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Determining interaction 
directionality in complex 
biochemical networks from 
stationary measurements
N. Leibovich

Revealing interactions in complex systems from observed collective dynamics constitutes a 
fundamental inverse problem in science. Some methods may reveal undirected network topology, 
e.g., using node-node correlation. Yet, the direction of the interaction, thus a causal inference, 
remains to be determined - especially in steady-state observations. We introduce a method to infer the 
directionality within this network only from a “snapshot” of the abundances of the relevant molecules. 
We examine the validity of the approach for different properties of the system and the data recorded, 
such as the molecule’s level variability, the effect of sampling and measurement errors. Simulations 
suggest that the given approach successfully infer the reaction rates in various cases.

Many complex systems in physics and biology constitute networks of dynamically interacting units1. In 
these systems, especially in biological ones, the process is often described with stochastic variables2–4, and 
their collective dynamics and functions are governed by the network structure. Determining the underlying 
interaction topology is essential, for example, for understanding and controlling their function, identifying 
new pathways in gene regulatory networks or understanding some metabolic mechanisms5–7. Particularly, 
understanding the direction of metabolic reactions is fundamental for predicting cellular behavior, optimizing 
metabolic engineering strategies, and identifying potential drug targets. Revealing these interaction networks 
po es a great challenge. Therefore, various studies have examined methods to find the structure of interaction 
networks8–13.

Commonly, interaction networks are constructed from data obtained by time-series measurements, or even 
pseudo-time trajectories14–23. To do so, researchers use some mathematical and statistical tools such as Bayesian 
inference and maximum likelihood together with machine-learning algorithms17–22. There, the collective 
dynamics are used for network inference—whether the interactions are approximately linear or remain 
nonlinear, where the latter requires further assumptions on the system24–27. However, multidimensional time-
dependent synchronized recorded data is not available in some scenarios.

Generally, many biological processes are presumed to reach a steady state21,27–33. Importantly, while the 
population of molecules within a cell or organism is dynamic - constantly undergoing synthesis and degradation 
- the molecular abundances display time-independent characteristics. The use of steady-state data for the 
inference of interaction networks has been examined, yet the dynamics are assumed to be linear in the activity of 
the nodes of the network34, or the system is assumed to be externally driven in a controlled way27,29. Nevertheless, 
real systems are not required to fulfill these requirements.

In many cases the collective dynamics evolve via the (Markovian-) Master equation, where stochastic 
variables possess integer values35. Specifically, one of the well known models studied using the Master equation 
is the stochastic birth-death process which describes stochastic biochemical reactions35. In general, interaction 
networks of variables which evolve with Master dynamics are not limited to biochemical reaction networks, and 
has also been studied in other disciplines, see36 and references therein. Yet, for consistency, this manuscript is 
oriented to bio-chemical reaction network studies, with adequate terminology.

In biochemical reaction network studies, one may infer the functional connectivity which gains insight into 
statistical dependencies that the entire set of interactions yield between pairs of units through the collective 
network dynamics37,38. The statistical dependencies between components may be given by the well-known 
Pearson correlation, the mutual information, or their analyses with silencing methods38–40. These, however, are 
symmetric metrics and as such they are blind to the direction of the interaction providing only non-directed 
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networks. Non-symmetric metrics, such as partial correlations and dependency analyses, require recorded data 
from all other interacting variables within the network31,41–44. That data is not available in many systems.

Here, we introduce a novel data analysis approach to infer the interaction direction, which under some 
conditions may be interpreted as causality. Its key advantage is that only the variables under investigation need 
to be measured, while the mechanistic details of regulation or degradation of all other components within 
the network do not need to be modeled or even to be observed, see Fig. 1. This approach exploits the global 
probability flux-balance equation that must be satisfied in the steady state45–48. In contrast to existing works, our 
approach does not require temporal information, experimental perturbations, or complete observation of all 
components within an interaction network.

Fig. 1.  Main goal and inference method flowchart. (A) Determining the direction of interaction between 
stochastic variables is challenged by the lack of temporal observations, further knowledge of the entire network 
topology, or records of other variables within that network. (B) Our method exploits the steady-state joint 
distribution to infer the direction of arrows using the global balance equation Eq. (1) and the local sensitivity 
analysis.
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Results
Theoretical background and overview
Consider V variables coupled via an interaction network, i.e., a directed graph with V vertices. The variables state 
vector is given by ⃗x = {x1, x2, . . . , xV }, where xi represents the number of units from type i, e.g. its expression 
or activity level. Each variable xi(t) ∈ N0 and evolves with time by probabilistic events xi

rik(x⃗)−−−−→ xi + dik  
where the k-th reaction changes the abundance of the i-th molecule xi by dik . The reaction rates rik(x⃗) depend 
on the state vector x⃗ according to the interaction network. The stationary Master equation yields the global 
balance relation, which means that for every node i

	
0 =

∑
k

⟨r̃ik(xi − dik, xj)|xi − dik⟩P (xi − dik) − ⟨r̃ik(xi, xj)|xi⟩P (xi),� (1)

where r̃ik(xi, xj) ≡ ⟨rik(x⃗)|xi, xj⟩ and the angular brackets represent conditional means. The above relation 
is derived from a summation of the Master equation over all other variables where consider stationarity 
∂tP = 045–48, see further derivation in “Methods” and SI.

From Eq.  (1) one may obtain the reaction rate only from a given joint steady-state distribution of the two 
molecules P (xi, xj), see “Methods” and48. Our approach is based on local sensitivity of r̃ik  to xj ; a direction 
of the interaction is inferred, which means an arrow is drawn in the directed graph, if a sufficient sensitivity is 
quantified, see details in “Methods” and SI. We remark that the suggested directional inference approach solely 
uses information about (xi, xj) , thus the directionality inference problem decomposes over pairs of nodes 
within the network such that the direction of each interaction can be reconstructed independently.

To evaluate the quality of the inference, we initially consider a class of random networks with Michaelis–
Menten kinetics which model gene regulatory networks49, and random networks where each unit is a Goodwin 
oscillator, a prototypical biological oscillator, that characterizes various biological processes such as circadian 
clocks50,51. Additionally, we examine our inference strategy on a biological realistic system based on a subset of 
an E. coli  gene regulatory network given in52–55. In the following, we evaluate the performance of the suggested 
approach to identifying the direction of a given interaction.

Importantly, Eq.  (1) is not an approximation but an exact flux balance relation at stationarity. However, 
a finite number of recorded points N introduces sampling errors into the distribution P (x⃗), as shown in SI. 
These sampling errors may affect the inference of directions. Therefore, we also examine below the impact of the 
number of sampling points, N, on the overall results.

Performance in general synthetic networks
Our strategy successfully infers the direction of the interaction between two nodes within an unknown network 
of interactions, where only the two-node joint steady-state distribution is given as the input, see Figs. 2, 3 and 4. 
It demonstrates that stationary probability distributions contain sufficient information to deduce the direction 
of a given interaction within an unknown network of interactions.

One of the most commonly used classifiers’ performance scores is the receiver operating characteristic curve 
(ROC)—which compares the true positive rate (TPR) to the false positive rate (FPR) at different threshold 
settings. A perfect classification yields TPR=1 with FPR=0, while a random one forms a diagonal line where 
FPR = TPR. The area under the receiver operating characteristic curve (AUC) is a single-valued score indicating 
overall performance, ranging from 0.5 for random to near 1 for perfect classification. We use these to evaluate 
the suggested direction inference strategy.

As aforementioned, our method poses a good direction classifier—it successfully infers the direction of a 
given edge where the relevant joint distribution is sufficiently sampled. As is shown in Fig.  2,  the direction 
inference improves with a larger set of data points. In particular, a sufficiently large data set provides scores 
beyond the random classifier. It signifies that the direction of interaction is indeed encoded within the stationary 
snapshot of many data points. Importantly, recall that the input is simply the two-variables joint distribution, our 
method allows decomposition of the network. This means that within a given un-directed graph, one can learn 
the direction of a single edge independently, regardless of other edges, see further discussion in SI.

In the following, we discuss some key aspects that we found essential for the underlying goal. In particular, 
we examine some determinants that may affect probability to correctly infer directionality.

Determinants and limitations
The stationary joint probability density between xi and all variables directly interacting with the i-th molecule 
must satisfy Eq. (1), hence it acts as a self-consistency test for stationarity. It is shown in48 how this relation can 
be “inverted” to determine rate functions from observed probability densities. In other words, the information 
about the dynamical rate of a variable with its dependence on its coupled variables is indeed encoded within the 
joint steady-state distribution. However, while Eq. (1) must provably hold for all stationary states, empirically 
observed distributions carry sampling errors that can significantly impact inferred rates48, leading to potential 
errors in determining the interaction direction. Our results reflect this errors’ dependence, as illustrated in 
Fig. 2; larger N, which is equivalent to lower sampling errors, yields increased accuracy (SI).

A further characteristic examined is the index of dispersion D, i.e. the variance to mean ratio. It quantifies 
the variable dependence on others, where D ≈ 1 indicates that the variable’s dynamic is weakly dependent on 
other variables (SI). We show in Fig. 3A that a higher probability of success inference is found where D is far 
from 1. We note that similar behavior was previously reported in48. For a given edge xj → xi , the functional 
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dependence of r+
i (xj) in the level xj  is better determined for higher mutual information between these two 

variables.
Moreover, some local properties of the network may affect the performance of our direction inference 

method. We examine the in- and out- degrees, and the lifetimes of the molecules. Recall that we evaluate the 
sensitivity of r̃i(xj) to xj , where r̃i(xj) is a quantity averaged over all other income edges, thus we expect that 
the connectivity nature possesses an influence over the performance. Additionally, the lifetime of a molecule is 
also expected to play an important role in the overall performance as is discussed in48. In the results presented 
in Fig. 3B we have found that the in-degree of xj  presents some dependence over the performance, yet we did 
not find it significant, see further analysis and simulation results in SI. Moreover, we show in Fig. 3C that a 
lifetimes ratio far from 1 results in decreasing the probability for an accurately inferred direction of influence, 
which agrees with48. Nevertheless, we comment that our network ensemble does not cover the entire possible 
network topologies space, an important factor that might skew the results, thus the nature of these phenomena 
needs further research.

E. coli gene regulatory network
We aggregate the insights from the above, and apply our strategy for the direction inference on a previously 
proposed biologically realistic system—a model which is based on E. coli gene regulatory network provided in 
the DREAM challenge52–54, see “Methods”. The system, shown in Fig. 4 , poses various characteristic lifetimes 
and vertices’ degrees. We decompose the network and analyze each edge separately with its measured two-node 
joint distribution.

As shown, our inference method performs well for edges from nodes with zero in-degree with relatively long 
lifetimes (all edges from nodes 0 and 5), while erroneous direction emerges at edges connecting high-degree 
nodes with short lifetimes (nodes 1, 6 where each connected to two wrongly drawn arrows). We comment 
that our local two-node analysis may provide pathways that are not encoded in the true network, therefore 
complementary use of global analysis56–61 should be considered, especially when all other nodes were observed.

Fig. 2.  Inferring interaction directions from steady state. Simulation results indicate an improvement with 
increasing the number of data points N. Panel (A): The AUC scores for the Michaelis–Menten model (see 
“Methods”). Inset: its corresponding ROC curves. Panel (B): Similar results are obtained for the coupled 
Goodwin oscillators. The shaded area corresponds to the standard deviation.
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Observation requirements
Our model is not restricted to a specific interpretation of the fluctuating variables (nodes). Generally, the set {xi} 
could represent levels of DNA, mRNA, complexes, proteins, or metabolites. For instance, our model applies to 
scenarios involving the expression levels of multiple genes (e.g., obtained via microarray or RNA-seq) alongside 
genotypes of cis-eQTL, similar to62,63. Another example is the two-dimensional data observations in32, where xi 
and xj  are the measured mRNA and protein copy numbers. The authors used a yellow fluorescent protein fusion 
library to examine the single-cell profile of E. coli. Depending on the desired insights and measurable variables, 
one should select the most appropriate recording method.

As mentioned, we assume the process is governed by the stationary Master equation, with an interaction 
between the variables xi and xj . The inference approach requires measuring P (xi, xj) to determine the 
interaction orientation between these variables. Principally, the inference approach is quite general, allowing for 
varied underlying processes and biological interpretations of xi and xj . For example, gene-regulatory networks 
can be modeled as discrete systems using the Master equation49. The Master equation can also describe spatial 
dependencies, such as complexes at a given codon or in modeling allosteric regulation. Furthermore, models 
can incorporate multiple gene transcription-translation processes, feedback loops, and ribosome stalling, to 
name only a few. These models may be simplified through “coarse-graining” or maintained in their complexity. 
The inference method thus requires the measurement of the joint probability P (xi; xj) corresponding to the 
interpretation of each variable, see further discussion in the SI. Note that the interaction network is assumed to 
be static, unlike dynamic networks14,62.

Fig. 3.  Factors dictate the performance. (A): the index of dispersion affects the probability of a successful 
inference of the direction. Results obtained the Michaelis–Menten model with N = 102. (B) Dependence of 
the degree on the directionality inference and (C) lifetimes dependence obtained from the Michaelis–Menten 
model with N = 102. For all panels the shaded area represents the standard deviation.

 

Scientific Reports |         (2025) 15:3004 5| https://doi.org/10.1038/s41598-025-86332-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Discussion
Unveiling the interaction network among stochastic variables and delineating the direction of each interaction 
is crucial for understanding biological systems. Here, we present a method designed to infer the directionality 
within this network solely from the steady state of pertinent molecules. We assess the effectiveness of this approach 
across various properties of the system. Simulation results indicate that the proposed method demonstrates 
success in inferring the reaction direction in various cases.

As mentioned, our strategy relies on the time-invariant density, and as such possesses a benefit as explained 
in the following. Recorded data points can be employed without a known temporal order, taken at different 
sampling intervals, or aggregated from multiple experiments, as long as they were conducted under the same 
conditions. Hence this stationarity assumption enables the analysis of a wide range of biological systems. 
Importantly, Eq. (1) is not an approximation but corresponds to an exact flux balance relation at stationarity. The 
only dynamics excluded from our analysis is transient behavior such that stationary probability distributions are 
not accessible from experimental data. Even so, explicitly time-varying systems that technically never reach a 
stationary state, such as deterministic oscillations, may satisfy a similar form of Eq. (1) when considering their 
time-averaged probability distributions and rates. However, care has to be taken when comparing such time 
averages with population averages, see further discussion in SI.

The static snapshot provides statistical features of the stochastic variables, enabling the inference of the 
interaction direction. Statistical information is frequently used to gain insights from these snapshots about 
the dynamics and the relations between variable components29,38,39,64–66. Our strategy for revealing interaction 
directions thus constitutes a previously unknown intermediate approach, placed between purely statistical 
methods used to infer effective connectivity (such as correlations) and approaches that infer physical connectivity 
from high-resolution, time-ordered recordings of the complete dynamics26,27,34,67,68. In particular, statistical 
methods for inferring directed edges that rely on partial correlation analyses were applied for revealing directed 
graphs42,44,69,70. These methods, however, require measurements from other components within the system and 
in that sense are non-local. Nevertheless, we tested the performance of the partial correlation analyses over our 
synthetic data and found that it is underachieved and thus inadequate for our goal (see SI).

Using the sensitivity analysis presents an equivalence with the examination of the slope of r̃ik(xj) or its 
linear response. This linear sensitivity analysis for the interaction network identification is conceptualized 

Fig. 4.  Simulation results for the E. coli gene regulatory network model. The features of the nodes and edges 
are color-coded according to the sub-figure titles and the provided color bars. Panels (A–C) display the true 
network, with each panel highlighting a specific feature in color: lifetimes and in-degree of the nodes in panels 
(A) and (B), and the index of dispersion which is associated with node-node correlation is shown in panel (C). 
Panel (D) presents the inference results, where correctly inferred directions are shown in blue, and incorrect 
ones are depicted in red.
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and demonstrated for stationary systems under small perturbations29. There, the authors assume continuum 
variables that evolve via coupled differential equations with no noise or with additive noise. Conversely, our 
method considers discrete variables that propagate following the Master equation which effectively possess 
multiplicative noise. In addition, we note that our approach does not require externally driving the system in a 
controlled way that is not applicable in many systems29.

Another possible directionality classification quantity is related to the Sum-of-Squared Errors (SSE), which 
might be associated with the Minimum Description Length (MDL). The SSE (or the MDL) comparison between 
the two directions is well mathematically established71–73. Nevertheless, we show (see SI) that our directionality 
classification quantity based on |Jij | outperforms the previously proposed SSE-based one, especially in low N. 
In the SI we further discuss the classifying quantities, with additional simulation results.

Harnessing of the global flux balance Eq.  (1) to gain insight on the interaction quantification has been 
suggested recently48. There, the authors demonstrated that the steady state joint distribution indeed encapsulates 
information about the dynamical features such as the birth rates. They assume that the direction of the edge, 
together with the stationary P (xi, xj), are given, and thus find the functional shape of r+

i (xj) for various values 
of xj . Here we exploit this approach, but instead of looking for the full functional shape we only examine a 
partial behavior of r+

i (xj) - its sensitivity analysis - without assuming the direction of the edge at all, see further 
discussion on SI.

Furthermore, we have examined some of the performance determinants, i.e. the properties which affect the 
efficacy of the direction’s identifier. For example, we examined the variables’ degradation rate. When upstream 
and downstream variables fluctuate with similar lifetimes, we find a greater probability of successfully inferring 
their edge direction. Furthermore, we have found a connection between the index of dispersion D and the 
ability to infer the direction of the interaction, where larger D yields a larger success ratio. Both degradation 
times and index of dispersion effect on the overall performance were previously demonstrated to be with similar 
conclusions as is given in48. Moreover, some of the network topological features such as the node degree were 
also being inspected. We have found that a lower incoming degree of the node provides better results in the 
inference of the direction. That is in agreement with previously published results that show that increasing the 
incoming degree requires more data points to gain the same quality of inference29,65.

To summarize, the method performs well where the joint distribution is well sampled. That is achieved when 
measuring sufficiently many data points such that they satisfactory capture the required statistical features. 
Nevertheless, as mentioned, here we provide only a basic algorithm that proves the principle that the direction 
of interaction is encoded within the stationary information.

For future research, we suggest examining more sophisticated approaches, such as deep learning methods. 
Previously published techniques involve artificial neural networks to study node-to-node interactions74–76, while 
others employ stacking methods77–79. Supervised learning methods, such as regression-based approaches, are 
commonly used to infer the global structure of gene regulatory networks56–61. These methods, however, require 
multidimensional data that goes beyond simple two-node observations. It is important to note that for these 
learning methods, the training data must closely resemble the observational data under scrutiny, a condition 
that can be challenging to fulfill in real-world situations. Moreover, these approaches typically require very large 
datasets and significant training resources, including time and GPUs, limitations that might be eased in the 
future with advances in technology. Yet, as noted in55, there is currently no universal method that applies to 
all scenarios; there is no “one-size-fits-all” solution, and the inference method should be tailored to the system 
under investigation.

Methods
Background theory
The well-known Master equation for V variables yields at stationarity the global balance relation, which means 
that for every variable i

	
0 =

∑
k

⟨rik(x⃗ − d⃗ik)|xi − dik⟩P (xi − dik) − ⟨rik(x⃗)|xi⟩P (xi).� (2)

d⃗ik = {0, . . . , dik, . . . , 0} where the non-zero value is located in the i-th component. Each xi denotes the 
quantity of units of type i. For instance, this could represent the mRNA or protein copy number indicative of 
gene expression levels, a metabolite level within a cell, or the population count of a given species.

Here, we emphasize that the system contains V variables, so the state of a particular sample is given by the V-
dimensional array {x1, x2, · · · , xV }. Assuming the system is sampled N times, the observed dataset contains 
V × N  points in total.

The above relation is derived from a simple summation of the stationary Master equation over all other 
variables, and has been derived and discussed previously45–48, see also derivation in SI. The angular brackets 
represent conditional means, i.e. ⟨rik(x⃗)|xi⟩ ≡

∑
xj ,j ̸=i

rik(x⃗)P (x1, x2, . . . xi−1, xi+1, . . . xN |xi)80. 
Equation (2) can be wriiten as

	

∑
k

⟨r̃ik(xi − dik, xj)|xi − dik⟩P (xi − dik) = ⟨r̃ik(xi, xj)|xi⟩P (xi)� (3)
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where r̃ik(xi, xj) ≡ ⟨rik(x⃗)|xi, xj⟩. Our approach is based on local sensitivity of r̃ik  to xj , which aims to 
quantify the dependence of the dynamic of xi on the level of xj . In particular, we calculate Jij ≡ ∂rik/∂xj  next 
to the probable abundance point. The quantities of |Jij | and |Jji| are then utilized as a classification feature. The 
nature of this comparison between |Jij | and |Jji| , and its role in classification would depend on the specific 
context or system. It is partially inspired by71,72 where both directions were quantified using regression and then 
assessed such that the more probable direction is chosen.

Models
For numerical demonstrations, we generate a random directed graph Ĝ which holds the topology of the network. 
Mathematically the graph is described by the adjacency matrix with elements Gij = 1 where the state of j affects 
the dynamics of node i, i.e. j → i, and Gij = 0 otherwise. We examined systems with Erdös Rényi random 
networks. In addition, we examine more biologically realist system which is based on a subset of an E. coli  gene 
regulatory network and was provided in the DREAM challenge52–54.

For illustration, we use a typical reaction rate model where a molecule reaction can be either a reproduction 
d+

i = +1 or degradation d−
i = −1. We specified that the production rate of xi, denoted as r+

i , depends on 
other units’ states via the reaction network and that each molecule within the system degrades independently 
with a typical degradation rate. Hence, Eq. (2) can be written as

	
⟨r+

i (x⃗)|xi⟩P (xi) = 1
τi

(xi + 1)P (xi + 1)� (4)

where r+
i (x⃗) encodes all incoming edges (all units that affect the production rate of node i), and τi is the known 

lifetime of molecule i.

Michaelis–Menten regulatory network
The birth rate of molecule i is

	
r+

i =
∑
j ̸=i

Gij
λxj

xj + k
+ 30 · δ(

∑
j ̸=i

Gij)� (5)

where for our simulation we choose V = 10 nodes, 10 directed edges, λ = 100 and k = 100. These commonly 
described production rates in biochemical reaction networks, where λ gives the maximal rate and k refers to the 
concentration which gives half of the maximal rate28,81. The degradation rates follow r−

i = xi for all i.

We note that the Michaelis–Menten model describes the dynamics that involve enzymes. This rate function 
holds for a quasi-steady state with low enzyme concentrations28,81. In the context of gene regulation through 
transcription factor (TF) binding to gene regulatory sequences, the application of a Michaelis–Menten rate type 
is considered valid due to the typical excess TFs over their chromosome-binding sites82. Still, when intermediate 
molecules are involved, or when describing dynamics of comparable concentrations, the Michaelis–Menten-rate 
law needs alternatives83.

Coupled Goodwin oscillators
Each Goodwin oscillator is given by three interacting variables (xi, yi, zi) which are coupled through the y 
variables. Their proliferation rates are given in the following:

	

r+
x,i = λx

(zi/k)n + 1

r+
y,i =λyxi +

∑
j ̸=i

Gijyj

r+
z,i =λzyi

� (6)

and death rates are r−
i = xi for all i. Here, the dynamic influences network within each oscillator is known, 

namely the relations within the triplet (xi, yi, zi) are given, hence we aim to infer only the coupling network 
between these triplets Gij . In the simulation presented in the main text, Ĝ has 8 edges and 8 nodes—where each 
node is a triplet, such as we have 24 fluctuated variables in total.

Gene regulatory interactions in E. coli
As mentioned, we also examine a more biologically realist model which is based on a subset of an E. coli  gene 
regulatory network and was provided in the DREAM challenge52–55. There, the in-silico network inference 
challenge investigated how well gene networks can be deduced from simulated data. The network is derived as 
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subgraphs from the recognized E. coli and S. cerevisiae gene regulation networks84. This means that the results 
presented are thus biologically realistic, i.e. aiming to capture a reasonable network, but not given from a real 
observation, and the gene indexes are thus arbitrary.

There, the variables xi are described as continuous and possess small values. Here, for the discrete treatment 
of the model, we scaled the variables by x̃i = xi/100, thus our E. coli  gene regulatory network is thus defined 
and simulated with the following rates:

	

r+
1 = k0,1

KM,1 + D

r+
2 = k0,2

KM,2 + x̃1
+ k0,3x̃3

KM,3 + x̃3
+ k0,4x̃7

KM,4 + x̃7

r+
3 = k0,5x̃1

KM,5 + x̃1
+ k0,6

KM,6 + x̃2
+ k0,7x̃5

KM,7 + x̃5
+ k0,8x̃7

KM,8 + x̃7

r+
4 = k0,9

KM,9 + x̃1

r+
5 = k0,10

KM,10 + x̃2

r+
6 = k0,11U

KM,11 + U

r+
7 = k0,12x̃4

KM,12 + x̃4
+ k0,13x̃6

KM,13 + x̃6

� (7)

and for every i

	 r−
i = γix̃i.� (8)

with parameters
Gene Parameter values

N1 k0,1 = 0.0362, KM,1 = 0.1259, γ1 = 0.4060,

N2

k0,2 = 1.0106, KM,2 = 1.7937, k0,3 = 0.3550,

KM,3 = 1.2069, k0,4 = 0.7472, KM,4 = 1.2858,

γ2 = 2.1362

N3

k0,5 = 2.4007, KM,5 = 0.8218, k0,6 = 0.8511,

KM,6 = 1.7099, k0,7 = 2.8247, KM,7 = 1.6656,

k0,8 = 0.6081, KM,8 = 0.0202, γ3 = 3.8740,

N4 k0,9 = 0.0903, KM,9 = 0.069, γ4 = 0.7256

N5 k0,10 = 0.5264, KM,10 = 0.9600, γ5 = 0.7466

N6 k0,11 = 0.6541, KM,11 = 1.0891, γ6 = 0.4525

N7
k0,12 = 0.0090, KM,12 = 0.5191, k0,13 = 1.1236,

KM,13 = 0.4986, γ7 = 0.9473
 

These parameters are taken from52–54. The ‘external disturbance’ is modeled by uniform distribution, means 
D, U ∼ Uniform[0, 1].

Data availability
All data are included in the main article and its supplementary information files.
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