Observation of adsorption of water in MCM-41 with neutron diffraction
Tun, Zin; Mason, P. C.; Mansour, F. K.; Peemoeller, H.

This publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur.
For the publisher's version, please access the DOI link below. / Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.1021/la0014252

NRC Publications Archive
Archives des publications du CNRC

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.
Observation of Adsorption of Water in MCM-41 with Neutron Diffraction

Z. Tun* and P. C. Mason

Neutron Program for Materials Research, National Research Council of Canada, Chalk River, Ontario, Canada K0J 1J0

F. K. Mansour and H. Peemoeller
Department of Physics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Received October 10, 2000. In Final Form: June 5, 2001

Adsorption/desorption of water in the mesoporous material MCM-41 was observed with neutron diffraction. Results obtained with a H₂O/D₂O mixture contrast-matched to the host material unambiguously show that the pores are fully hydrated in the presence of excess water. During desorption carried out by air-drying a saturated sample, water in the partially filled pores redistributes and the statistical distribution of water within each pore is characterized by a smooth function that decreases from a maximum around the edge to a minimum at the center.

1. Introduction

The objective of experiments involving porous materials is usually to study the sorption process or to study a foreign material confined within the pores of the host material. An important question is, To what degree and how uniformly is the available pore space filled? during adsorption, at saturation, and during desorption. Estimating the filling ratio from measured pore volume and weight gain of a filled sample may not be reliable since part of the gain could be due to the foreign material coating the exterior surface of the sample. Neutron (or X-ray) diffraction is potentially a better technique since it is a bulk probe that directly measures the change of contrast at the interface between the host material and the pores.

MCM-41 is an extensively studied molecular sieve whose properties and potential applications are recently reviewed by Ying, Mehnert, and Wong. To first order, its pores are long, straight cylinders packed on a 2D hexagonal lattice. Neutron studies have been reported on MCM-41, with the aim of studying pore formation and the dynamics of water already incorporated. In addition, by contrast matching the water (by mixing H₂O and D₂O) to the silicate material, it has been shown that pores in MCM-41 are fully accessible to aqueous and organic solvents. Since most foreign materials of interest contain hydrogen (hydrocarbons and polymers), H/D contrast matching is a broadly applicable technique. This, combined with the neutron’s ability to penetrate various sample environments, makes it a particularly powerful probe to study sorption processes. Tun and Mason have recently shown that even a single-layer coating on the inside walls of MCM-41 by a relatively small molecule (e.g., water) could lead to measurable changes in a neutron diffraction experiment.

In this letter, we report observation by neutron diffraction of the saturation and desorption of contrast-matched water in the pores of MCM-41. During desorption, facilitated by air-drying the sample, we obtained a diffraction pattern that is qualitatively different from that of dry or fully water saturated powder. This observation allows us to infer the statistical distribution of water within the partially filled pores.

2. Experimental Section

2.1. Synthesis of MCM-41 Powder. Fumed Silica powder (99.8%, metal free, particle size of 0.07 microns) and tetramethyl-ammonium hydroxide pentahydrate (TMAOH, 97%) were obtained from Sigma. Cetyltrimethyl ammonium bromide (CTABR, 99%) was obtained from Aldrich. TMAOH and CTABR were dissolved in distilled deionized water in a 250-mL beaker while stirring with a magnetic stirrer (500 rpm) at 30 °C until a clear solution was obtained. The silica powder was then added, and the mixture was stirred for 3 h at 30 °C. The final molar composition of the materials was 1.0 SiO₂, 0.19 TMAOH, 0.27 CTABR, and 40 H₂O. The mixture was aged for 24 h at room temperature and transferred into a stainless steel Vilon-lined autoclave. The mixture was allowed to react in a furnace at 125 °C for 68 h, after which the autoclave was cooled under running water. The solid material was recovered by filtration, washed extensively in distilled deionized water, and dried at 45 °C overnight. Finally, calcining the sample at 650 °C for 8 h removed the organic template material, giving the powder we label the "dry sample". All the samples used for this study were drawn from this single batch of preparation.

2.2. Neutron Diffraction. Measurements were carried out at the NRU reactor, Chalk River, using the C5 spectrometer. The spectrometer was set up with a vertically focused pyrolitic graphite (PG) monochromator and a flat PG analyzer set for elastic scattering. The instrument thus measured the elastic scattering. The instrument thus measured the energy resolution of the analyzer (ΔE/Ε = 0.032 full width at half-maximum (fwhm)) is much wider than the energy spread of the incident beam (0.012 fwhm or Δλ/λ = 0.006). The measured signal is essentially the same as the energy-integrated diffraction pattern S(Q). The advantage of this setup over the conventional two-axis setup (i.e., without the analyzer) is that the background due to epithermal neutrons propagating mainly along beam channels is greatly reduced, resulting in a higher signal-to-noise ratio. The neutron wavelength λ was 2.37 Å.

with the higher order contamination suppressed with a PG filter. Scans were performed over a Q range with equal AQ steps, where $Q = 4\pi \sin(\theta)/\lambda$ and 2θ is the Bragg angle.

Airtight aluminum cuvettes were used to hold the powder sample. We had a provision of mounting the cuvettes on a scale so that the sample weight could be monitored during measurements or air-drying the powder. Prior tests showed that the scale was accurate to 2 mg for up to an hour after being zeroed. Diffraction measurements were carried out with two geometries. In the first case, the inside dimensions of the cuvette were larger than the neutron beam. The effective sample volume, limited in width and height by the beam, was 2 mm wide, 30 mm high, and 4 mm along the beam. In the second case, the inside dimensions of the cuvette, smaller than the selected beam size, were 3 mm wide, 35 mm high, and 3 mm along the beam. This geometry was used exclusively for observing changes in the diffraction pattern as an originally water-saturated sample was air-dried on the spectrometer. It has the advantage of keeping the effective sample volume constant even if the packing of the powder changes as it dries. For air-drying, the design of the cuvette incorporated a special feature: its face plate (the side perpendicular to the incident beam) that provides an airtight seal can be removed and replaced. Under the face plate is a fixed stainless steel screen that contains 0.15 mm diameter holes. With the face plate removed, the screen holds the powder in place and allows airing of the entire sample space.

We first measured the diffraction pattern of as-prepared MCM-41 powder sealed in a dry N$_2$ atmosphere. Subsequent measurements were on samples mixed with excess H$_2$O (natural isotopic abundance), 99.9% pure D$_2$O, and a mixture of H$_2$O and D$_2$O whose scattering amplitude was adjusted (see below) to match the host silicate. Finally, we did a series of scans while the sample was on samples mixed with excess H$_2$O (natural isotopic abundance), with excess 99.9% pure D$_2$O, and with 40:60 H$_2$O/D$_2$O mixture.

Figure 1. Neutron diffraction pattern of the dry MCM-41 powder sample (filled circles) and the instrument background measured with no sample (open circles). The background arises from air-scattering and, at very low Q, from the straight-through beam.

Figure 2. Neutron diffraction patterns of MCM-41 powder soaked with excess H$_2$O (natural isotopic abundance), with excess 99.9% pure D$_2$O, and with 40:60 H$_2$O/D$_2$O mixture.

Figure 2a shows the patterns obtained when the powder was mixed with excess distilled water (H$_2$O) and 99.9% pure heavy water (D$_2$O). Although the incident beam size and the size of the cuvette were the same as for the dry sample, reduced scattering from the sample was observed. This could be due to the presence of liquid water between grains which would reduce the volume of MCM-41 powder contributing to diffraction. On the basis of weight measurements, we estimate this reduction of effective sample volume could lead to a 10–20% decrease of peak intensities compared to the diffraction pattern of the dry sample (Figure 1).

Within this 10–20% accuracy, the diffraction pattern of the H$_2$O-saturated sample is similar to that of the dry sample except that the background is much higher. The background increases also in the D$_2$O-saturated sample but to a lesser extent. Above-background intensity of the (1,0) peak of the D$_2$O-saturated sample is $\sim 1/3$ of that of the dry sample, and the apparent lack of peaks at the expected positions of (1,1) and (2,0) is consistent with those peaks reduced by a similar factor. The changes in the peak intensities and the background can be explained separately:

Background. The liquid water between powder grains causes most of the increased background. The scattering functions $S(Q)$ for both H$_2$O and D$_2$O contain short-range order (i.e., broad) peaks, but they lie well beyond our scan range. The tails of these peaks extend toward smaller Q, giving rise to the extra scattering we perceive as “background”. The strong incoherent scattering of H causes a further increase of the background seen in the H$_2$O-saturated sample.

Diffraction Peaks. The change in contrast between the host material and the pores causes the peak intensities to change. For thermal neutrons, the contrast is provided by spatial variation of scattering-length density (SLD), a quantity analogous to electron density for X-rays. The host material of MCM-41 is mostly SiO$_2$. As an estimate, we will adopt the SLD of low-density SiO$_2$ (cristobalite), 3.62×10^{-6} Å$^{-2}$ for the host material. The SLD of empty pores is zero. For water-filled pores, provided there are no remaining voids, the SLD is -0.560×10^{-6} Å$^{-2}$ for H$_2$O and 6.40×10^{-6} Å$^{-2}$ for D$_2$O. Thus, contrast matching between the water and the host material can be achieved using a 40:60 H$_2$O/D$_2$O mixture for which the SLD is equal to 3.62×10^{-6} Å$^{-2}$.

Figure 2b shows the diffraction of a sample soaked with 40:60 H$_2$O/D$_2$O mixture. Clearly, all diffraction peaks have...
by the on-line weighing was 1:0.13, corresponding to a single function. Further, the absence of higher order Bragg reflection of water within the pores is well represented by a stretched SLD distribution, indicating that all the pores are filled, on average, to the same volume fraction and the distribution of water within the pores is well represented by a single function. Further, the absence of higher order Bragg peaks in the diffraction pattern of the partially dried sample indicates that the SLD distribution of the entire sample (SiO₂ + contrast-matched water) resembles very much a sine wave with no discontinuities. Such a distribution is consistent with the picture that the residual water within each pore clings to the inside wall and forms a continuous film whose thickness fluctuates over the coherence length of neutrons (λ²/∆λ or ~400 Å). Since the film is continuous, the SLD of the water near the wall remains contrast-matched to SiO₂. Because of the thickness fluctuation, the SLD decreases away from the walls and tends to a minimum at the center. At early stages of drying, it is a shallow minimum leading to a weak (1,0) peak. The minimum deepens progressively as more water leaves the pores, but the overall SLD distribution remains remarkably close to a sine wave (i.e., without pronounced discontinuities at the pore walls) even when only 6.3% of pore space is filled with water.

A sketch of the proposed model is depicted in Figure 4. For a homogeneous mixture of H₂O and D₂O, the SLD variation is simply the population density of water molecules (i.e., the number of molecules per unit volume) in an arbitrary unit. Hence, we have essentially determined the statistical distribution of water within the partially filled pores.

Further air-drying of the sample did lead to the reappearance of the higher order Bragg peaks. At the end of the air-drying (signified by stability in the measured weight of cuvette), the diffraction pattern looked identical to the original pattern of the dry sample except that the background at the high-Q end was ~19% higher and the above-background intensity of the higher order peaks was slightly weaker. This result indicates that most, but not all, water was removed from the pores by the air-drying process.

4. Conclusion
In the presence of excess water, the pores of MCM-41 are fully hydrated for their entire length. When the excess water is allowed to evaporate, even at room temperature, most of the incorporated water leaves the pores. However, before this final stage is reached, the water in each pore redistributes itself to form a layer clinging to the wall of the pore. With a sufficient amount of water remaining in the pores, the coverage of the layer is continuous but the thickness fluctuations develop along the pore length. The resulting population density of water molecules is a simple radial function with a minimum at the center and a maximum near the pore wall. This simple distribution function holds for a wide range of water content, from saturation down to ~6.3% of available pore space filled with water.