacancy 

Blinds 

Visible and solar transmittance 0.05 

Discrete-time Markov for blinds closing from 

Gunay et al. (Gunay et al. 2016) 

Survival model for blinds opening from Gunay et 

al. (Gunay et al. 2016) 

Clothing 
Dynamic clothing model from Schiavon and Lee 

(Schiavon and Lee 2013) 

Plug loads 
Survival model for plug load intensity from Gunay 

et al. (Gunay et al. 2016) 

It is worth noting that the traditional control approach 

represents a case in which an operator diligently chose 

an operating schedule after analysing the occupancy 

characteristics. In reality, operators often do not have 
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access to high-resolution occupancy information. And, 

consequently, they tend make more conservative 

decisions while selecting the operating hours. For 

example, the buildings from which the occupancy data 

were collected were scheduled to operate from 6 am to 

10 pm including weekends and holidays. 

 
Figure 7: Occupant behaviour models predicting the likelihood 

of (a) a light switch-on action in the next 15 min (Gunay et al. 

2016), (b) a blinds closing action in the next 30 min (Gunay et 

al. 2016), (c) the survival probability of a blinds state over a 

time window (Gunay et al. 2016), and (d) plug load intensity 

(Gunay et al. 2016). 

 
Figure 8: Test scenarios for the EnergyPlus simulations. 

Scenarios represent a range of one thermal zone for twelve 

private offices to one zone for each of the twelve private 

offices. 

In brief, 3000 simulations were run for the six test 

scenarios with the adaptive and the traditional control 

approaches. To accommodate the large number of 

simulations needed in this study, through a scripting 

language the EnergyPlus IDF files were modified and 

executed automatically. Specifically, the parts 

automatically modified in the IDF files correspond to the 

EMS programs representing the control algorithms and 

the occupancy schedule files. Similar to the occupant 

behaviour models, the control algorithms were added to 

the EMS application of EnergyPlus. They were set to 

actuate the schedule objects controlling the temperature 

setpoints of the HVAC systems. These automatic 

interventions to the model were manually inspected by 

checking the models against a previous version of 

themselves after making changes in a subroutine to 

ensure that only intended changes actually resulted and 

by leaving internal dummy variables inside each if-then-

else statement to analyse their response during the 

simulation. 

Before comparing the energy use intensity results of 

different zone sizes and control approaches, we 

computed the comfort metric predicted percentage 

dissatisfied (PDD) based on Fanger (1970)’s thermal 
comfort model. The results shown in Figure 9 indicate 

that the average PPD values during the occupied hours 

were about 10%. Meaning that the six zone sizing 
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scenarios and the control approaches appeared to achieve 

similar levels of comfort. The PPD values were observed 

to increase during the seasonal switchover to cooling and 

heating periods. In addition, a few occupants’ occasional 

weekend visits to their offices resulted in with higher 

PPD values. One of the main reasons why all test 

scenarios with the adaptive controls were able to achieve 

an acceptable thermal comfort performance (according 

to ASHRAE Standard 55 (2013)) is that occupancy 

parameters (tarr,early, tdpt,late, tarr,late, Dabs,long) were selected 

in accordance with the number and the characteristics of 

occupants using the zone. For the test scenarios with the 

traditional controls, the operating hours (6 am to 8 pm on 

weekdays) were also selected to meet the occupancy 

characteristics of the 37 occupants. In addition, all rooms 

had identical geometry, construction, and material 

properties. In reality, for practical reasons, HVAC 

engineers may create thermal zones encompassing 

rooms with different orientations and window-to-wall 

ratios. In these cases, discomfort issues can be 

exacerbated due to zone sizing. However, our objective 

was to create control scenarios that can achieve similar 

levels of comfort, so that their energy performance can 

be compared. 

Figure 10 presents the heating and cooling energy use 

intensity with the six thermal zoning scenarios. Results 

indicate that thermal zoning significantly influences the 

energy-savings potential of adaptive controls. HVAC 

energy-savings by adaptive controls were estimated to be 

27%, when each office is controlled by a unique set of 

terminal equipment. The savings potential reduces to 15, 

13, 11, 9, and 7%, when the number of zones available 

per occupant reduces to ⁄ , , ⁄⁄ , 6⁄  and ⁄ , 

respectively. In addition, increasing the number of zones 

available per occupant reduces the variance (spread) of 

the energy outcomes with the adaptive occupancy-

learning controls. 

 

 
Figure 9: Predicted percentage of dissatisfied using Fanger’s 
comfort model. The x-axis labels indicate the number of zones 

available for 12 occupants. 

 
Figure 10: Effect of thermal zoning on the adaptive occupancy-

learning controls and conventional controls. The median 

energy use intensity results are annotated on the figure. The x-

axis labels indicate the number of zones available for 12 

occupants. 

Because the HVAC operating schedules with the 

traditional control approach did not vary with the 

changing occupancy characteristics (from 6 am to 8 pm 

for all test scenarios), the energy use intensity did not 

change depending on the zone size. These results 

confirm that occupancy-learning adaptive control is most 

appropriate for cases in which terminal HVAC 

equipment is highly granular. However, it can still be an 

effective energy-saving strategy for many existing 

buildings with varying zone sizes. It is worth noting that 

adaptive occupancy-learning controls merely rely on the 

arrival and departure detections of an occupancy sensor. 

Recurring arrival and departure timing patterns can 

easily be learned inside a zone controller (Gunay 2016) 

or offline using archived occupancy data. Therefore, its 

implementation would only require a single type of 

sensor – and no capital cost in buildings with occupancy 

sensors. Because commercial occupancy sensors are 

motion detectors relying on occupants’ movements, they 
are prone to error when occupants are immobile 

(Newsham et al. 2015; Gunay et al. 2016). However, 

note that the adaptive controls primarily learn from the 

first arrival and last departure times, during which 

detectable movements are inevitably generated. 

Unresolved issues 

This study was conducted using the occupancy data 

gathered from two university buildings. Most occupants 

had flexible work schedules. The representativeness of 

the parent population limits the generalizability of the 

results of this study. Readers should be cautious in 

extending the results to other contexts. 

The methodology employed in this paper assumes that 

people who share a thermal zone have independent 

schedules from each other. However, in reality, it is 

likely to see people with similar jobs and schedules to 

share a thermal zone. 

In this study, it was assumed that operating schedules 

traditionally do not change with the number of zones 

available per occupant. However, in reality, it is likely 
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that occupancy patterns can implicitly influence an 

operator’s decision-making for both zone and system 

level HVAC equipment scheduling. They may be more 

inclined to schedule equipment for longer hours in 

bulkier zones – due to increased likelihood of 

occupancy. This raises another question on whether or 

not the energy codes and standards should credit 

buildings that can provide localized comfort conditions. 

Future research should investigate the relationship 

between the HVAC granularity and a building’s energy 
and comfort performance with large-scale field data. In 

addition, HVAC granularity affects the labour and 

capital cost. This was not studied in this paper. 

Previous research pointed out that controllability of 

indoor climate plays a vital role in achieving individual 

comfort expectations (Gunay et al. 2013). Humphreys 

and Nicol (1998) observed that the same room 

temperature can be perceived more acceptable, if it is 

chosen – rather than being imposed. It was found that 

individual control of the indoor temperature improves 

productivity (Preller et al. 1990; Leaman and Bordass 

1999) and employee satisfaction (Fountain et al. 1996; 

Leaman and Bordass 2000). Wyon (2000) identified that 

±3°C of individual control over the default temperature 

settings substantially improves occupant satisfaction. By 

using the Fanger’s comfort theory, we neglected the 
benefits of highly granular HVAC zoning on the 

behavioural adaptation. 

In our EnergyPlus model, we employed stochastic 

occupant behaviour models to simulate the lighting, 

blinds, and plug-in equipment use. These models were 

previously developed by using the data gathered from a 

subset of the 37 occupants of this study. Although these 

models were developed using the state-of-the-art 

occupant behaviour modelling methodologies, their use 

may have caused nebulous impacts on the results of this 

paper. In particular, the models ignored the inter-

occupant diversity in behaviour patterns (Haldi 2013). In 

an effort to assess the sensitivity of the simulation results 

to the occupant models, the simulations were repeated 

with the lighting and plug load schedules prescribed by 

the Canadian Energy Code for Buildings (NRC 2015). 

And, it was found that the conclusions drawn about 

adaptive controls and HVAC zone granularity remain 

unaffected. In addition, future work is planned to study 

the sensitivity of the simulation results at varying 

occupant model resolutions. The readers should be 

cautious while extending these results to other contexts. 

Conclusions 

The occupancy data from 37 private office spaces were 

investigated. For each occupant, four parameters that 

play an important role over the HVAC operation were 

extracted. These parameters are the earliest expected 

arrival time, the latest expected arrival time, the latest 

expected departure time, and the longest expected 

duration of absence. Inter-occupant diversity of these 

parameters was analysed. 

The influence of the number of zones available per 

occupant on the four occupancy parameters was 

investigated. It was found that the earliest expected 

arrival time in twelve-person zones is on average two 

hours earlier than it is in one-person zones. Similarly, the 

latest expected departure time in twelve-person zones is 

on average two hours later than it is in one-person zones. 

EnergyPlus simulations were conducted to analyse the 

energy impact of such zone sizing decisions. Two 

different control approaches were assessed: (1) the 

adaptive controls and (2) the traditional controls. The 

adaptive control is a control approach in which 

temperature setback schedules are tailored to the four 

occupancy parameters. The traditional control is a 

control approach in which a fixed temperature setback 

schedule is applied for all run cases. The simulation 

results indicate that the HVAC energy-savings potential 

of the adaptive control approach depends heavily on the 

number of zones available per person. Energy-savings 

potential was estimated to be 27% with one-person 

zones, whereas it was 7% with twelve-office zones. Note 

that adaptive occupancy-learning controls merely rely on 

the arrival and departure detections of an occupancy 

sensor. Therefore, its implementation would only require 

a single type of sensor – and no capital cost in buildings 

with occupancy sensors. Therefore, adaptive occupancy-

learning controls appear to be a low-cost and non-

invasive way to reduce the HVAC energy use in many 

office buildings with different zone sizes. 
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