i+l

NRC Publications Archive
Archives des publications du CNRC

Portable Programming Revisited: 1982-1992
Wallis, P.J.L.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=20716645-ff1e-4da9-b31e-63ebd2e486¢3

https://publications-cnrc.canada.ca/fra/voir/objet/?id=207 16645-ff1e-4da9-b31e-63ebd2e486¢c3

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’acces a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

premiere page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

National Research Conseil national de C dl*l
Council Canada recherches Canada ana, a,

| Ser

National Research Conseil national -
l*l Council Canada de recherches Canada ERA-382
382
Institute for Institut de technologie

Information Technology de l'information

NC-CN\NC

Portable Programming
Revisited: 1982-1992

P.J.L. Wallis
January 1994

Canad'z’i NRC 37094

(Ld

National Research Conseil national
Council Canada de recherches Canada

Institute for Institut de technologie
Information Technology de l'information

Portable Programming Revisited: 1982—1992'

P.J.L. Wallis?
January 1994

LMETN

(‘32/,.:.7.&'50@&’74"/7
o
”,/:‘7'417 5
‘e “ .~’f
<%, 5 /
Ye

Copyright 1994 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report, provided that
the source of such material is fully acknowledged.

1 This report was prepared under contract for the Software Engineering Laboratory, Institute for Information Technol-
ogy, National Research Council of Canada.
2School of Mathematical Science, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.

Contents High-level Languages 3
Ada 3

Abstract/Résumé v Fortran 4

Introduction 1 Portable Compilers 4

C ter Arithmeti 4
Software Platforms 2 omputer Arithmetic

Open Systems Standards 2 Operating Systems and Multiprocessing 4
Unix 2 Parallel Processing 4

Posix 2 .

PCTE 3 Conclusion 5

X Windows and Graphical Interfaces 3 References 5

Abstract Résumé
Ce rapport traite des développements en mati¢re de
portabilité au cours de la derniére décennie et présente

une bibliographie sommaire.

Developments in portability over the last decade are re-
viewed and a selected bibliography given.

Introduction

Introduction

The portability of a software product may be loosely
described as the ease with which it can be moved be-
tween different computing environments. Constructing
portable software is clearly a useful way of improving
its value and applicability, making studies of how to
achieve portability of great practical value. This docu-
ment, prepared for the National Research Council of
Canada, reviews developments in portability in the
decade since publication of the author’s 1982 book
Portable Programming [1]. The main source of infor-
mation used in the preparation of this report was a bib-
liographic database search for references relating to
software portability in the years 1982-1992, which
was undertaken by the National Research Council and
retrieved over 2500 references.

During the 1960’s and 1970’s, portability was re-
garded as mainly involving overcoming hardware
differences. Thus the book [1]—a technical overview
of the current understanding of issues relevant to port-
ability written in the early 1980’s—emphasizes such
issues as physical transfer of data, accommodating dif-
ferent characteristics of computer arithmetic, and retar-
getting of compilers. Other areas covered include the
design of portable programs, the maintenance of port-
able software, and the use of macro processors in port-
ability. The issues identified there are still relevant but
now tell only a small part of the story of portability
problems.

The 1982 book remains a useful overall guide to port-
ability problems and how to overcome them; changes
since the book was written mean that more emphasis
must be placed now on software platforms, standards,
and ways of ensuring compliance with standards. Port-
ability problems themselves and ways of solving them
are in essence barely changed since 1982; then, as
now, the basic idea of any approach to portability is to
identify abstractions of features used by programs that
can be provided similarly on different underlying
systems. What has changed in the last 10 years is the
relative importance of hardware differences and differ-
ences in software platforms as obstacles to portability
and the frequency with which software needs to be
transferred between different platforms by relatively
unsophisticated computer users.

The reasons for these changes in the portability prob-
lem in the last decade are ably and amusingly summa-
rized by Gentleman and Feldman [2]. They suggest

Wallis

that vastly increased use of computer systems in the
past decade means that many more disparate systems
are available and consequent demands for easy port-
ability have greatly increased. The root of most port-
ability problems these days does not involve hardware
differences directly but typically involves portability
between different software platforms, language dia-
lects, and differences in runtime libraries.

These changes in the portability problem in the past
decade have informed the structure and content of the
present document. One general improvement since
1982 that is characteristic of computer science as a
whole is a greatly improved appreciation of the fact
that portability in all its varied forms is fundamentally
concerned with the idea of identifying suitable abstrac-
tions. In identifying the most important contributions
to the portability field since the 1982 book, we found
little in the way of improvements on the basic tech-
niques described there, but much that tells the practi-
tioner how to handle differences between different
versions of contemporary software platforms. As
might be expected, there is also much new material of
a “case study” nature, describing experiences gained
in particular portability exercises.

Two specific areas covered in the 1982 book are de-
liberately excluded from the present survey. Legal
aspects of software portability are not considered be-
cause of lack of expertise; there are, however, journals
concerned with issues of computer law such as Tol-
ley’s Computer Law and Practice, Software Protection,
and Jurimetrics Journal. No attempt is made here
either to update the information in the 1982 book on
physical distribution issues; this part of the book has
been rendered obsolete by hardware developments and
any attempt to provide a replacement would be
equally volatile, but in any case the area is of far less
practical interest than previously because of the wide-
spread use of electronic mail and computer networks.

This report identifies the more important develop-
ments in portable programming since 1982, in all
areas of interest apart from legal and physical distribu-
tion issues. Key references are cited together with a
few well-documented case studies. The following sec-
tions concern Software Platforms, High-Level Lan-
guages, Portable Compilers, Computer Arithmetic,
Operating Systems and Multiprocessing, and Parallel
Processing. Future developments are anticipated in a
brief Conclusion.

Software Platforms

Even in the early 1980’s it was becoming apparent
that portability involves far more than portable compil-
ers and operating systems. For instance, ref. 3 de-
scribes many unexpected problems of detail that may
arise in moving a language system from one machine
to another. Hanson [4] describes an early design for
what would now be called a portable input-output plat-
form. By the mid-1980’s demands for the easy transfer
of software between different computing environments
were making an “open systems” approach imperative.'

New technical questions are raised by the emphasis

on standard software platforms. These concern the
suitability of the interfaces defined for specific appli-
cation areas such as the development of software

tools [6, 7] and, more generally, how to ensure confor-
mance with standards for software platforms. There
has been little work as yet on conformance techniques
for software platforms; a notable exception is the
Posix project, conformance for which is discussed
below.

Open Systems Standards

The idea of Open Systems Standards emerged in the
1980’s. The objective is to define standard application
platforms to which vendors and users of software
would comply, enhancing the portability of software
products across computing environments. A number of
initiatives in this area resulted. The U.S. National Insti-
tute of Standards and Technology (NIST) is supporting
the development of standards for Open Systems Envi-
ronments (OSE) to improve the portability of soft-
ware, data, and skills and the interoperability of
different manufacturers’ hardware, software, and com-
munications systems. Working in cooperation with us-
ers and vendors, NIST has developed an Applications
Portability Profile (APP) that provides an initial set of
specifications for American government agencies to
use in planning for the migration to OSE. See ref. 8
for a recent standard resulting from this effort.

Similar initiatives have been undertaken by major
manufacturers such as IBM, DEC, Data General, and
Hewlett-Packard. The IBM open systems standard, for
example, is their Systems Application Architecture
(SAA) dating from 1987. Systems Application

1 Refer to ref. 5 for the alternative approach of simulating a number of
different platforms within a single computing environment,

2

Software Platforms

Architecture is described in refs. 9-11 and related to
IBM’s OSI data communications standard in ref. 12.
An important effort to develop portable applications
platforms independent of the standards of any particu-
lar equipment supplier is X/OPEN, a non-profit inter-
national and industry-wide organization started in
Europe and now supported by many major suppliers
of hardware and software. The work of X/OPEN was
originally based on the use of the Unix System V oper-
ating system and the C programming language, but
has since been greatly extended; see refs. 13 and 14
for details.

Software platforms may be used at a number of
different logical levels ranging from the low level of
operating systems primitives to higher-level features
supporting applications programs and user interfaces.
Apart from the well-known platforms discussed below
there are many others of more limited use such as the
Harmony realtime system [15], the Tenl5 [16] plat-
form of the UK Royal Signals and Radar Establish-
ment, and the TRON project that is discussed in the
section below on portable operating systems. The fol-
lowing brief surveys of well-known current platforms
progresses roughly from low- to high-level platforms.

Unix

Unix is a very widely used operating system plat-
form closely connected with the C programming lan-
guage. Unix and C standards and standardization are
reviewed in ref. 17. Portable programming in C is
closely connected with the Unix operating system plat-
form; refer to ref. 18 for an overview and to books on
portable C and Unix programming such as refs. 19-22
for detailed technical information. Numerous experi-
ences of moving the Unix system between machines
have been reported; examples may be found in

refs. 23-25. Further detailed information on C and
Unix topics may be found in specialist newsletters and
conference proceedings concerned with Unix and C
programming. The IBM version of Unix is called AIX;
its relationship to IBM’s SAA is the subject of ref. 26.

Posix

Posix is an interface specification for Unix-based oper-
ating systems. The Posix standards are produced by an
IEEE working group whose remit is to standardize a
Portable Operating System Interface for Computer En-
vironments, colloquially known as Posix. Membership
of the working group includes staff from all the major

ERA-382, Portable Programming Revisited: 1982—-1992

High-level Languages

American hardware and software suppliers in the Unix
market.

The initial Posix work was related to the C language
but language-independent standards are now being
developed. The current Posix standard is ref. 27 and
includes an accompanying rationale, while ref. 28
addresses problems encountered by users of this stand-
ard. For the associated C language standard see

ref. 29. Significant effort has been devoted to devel-
oping standards for Posix conformance, both in gen-
eral [30] and for applications programs [31].

PCTE

The Portable Common Tools Environment (PCTE) is a
European project initiated by a group of six European
computer manufacturers with CEC support. It is an
evolving standard defining a publicly usable tools in-
terface that has received wide support throughout
Europe. Refer to refs. 32 and 33 for technical over-
views of PCTE. Experiences of interfacing PCTE to a
particular language (the programming language Eiffel)
are described in ref. 34. Further discussion of the
PCTE project may be found in specialized conference
proceedings, such as ref. 35.

X Windows and Graphical Interfaces

The X Window System, originally developed at MIT,
is a highly portable window system that provides a
basis for higher-level Graphical User Interface (GUI)
standards such as the Motif and OPEN LOOK GUIs [36].
See refs. 37-39 for details of various parts of the X Win-
dow system and ref. 40 for discussion of the portability of
the system. Kimbrough and Oren [41] describe an exten-
sion of the X Window System to support interactive Lisp
applications. Further information on the X Window
System and its portability may be found in the pro-
ceedings of specialist conferences devoted to X Win-
dows or to Unix. International standardization of
computer graphics platforms has been an active area.
The Graphical Kernel System (GKS) is an established
standard for 2-D graphics but is too low level to form
a satisfactory applications interface; Yaacob [42] dis-
cusses the portability of a graphics system written in
C and incorporating both applications and GKS layers.
A further standard for both 2-D and 3-D graphics is
the Programmers’ Hierarchical Interactive Graphics
System (PHIGS), which supports the construction of
application models for hierarchical data structures
called structure networks that may be edited; an inter-
active debugger for PHIGS is the subject of ref. 43. A

Wallis

portable implementation of the PHIGS standard is de-
scribed in ref. 44, while an implementation of PHIGS
based on the X Window System is the subject of

ref. 45.

As our discussion of GKS and PHIGS suggests, graph-
ics is an area in which separate low- and high-level ab-
stractions are appropriate. Problems involved in this
kind of abstraction are addressed in ref. 46 for user in-
terfaces using GKS and in ref. 47 for 3-D graphics in
general.

High-level Languages

As discussed in ref. 1, portable programming in high-
level languages requires considerable care. Moreover,
it is only to a strictly limited extent that the problems
involved are amenable to solutions involving adher-
ence to language standards and the associated use of
appropriate software tools—see, for example, ref. 48.
The limitations of such solutions tend to be very simi-
lar for different languages as explained in ref. 49,
which is a comparison of Ada and Fortran portability
standards from this point of view.

Portable programming in high-level languages also suf-
fers from differences in software platforms; there have
been attempts to minimize these effects using layers
of abstraction [50]. Portable programming in C has al-
ready been discussed in connection with Unix plat-
forms. Portable programming in Ada and in Fortran is
discussed next. There are few references available for
portable programming in other high-level languages,
but case studies in portability frequently appear in spe-
cialist periodicals and conference proceedings associ-
ated with particular programming languages.

Ada

Portability was one of the original, well-publicized ob-
jectives of the Ada design. However, difficulties with
Ada remain, as detailed in the portability section of
ref. 51. These difficulties are comparable to those aris-
ing with Fortran [49]. Arithmetic portability in Ada
has received detailed attention, as have the problems
of Ada scientific computation in general [52, 53]. Nu-
merous Ada portability case studies are documented in
specialist publications such as ACM Ada Letters and
the proceedings of Ada conferences.

Fortran

Fortran is widely used for scientific computation and
the Fortran standardization process is well established.
As explained in ref. 49, remaining portability prob-
lems with the language itself are like those of Ada and
appear inevitable for any realistic high-level language.
For an example of a large-scale Fortran portability
case study see ref. 54. Special problems with Fortran
portability can arise when considering such problems
as realtime programming, message-passing, or multi-
tasking, as in refs. 55 and 56. Other specialized exam-
ples of Fortran portability are discussed in specialized
publications and conference proceedings relating to
parallel processing and multitasking.

Portable Compilers

The principle of portable compiling involving front-
end machine independence and back-end machine de-
pendence remains much as it was in 1982, while it is
clear that far more is involved in moving a compiler
than a simple re-implementation of the back-end—see
ref. 3, for example. An Ada “virtual machine” defining
a front-end/back-end division for Ada [57] addresses
the overall feasibility of this approach, while the Am-
sterdam Compiler Kit [58, 59] provides a general
framework for constructing portable compilers. Recent
work on the Amsterdam Compiler Kit [60] stresses the
production of small fast portable compilers, a trend
also apparent in developments related to portable C
compilers [61]. Other recent work on portable compil-
ers also emphasizes techniques for moving more of
the work of optimization from the back end to the
front end [62-64].

Computer Arithmetic

Difficulties with the variation of properties of integer
arithmetic between different machines are usually
quite easily handled except in a few specialized cases
such as the programming of portable random number
generators [65, 66]. Floating point portability remains
difficult and controversial [67] despite the widespread
use of the IEEE floating-point standard [68], which is
so permissive that it might almost be described as a
floating-point standards generator! For a comprehen-
sive discussion of floating-point standards and portabil-
ity problems see chapters 2 and 3 of ref. 52. The work
on the detection of the characteristics of hardware

4

Portable Compllers
Parallel Processing

arithmetic characteristics reported in 1982 has been ex-
tended to include the IEEE Standard [69].

Operating Systems and
Multiprocessing

Experiences with portable operating systems continue
to be reported. The THOTH portable operating system
described in ref. 1 is now comprehensively docu-
mented [70], while the papers [71-73] describe the
transfer between machines of an IBM standard plat-
form that did not have portability as an original de-
sign objective. Unix portability has already been
discussed.

Operating systems, like realtime systems, require
multiprocessing kernels. For portable multiprocessing
using realtime threads see refs. 74 and 75. Descriptions
of realtime kernels for particular operating systems,
languages, or hardware may be found in specialist con-
ference proceedings devoted to operating systems or

to particular languages or hardware; some recent exam-
ples are the CHAOS operating system kernels [76]

and discussions of realtime kernels for Ada [77] and
Fortran [55]. Portable kernels for particular hardware
include examples for transputers [78] and for IBM

PCs [79]. A wide range of standard interfaces includ-
ing those for an operating system kernel, communica-
tions processing, and multiprocessing are incorporated
in the TRON project [80-82].

Parallel Processing

Much recent research activity has been devoted to the
problem of portable programming for parallel process-
ing and multiprocessor machines. This is a specialized
area of great technical interest because of the wide
range of target architectures involved. This wide range
combined with limited specialist interest means that
this field is relatively immature, many recent publica-
tions being case studies, such as refs. 83 and 84.
Many further contributions of this kind are to be
found in the proceedings of specialist conferences in
such fields as super-computing, transputers, or hyper-
cube architectures. The book [85] is a recent collec-
tion of papers on software for parallel computers that
includes a number of contributions concerned with
portability.

Portable parallel programming, like other kinds of
portable programming, involves the identification of

ERA-382, Portable Programming Revisited: 1982-1992

Conclusion
References

suitable abstractions. Some of the proposed abstrac-
tions for portable paralle] programming involve
specific aspects of the problem such as memory mod-
els [86] or restricted ranges of target architectures.
Abstractions identified may be incorporated into
language-independent standard primitives as in the
Linda [87) parallel programming environment that is
becoming available commercially and can be embed-
ded in conventional programming languages.

Alternatively, special portable parallel programming
languages such as P’L [56] may be advocated. See
ref. 88 for a survey of concurrent programming lan-
guages that are independent of particular architectures.

Conclusion

The past decade of development in portable program-
ming has been largely concerned with the definition of
standard hardware and software platforms. There is
now a good understanding both of the limitations of
the use of such standard platforms in achieving port-
ability and of the difficulties and costs associated with
compliance with them. It may be anticipated that fu-
ture developments will entail further development of
such platforms and of ways of ensuring compliance
with them but that underlying difficulties with portabil-
ity will remain. Thus, portability may be expected to
continue to be a desirable attribute of programs whose
obvious benefits can rarely be achieved without signifi-
cant costs for producers. Little can be expected in the
way of further technical innovation in portable pro-
gramming, apart from the presently active areas of
ensuring compliance with portability standards for
standard platforms, portable compilers, multiproces-
sing, and parallel processing. However, the careful
documentation of portability case studies may confi-
dently be expected to continue.

References

1. PJ.L. Wallis. Portable Programming. Macmillan.
1982.

2. WM. Gentleman and S.I. Feldman. Portability—a
no longer solved problem. Comput. Syst. 3(2): 359-
379; 1990.

3. R.I. Cowderoy and PJ.L. Wallis. The transfer of a
BCPL compiler to the Z80 microcomputer. Soft-
ware—Pract. Exper. 12; 235-238; 1982.

Wallis

4. D.R. Hanson. A portable input/output system. Soft-
ware—Pract. Exper. 13(1): 95-100; 1983.

5. Ce Kuen Shieh and Li Ming Tseng. Extending a
stand-alone personal computer to integrate multi-
ple operating systems concurrently. J. Syst. Soft-
ware, 9(1): 41-49; 1989.

6. N.E. Peeling and D.P. Youll. Past and future trends
for portable tools interfaces. Inf. Software Technol.
31(4): 175-180; 1989.

7. FEW. Long, M.D. Tedd, and S. Heilbrunner. Evalu-
ating tool support interfaces. Ada in Industry.
Proceedings of the Ada-Europe International Con-
ference, Cambridge, UK. 1988. Cambridge Univer-
sity Press. pp. 245-250.

8. Application Portability Profile (APP). The U.S.
Government’s Open System Environment profile
OSE/1 version 1.0. National Institute of Standards
and Technology. 1991.

9. E.F. Wheeler and A.G. Ganek. Introduction to sys-
tems application architecture. IBM Syst. J. 27(3):
250-263; 1988.

10. D.E. Wolford. Application enabling in SAA. IBM
Syst. J. 27(3): 301-305; 1988.

11. V. Ahuja. Common communications support in Sys-
tems Application Architecture. IBM Syst. J. 27(3):
264-280; 1988.

12. S.H. Goldberg and J.A. Mouton, Jr. A base for
portable communications software. /BM Syst. J.
30(3): 259-279; 1991.

13. X/OPEN Portability Guide: Data Management.
Prentice Hall, Englewood Cliffs, NJ. 1988.

14. X/OPEN Portability Guide: Programming Lan-
guages. Prentice Hall, Englewood Cliffs, NJ. 1988.

15. W.M. Gentleman. Using Harmony (industrial con-
trol OS). Advances in CAD/CAM and Robotics:
NRC Contributions. National Research Council of
Canada, Ottawa, Ont. May 1987. pp. 253-261.

16. N.E. Peeling. The TenlS project (software develop-
ment). UK IT 1990 Conference (Conf. Publ. No.
316), London, UK. March 1990. IEE. pp. 306—
310.

17

18.

19.
20.

21.
22.

23.

24,

25.

26.

27.

28.

29.

. C. Boldyreff. Unix standardisation: an overview.
UNIX: European Challenges. Proceedings of the
Spring 1989 EUUG Conference, Buntingford, UK.
1989. EUUG. pp. 151-156.

S.C. Johnson and D.M. Ritchie. Unix time-sharing
system: Portability of C programs and the Unix
system. Unix System Readings and Applications.
Vol. 1. Unix Time-Sharing System. Prentice Hall.
1987. pp. 114-141.

J.E. Lapin. Portable C and Unix System Program-
ming. Prentice Hall. 1987.

T. Plum. C Programming Guidelines. Prentice
Hall. 1984,

C Programmer’s Handbook. Prentice Hall. 1985.

M.R.Horton. Portable C Software. Prentice-Hall.
1990.

D.E. Bodenstab, T.F. Houghton, K.A. Kelleman,
G. Ronkin, and E.P. Schan. Unix operating system
porting experiences. AT&T Bell Lab. Tech. J. 63(8
Part 2): 1769-1790; 1984.

A. Filipski, L. Carey, and E. Girard. Experiences
in porting Unix sdb to the M68000 processor.
Software Engineering: Practice and Experience.
Proceedings of the Second Software Engineering
Conference. 1984. pp. 94-98.

P.J. Jalics and T.S. Heines. Transporting a portable
operating system: Unix to an IBM minicomputer.
Commun. ACM, 26(12): 1066-1072; 1983.

K. Howells. Portability between AIX and Sys-
tem/370. Proceedings of SHARE Europe Spring
Meeting, Geneva, 1990. SHARE Europe (SEAS).
pp. 321-334.

IEEE Standard 1003.1-1988. IEEE Standard Port-
able Operating System Interface for Computer En-
vironments. IEEE, New York, NY. 1988.

IEEE Standards Interpretations for IEEE Standard
Portable Operating System Interface for Computer
Environments (IEEE Std 1003.1-1988). IEEE, New
York, NY. July 1992.

Information Technology—Portable Operating Sys-
tem [nterface (POSIX) Part 1: System Application

30.

31

32.

33.

34,

35.

36.

37.

38.

39.

40.

41,

References

Program Interface (API) (C Language). IEEE,
New York, NY. 1990.

IEEE Standard for Information Technology-test
Methods for Measuring Conformance to POSIX.
IEEE, New York, NY. April 1991.

D. Jones. Applications POSIX.1 conformance test-
ing. Proceedings of the Spring 1992 EurOpen/
USENIX Workshop, Buntingford, UK. 1992,
EurOpen. pp. 33-42.

C. De Groote. PCTE—A remarkable platform. Inf.
Software Technol. 31(3): 136-142; 1989.

I. Thomas. PCTE interfaces: supporting tools in
software-engineering environments. JEEE Soft-
ware, 6(6): 15-23; 1989.

F. Neelamkavil and S. O’Shea. Interfacing Eiffel
and PCTE. Comput. J. 35(5): A439-A444; 1992.

IEE Colloquium on Standard Interfaces for Soft-
ware Tools (Digest no. 97 and 98). IEE, London.
1988.

H.A. Barker, M. Chen, P.W. Grant, C.P. Jobling,

A. Parkman, and P. Townsend. Tailoring an applica-
tion to meet two X-based user interface standards.
European X Window System Conference, Edin-
burgh, UK. 1990. CEP Consultants. pp. 7-13.

X/OPEN Portability Guide: Window Management.
Prentice Hall, Englewood Cliffs, NJ. 1988.

G. Widener. The X11 inter-client communication
conventions manual. Software—Pract. Exper.
20(S2): 109-118; 1990.

S. Angebranndt P. Karlton, R. Drewry, and

T. Newman. Writing tailorable software: the X11
sample server. Software—Pract. Exper. 20(S2):
69-81; 1990.

L. McLoughlin. A simple guide to porting the X
Window System. UNIX: European Challenges. Pro-
ceedings of the Spring 1989 EUUG Conference,
Buntingford, UK. 1989. EUUG. pp. 283-291.

K. Kimbrough and L. Oren. Clue: a common lisp
under interface environment. Proceedings of the
ACM SIGGRAPH Symposium on User Interface
Software, New York, NY. 1988. ACM. pp. 85-94.

ERA-382, Portable Programming Revisited: 1982—-1992

References

42

43,

44,

45.

46.

47,

48.

49,

50.

51.

52.

. M. Yaacob, Khalid Mohamed Nor, and Khoo Sim
Choo. On the portability of a C language Graphi-
cal Kernel System. Int. J. Policy Inf. 13(2): 165-
178; 1989.

T.L.J. Howard, W.T. Hewitt, S. Larkin, C.E. Van-
doni, and D.A. Duce. An interactive debugger for
PHIGS. Eurographics *90. Proceedings of the
European Computer Graphics Conference and Ex-
hibition, Amsterdam, The Netherlands. September
1990. North-Holland. pp. 177-193.

J. Gorog, G. Krammer, A. Vincze, D.A. Duce, and
P. Jancene. IXPHIGS: A portable implementation
of the international PHIGS standard. Eurographics
'88. Proceedings of the European Computer Graph-
ics Conference and Exhibition, Amsterdam, The
Netherlands. September 1988. North-Holland.

pp. 13-19.

R.J. Rost. Adding a dimension to X (3D graphics
for X windowing system). Unix Rev. 6(10): 5-6,
58-9; 1988.

F. Neelamkavil and O. Mullarney. A methodology
and tool set for supporting the development of
graphical user interfaces. Comput. Graphics Fo-
rum, 10(1): 37-47; 1991.

D.L. Brittain. Portability of interactive graphics
software. IEEE Comput. Graphics Appl. 10(4):
70-75; 1990.

S.I. Feldman. Papering over deficiencies in your
language for convenience and portability; preproc-
essors vs. standards. International Conference on
Tools, Methods and Languages for Scientific and
Engineering Computation. 1983.

P. J.L. Wallis. The preparation of guidelines for
portable programming in high-level languages.
Comput. J. 25(3): 375-378; 1982.

P.D. Gootherts and J.W. Davis. Common program-
ming language ambiguity. ACM SIGPLAN Notices,
17(11): 7-10; 1982.

J.C.D. Nissen and P.J.L. Wallis (editors). Portabil-
ity and Style in Ada. Cambridge University Press.
1984.

P.J.L. Wallis (editor). Improving Floating-Point
Programming. Wiley. 1990.

Wallis

53

54.

S55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

. B. Ford, J.H. Kok, and M.W. Rogers (editors). Sci-
entific Ada. Cambridge University Press. 1986.

L. Hatton, A. Wright, S. Smith, G. Parkes, P. Ben-
nett, and R. Laws. The seismic kernel system—A

large-scale exercise in Fortran 77 portability. Soft-
ware—Pract. Exper. 187(4): 301-329; 1988.

S.P. Kumar and L.R. Philips. Portable tools for For-
tran parallel programming. Concurrency: Pract. Ex-
per. 3(6): 559-572; 1991.

M. Danelutto, R. Di Meglio, S. Orlando, S. Pela-
gatti, and M. Vanneschi. A methodology for the de-
velopment and the support of massively parallel
programs. Future Generation Comput. Syst.

8(1-3): 205-220, 1992.

L. Ibsen. A portable virtual machine for Ada. Soft-
ware—Pract. Exper. 14(1): 17-29; 1984.

A.S. Tanenbaum, H. van Staveren, E.G. Keizer,
and J.W. Stevenson. A practical tool kit for mak-
ing portable compilers. Commun. ACM, 26(9):
654-660; 1983.

H.E. Bal and A.S. Tanenbaum. Language- and
machine-independent global optimization on inter-
mediate code. Comput. Lang. 11(2): 105-121;
1986.

A.S. Tanenbaum, M. Frans Kaashoek, K.G. Langen-
doen, and C.J.H. Jacobs. The design of very fast
portable compilers. ACM SIGPLAN Notices,

24(11): 125-131; 1989.

C.W. Fraser and D.R. Hanson. A code generation
interface for ANSI C. Software—Pract. Exper.
21(9): 963-988; 1991.

A. Wilk and W. Silverman. Optima—a portable
pcode optimizer. Software—Pract. Exper. 13(4):
323-354; 1983.

J.W. Davidson and C.W. Fraser. Register alloca-
tion and exhaustive peephole optimization. Soft-
ware—Pract. Exper. 14(9): 857-865; 1984.

P.J. Hatcher. The equational specification of effi-
cient compiler code generation. Comput. Lang.
16(1): 81-95; 1991.

65

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

. P. L’Ecuyer and S. Cote. Implementing a random
number package with splitting facilities. ACM
Trans. Math. Software, 17(1): 98-111; 1991.

P. U’Ecuyer. Efficient and portable combined ran-
dom number generators. Commun. ACM, 31(6):
742-749; 1988.

W. Kahan. Analysis and refutation of the LCAS.
ACM SIGPLAN Notices, 27(1): 61-74; 1992.

IEEE Standard for Binary Floating-Point Arithme-
tic. ANSI/IEEE Standard P754. 1985.

W.J. Cody. MACHAR: A subroutine to dynami-
cally determine machine parameters. ACM Trans.
Math. Software, 14(4): 303-311; 1988.

D.R. Cheriton. The THOTH System: Multi-process
Structuring and Portability. North-Holland. 1982.

G.E. Boehm, A.M. Palmiotti, and D.P. Zingaretti.
Porting DPPX from the IBM 8100 to the IBM
ES/9370: installation and testing. /BM Syst. J.
29(11): 124-140; 1990.

R. Abraham and B.F. Goodrich. Porting DPPX from
the IBM 8100 to the IBM ES/9370: feasibility an
overview. IBM Syst. J. 29(11): 90-105; 1990.

C. Goodrich and M.B. Loughlin. Porting DPPX
from the IBM 8100 to the IBM ES/9370: migra-
tion. IBM Syst. J. 29(11): 106~-123; 1990.

K. Schwan, Hongyi Zhou, and A. Gheith. Multi-
processor real-time threads. Operating Syst. Rev.
26(1): 54-65; 1992.

K. Schwan, Hongyi Zhou, and A. Gheith. Real-time
threads. Operating Syst. Rev. 25(4): 35-46; 1991.

K. Schwan, A. Gheith, and H. Zhou. From chaos/
sup base/ to chaos/sup arc/: A family of real-time

kernels. Proceedings, 11th Real-Time Systems Sym-

posium (Cat. No.90CH2933-0), IEEE Comput.
Soc. Press, Los Alamitos, CA. 1990. pp. 82-91.

T.E. Griest and M.E. Bender. Limitations on the

portability of real time Ada programs. Proceed-
ings, TRI-Ada '89, ACM. 1989. pp. 474-479.

78

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

References

. M. Mandal, P. Vishnubhotla, K. Eswar, C. Golla-
mudi, and J.A. Board. Alps on a transputer net-
work: kernel support for topology-independent
programming. Transputer Research and Applica-
tions 2. NATUG-2 Proceedings of the North Ameri-
can Transputer Users Group, Amsterdam, The
Netherlands. 1990. IOS. pp. 229-251.

D. Raja, K. Shivakumar, S. Rao, and K.R.S. Mur-
thy. A portable real-time kernel for 8086/80186/
80286/80386 based systems on IBM-PC. Micro-
process. Microprogram. 28(1-5): 145-150; 1990.

TRON. Proceedings, The Eighth TRON Project
Symposium (Cat. No.91TH0412-7). IEEE Comput.
Soc. Press, Los Alamitos, CA. 1991.

J.D. Mooney. The CTRON approach to operating
system support for software portability. Oper. Syst.
Rev. 26(4): 90-97; 1992.

T. Wasano and Y. Kobayashi. Application of
CTRON to communication networks. Microproc-
ess. Microsyst. 13(8): 537-547; 1989.

C. Lin and L. Snyder. A portable implementation
of SIMPLE. Int. J. Parallel Program. 20(5): 363-
401; 1991.

N. Carmichael and M. Norman. Parallel process-
ing: the power and the portability. Experiments
with ‘reusable toolkits’. Future Generation Com-
put. Syst., 8(1-3): 3-8; 1992.

R.H. Perrott (editor). Software for Parallel Com-
puters. Chapman and Hall. 1992.

K. Gharachorloo, S.V. Adve, A. Gupta, J.L. Hen-
nessy, and M.D. Hill. Programming for different
memory consistency models. J. Parallel Distrib-
uted Comput. 15(4): 399-407; 1992.

M. Schollmeyer. Linda and parallel computing—
running efficiently on parallel time. /[EEE Poten-
tials, 10(3): 43-45; 1991.

D.B. Skillicorn. Practical concurrent programming
for parallel machines. Comput. J. 34: 302-310;
1991.

ERA-382, Portable Programming Revisited: 1982-1992

