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ABSTRACT

The National Research Council of Canada provides engineering
assistance to research groups from Canadian universities, and
scientists within the Council, in the high-altitude rocket sounding
program of the Associate Committee on Space Research. This
report deals with the engineering aspects of preparing the pay-
load and launching rocket AA-I-26 at the Churchill Research Range.



CONTENTS

Introduction . . . . . . . . . L e e e e e e e e e e . 1
Description of Vehicle . . . . . . . .. .. ... ... ... ... 1
Planning the Rocket Payload . . . . . . . . .. . . .. .. ..... 2
Preparations for Launching . . . . . . . ... ... ... .. ... 7
Rocket Performance . . . . . . v v v v v v v v e v e e e e 8
Experiments . . . . . . . . i i i e e e e e e e e e e e e e s 10
Conclusions . . . . . . . . . o i i i i e e e e e e e e e e 16
Appendix I — Engineering Work Sheets . . . . . . .. b e e e e e 17

FIGURES

1. Vehicle configuration

[\V)

Cross section of nose cone showing
instrument support structure

Circuit of typical four-line battery control
Circuit of typical three-line battery control
Churchill area

Churchill Research Range launch site
Rocket trajectory

Low-frequency nose-cone accelerations

© 0w N9 o O s W

Surface temperature at station 90

PLATES
I. Nose cone with conical shroud removed
II. Instrumentation mounted below telemetry package
III. Instrumentation inside cylindrical section showing
ejectable potential gradient experiment (at left),

extendible beacon (above), and three cosmic ray
detectors (behind)




INSTALLATION AND PERFORMANCE OF PAYLOAD

IN BLACK BRANT I ROCKET AA-I-26

FIRED AT FORT CHURCHILL APRIL 1963

- A, Staniforth and K.A. Steele -

INTRODUCTION

The National Research Council is currently engaged in a sounding-rocket
program with various research groups from Canadian uuniversities and with
scientists from within the Council who are interested in performing measure-
ments in the upper atmosphere.

The program is coordinated by the Associate Committee on Space Research
of the National Research Council. Functions concerned with general engineering
assistance, liaison, assembly, telemetry, payload checkout, and, in general,
all aspects of nose cone preparation not directly a part of the experimenter's
equipment have been performed by the Space Electronics Section of the Radio and
Electrical Engineering Division.

This report deals primarily with the engineering aspects of launching rocket
AA-T1-26 (22:03:38 CST, April 5, 1963). Brief summaries of the results of the
experiments are also included since analysis has not been completed in most
cases.

DESCRIPTION OF VEHICLE

Vehicle AA-I-26 is of the Black Brant I type in that it uses Black Brant I fins
and nozzle, although the nose cone is of Black Brant II design. The outline and
dimensions of the vehicle are shown in Fig. 1.

The nose cone is a magnesium casting weighing about 116 pounds empty. It
consists of two main sections — a conical part and a cylindrical part, separated
by an airtight bulkhead on which the telemetry package is mounted. The conical
section contains about 3% cubic feet of space in which the pressure is maintained
at a few pounds above atmospheric pressure throughout the flight. The cylindrical
section contains about 21 cubic feet of unpressurized space. A section of the nose
cone, the telemetry package, and the H-frame on which some of the instrumentation
is mounted are shown in Fig. 2.

The information is transmitted from the rocket to a ground station using a
PAM/FM/FM telemetry system consisting of ten subcarrier oscillators, one of
which is modulated with a 30-segment 10-rps commutator or time multiplexer.
The system is packaged into a unit about 16" in diameter and 4.0" deep.
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An aluminum sheet-metal H-frame, about 23" long and tapered to fit in the
nose cone, is bolted to the top of the telemetry package. On top of this frame is
mounted a ''cross'' of sheet aluminum about 20" long, and again tapered at the
nose cone angle. This frame is used to mount the magnetometer sensing heads
in a position as far as possible from magnetic materials and current-carrying
conductors. The H-frame assembly is shown in Plate I.

A plate is mounted under the telemetry package bulkhead, on which are the
timers, event oscillators, and several cable junctions as shown in Plate II.
The cosmic ray units are mounted on supports secured to the walls of the parallel
section. The remainder of the equipment in the cylindrical section is mounted
on or through the outer walls.

Components that are ejected or that are extended outside the rocket are
preferably mounted in the unpressurized cylindrical section to avoid sealing
problems. The antennas for telemetry and the radar beacon are usually mounted
on this section. Some views of the components in this section are shown in
Plate III.

PLANNING THE ROCKET PAYLOAD

Rocket AA-1-26 had as payload the following instrumentation:

1) Primary

a) Cosmic ray experiment concerned with the
study of particles associated with auroral |
activity (NRC) |

b) Langmuir probe for measurement of the
fine structure of electron density and
electron energy spectrum inside and out-
side auroral formations (NRC)

2) Secondary

a) Micrometeorite detector, an acoustic-
type impact counter to determine impact
rates and energy distribution inside and
outside major meteor showers and the
association with auroral activity (NRC)

b) Potential gradient experiment, consisting
of a small ejected package containing its



Plate I — Nose cone with conical shroud removed
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own transmitter (University of Saskatchewan)
c) Flux-gate magnetometer experiment concerned
with measurements on components of the earth's

magnetic field (University of Alberta)

3) Engineering Measurements

a) Flight testing of a new radar beacon

b) Flight testing a rocket-borne light for obtaining
trajectory data with ground-based cameras

c) Nose cone environment:
i) Low-frequency accelerometer measurements
in three mutually perpendicular directions
(one on the roll axis)

|
|
|
ii) Temperature measurements at a number of ‘
locations within the nose cone ‘

4) Other Equipment

a) Timers for initiating ejection and extension of
equipment

b) Telemetry calibrator unit for introducing alternate
0 v and 5 v reference levels to all continuous
channels at 10-second intervals during flight

c) Event oscillator unit for indication by means of
telemetry of various events during the flight

As an aid to planning and for reference, a set of forms called "Engineering
Work Sheets' were prepared. These detail such items as telemetry, umbilical
connector, and battery allocations. At least a general idea of the placement of the
various pieces of instrumentation in the nose cone is necessary prior to filling
out these forms. Also, most of the data on the forms must be known before wiring
diagrams can be drawn.

In the following paragraphs some notes of explanation will be made concerning
the work sheets for rocket AA-I-26 found in Appendix I.

Angular orientation of equipment or sensors is always referred to the position
of the forward launch lug on the rocket. The position is generally given in degrees
clockwise or counterclockwise from the launch lug looking forward (CWLF or CCWLF).




General Requirements

The General Requirements Sheet outlines general information on ground support,
transmitters in the nose cone, primary experiments, and experiment launch con-
ditions. The list of batteries for nose cone instrumentation may appear out of
place on this sheet but is a convenient reference for this requirement.

Telemetry

The telemetry sheet gives allocations on the continuous channels (3.9 kc/s
through 52 .5 kc/s) and on the commutator used on the 70.0 kc/s subcarrier
channel, for experimental data and monitoring. The commutator is a 30-position
mechanical unit operating at 10 rps. The right-hand side of the sheet lists the
data inputs to each of the commutator bars. The master bars (28, 29, and 30)
are for frame synchronization, and the 0 v and 5 v calibrate (channels 1 and 2)
provide reference amplitudes used in data reductions. The frame synchronization
and calibration signals are used in automatic decommutation.

Most of the items commutated are self-explanatory: battery monitors, and
low-frequency data such as that from magnetometers and an accelerometer.
(Note, however, that the accelerometer is supercommutated (channels 12 and
27) to obtain 20 samples per second.)

The light operation monitor (13) and the Langmuir probe timer monitor (22)
are of the same kind. Both the light and the pair of large spherical Langmuir
probes are extended out from the surface of the nose cone after a time interval
referenced from lift-off. The monitors provide several different voltage levels
depending on whether or not the timers have operated, whether the squibs have
fired (and then open-circuited), and whether the light filaments have open-circuited
or not. They are indicators of proper function or malfunction.

The output from a subcommutator is connected to commutator channels 25
and 26, two bars being used for reliability. On this rocket most of the data on
the subcommutator are temperature measurements.

On the top left-hand side of the telemetry sheet are listed four channels all
lower in frequency than the 3.9 ke¢/s subcarrier band (IRIG #9). These channels
are so-called "event oscillators'. Each of these units is a separate subcarrier
oscillator, but they are not designed to have the stability or linearity of the units
used for continuous-experiment information transmission. They are used as event
indicators, and usually are not turned on until a switch is closed. The potential
gradient exit event and nose cone pressure switch are examples of this form of
operation. The Langmuir probe extension event is somewhat different in that
there are two extending probes and thus two exit switches. The 950 ¢/s unit is
used in a 4-level mode: "off' when both probes are inside the nose cone, ''on"



at frequency f, when probe #1 is out, on at f, when probe #2 is out, and on at
f5 when both probes are extended. The light monitor on the 660 c/s unit is also
slightly different. It is not connected to a switch but to a cadmium sulfide cell
mounted to view the extended light. This oscillator functions when the light is
on, and a change in its operating frequency is an indication of a change in light
output.

Subcommutator

The subcommutator on rocket AA-I-26 was used for temperature data and data
from one magnetometer monitor. The unit is basically a 20-position switch driven
by a stepping motor (a Cyclonome switch made by Sigma). The drive unit is a multi-
vibrator circuit driven from the main commutator master pulse. Thus, the sub-
commutator steps forward one position every 1‘5 second, and each position is
scanned on the main commutator once every 2 seconds. In this rocket data from
8 temperature monitors and a temperature bridge voltage monitor were sampled
twice per revolution of the subcommutator. A ninth temperature sensor and the
Z-axis Schonstedt magnetometer bias were monitored once per two seconds. All
the sensors except those at the nose tip (station 12) and the dummy quadraloop
(dielectric) were of the nickel-alloy resistance-wire type. The latter two were
thermistor sensors.

All of the subcommutator positions are used for data inputs so that there is
no master pulse for frame identification. Since the information output was taken
to two channels on the main commutator, frame identification was achieved by
causing one of the commutator channels to be grounded for one position of the
subcommutator. Thus commutator channel 26 was grounded by a cam-operated
microswitch each time the subcommutator rested on position 1. This admittedly
limits the reliability available from an otherwise redundant commutator channel.

Umbilical Cable

The umbilical or pull-away connector on the rocket nose cone is a 50-pin Cannon
connector, type DD50 C7. Lines for relay control, battery charging, external
power, and monitoring are connected to the nose cone instrumentation through
this connector. These lines are used for checkout of all instrumentation functions
after assembly, and also at the launch site for final payload checks during the
countdown prior to launching.

Most of the 50 lines are used for relay control of battery circuits. Latching
relays are used for on/off internal battery control, and in some cases switch the
battery load to external umbilical lines for operation on external power. A typical
four-line plus ground battery control is shown in Fig. 3. This has been the pre-
ferred circuit for use with silver-zinc batteries. The load may be energized from
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external power using the external line, and at the same time the voltage at the
load may be monitored on the monitor/charge line. Also, the battery may be
charged through the monitor/charge line or, in the case of silver-zinc batteries,
it may be discharged off the peroxide peak through this.line.

Another battery control circuit is shown in Fig. 4. This circuit uses fewer
lines and has less flexibility of function. It allows on/off control and battery
monitoring or charging. The load cannot be operated on external power. This
form of control has generally been used on nickel-cadmium batteries, especially
in those cases in which the life on load of the battery is 2 hours or more. (It is
not so necessary then to provide means for operating equipment on external
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power to save the batteries.)

Owing to the low temperatures expected, heaters were installed in the nose
cone. Calrod elements were placed in the conical section and power was supplied
through umbilical lines 34 and 35. The only requirement for heating in the
forward-body section was for the mercury battery supply of the cosmic ray ex-
periment. A heater and thermostat were mounted in close proximity to this
battery (power was supplied through umbilical lines 17 and 18). None of these
heaters were actually used during the launch phase. The temperature at a central
location in the conical section was monitored through umbilical line 10.

Batteries

The battery work sheet merely lists all battery supplies in the payload, with
pertinent data concerning capacity, type, load, and switching functions provided.

Nose Cone Weights and Centre of Gravity

This sheet comprises a list of all components in the nose cone payload. The
total weight and centre of gravity information is sent to the Canadian Armament
Research and Development Establishment (CARDE ) who use this data in calcu-
lating vehicle performance and wind weighting. This sheet is also used as a
check list in mounting equipment in the nose cone.

PREPARATIONS FOR LAUNCHING

Maps of the Fort Churchill area and the Churchill Research Range launch site
are shown in Figs. 5 and 6.

The main group of User personnel arrived at Fort Churchill on March 20, 1963.
Equipment was set up in the User Area in the Operations Building at the launch
site. From March 21 to March 27, equipment was made ready and the nose cone
instrumentation was checked and batteries charged. Umbilical cables to connect
between the Range terminations and the console and vehicle connectors were also
assembled. During the same period equipment at Defense Research Northern
Laboratories (DRNL) was set up for a backup telemetry station and radar receiver.
An NRC telemetry antenna and a group of S-band antennas were mounted on the
roof of the DRNL building for the backup station.

The control console, battery chargers, external power supplies, and monitor
equipment were moved to the blockhouse preparatory to launching the vehicle.
The nose cone was taken to the blockhouse on April 2 and all testing was com-
pleted there at 5:30 pm on April 5. Only one countdown was run on AA-I-26, and
it was launched at 22:03:38 CST, April 5. Launch requirements were: winds
less than 15 knots, clear visibility, launch trajectory into an auroral formation,
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firing to take place during a pass of the Alouette satellite. Just prior to lift-off
surface wind was 6 knots and visibility 15 miles. There was some ground haze

in the vicinity of the camera stations at Belcher and O'Day, so no camera data
are available. There was considerable auroral activity during the time of
launching, but there is doubt that the vehicle passed through an auroral formation.
The launching did not take place during a sufficiently close pass of the Alouette
satellite.

ROCKET PERFORMANCE

Trajectory data taken from the real time radar plotting board is shown in
Fig. 7. This trajectory data is approximate and subject to some error. Data
from analysis of the ADR radar tapes are not yet available.

The radar beacon, a Canadian Aviation Electronics model 16106/01/2/810
modified by us, operated satisfactorily. The radar on beacon track remained
locked on the beacon from lift-off to impact.

Sound-ranging equipment was operated, and detected impact, but no data have
been received from the Range. It is not known how well radar and sound-ranging
impact data are correlated.

The stabilizer assembly (fins) was aligned for a nominal zero-roll rate.
Analysis of the telemetry signal-strength records indicated a roll rate of about
0.40 revolution per second. The only aspect-sensing devices on this rocket were
magnetometers and these did not operate during the flight. It may be possible to
assume that large precession or tumbling of the vehicle did not occur, as otherwise
the actual trajectory and impact would likely have differed to a greater extent
from the predicted values. However, data from a preliminary analysis of cosmic
ray detector records indicate the possibility of a half-angle cone of precession of
either 55° or 55°/2, and of period approximately three to four minutes. Signal-
strength measurements, discussed on page 14 of this report, indicate a period
of approximately 160 seconds.

Meteorological conditions at the time of launching AA-I-26 are given in
Table I. This table is a form supplied by the Churchill Research Range and also
contains a summary of radar data.

The Canadian Armament Research and Development Establishment (Valcartier,
Quebec) calculates vehicle performance and wind-weighting data for determining
trajectory and launcher azimuth and elevation settings. A comparison of actual
with predicted performance is of interest to the experimenter, the vehicle designer,
and the launch site safety officer. It may be noted from the test summary on page
9 that actual (from radar) apogee and impact range fall short of predicted values.
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CHURCHILYL RESEARCH RANGE
FORT CHURCHILL CANADA

METECROLOGICAL/IMPACT PREDICTION TEST SUMMARY

Teat Numbers__ 91 Support 0f;_NRG
Dates__ 5 April 1963 Scheduled Times_2130 CST  Agtual Times 2203:38 CST
Cosmic ray - Lengn

Vehiole Typet BLACK BRANT AA T-26 Objective: marnetometer experimant

Sustainer Serial NER: Weight
( ) Stage Seriel NER: Weightt

Vehiole lengths__
Vehicle C,Gs

( ) Stage Serial NER: Welght

Payload Serial NBRs Welghts MFQ, Dates
Surface Observation Times_T ® 5 mins Cloud (Amount, Type, Height)1/10 ST 1500!
VSBY:_15 mis WiNDs_E 6 ktspREss, (STA.)11016.2 mpmvps ~4eO By p, -4eO F gy, 100%

Remsarkss

’
Supporting Rawinsonde Obss Times_ 1715 CST a14s 96,227 " Tymes

Alts - Times Alt:
Supporting Pibal Obss Times 1658 CST  py4, 3215! Times 1905 OST Alt: 1L98!

2003 GST 2877 2102 CST 25);91 Time: 2146 CST
Times 3 Alts Times Ats Alb: 325!

Vehicle Performancet Predicted:

Sustainer Impact Azimths _28_9:____ Range1 Ms_. Time: 1_2_2__

(" A) Stage Impact Azimuth: Ranget Time1

(N/A) Stage Impact Azimuth: Range: Times
080° ptgy 170 kyds Range: 90+l kyds g +190 sece

Apogee Azimuth:

Others

Vehicle Performances Actuals

Sustainer I'mpact Azimuths 088.0° Ranges 130,8 kyds Times *_* 361 secBE" Radar'
(N/A) Stage Tmpact Azimuth: Range1 Timet By
(n/A) Stege Impact Azimuth: Range: Timet Byt

Npogee Azimuth:_0B8° _ Alts 1§6.6 kydRanges &6 kyds Times T+163 sec By Radar

Data Acquisition ( Arcas)

AN/GMD-1A
ACS: . Time: .. Alts ___ Elevs AZ s
10Ss Time: . Alt: Elev: AZ:

Radar: ANMPA-12 AN/MPO-18 AN .MPS-19

AOS ¢ L_O_Tivnet ZZQ}:}B CST Alte Eudggg Rangeg 8 KYdQ AZ: 11,-1'20
L0S:_T+367 Time: 2209:45 CST  Alts, Surface Range:138.2 kydsaz: 90.05°
REMARKS :
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This difference may be explained, at least in part, by a higher payload weight than
used in the calculations for predicted performance. The predicted values were
based on a nose cone weight of 310 pounds, whereas the actual weight as measured
at the Range was 334 pounds. Using an approximation that there is 1000 feet loss
in altitude per pound additional weight, then apogee should have been about 24, 000
feet lower than predicted, whereas the actual apogee was 40,200 feet lower than
predicted.

EXPERIMENTS

1) Cosmic Ray and Low Energy Particle Experiments (E.E. Budzinski, NRC)

Two packages were placed on rocket AA-I-26 to study the intensity and angular
distribution of low energy electrons and the intensity of cosmic ray protons and
alpha particles.

One package consisted of an array of seven thin-window Geiger counters
arranged in an arc and separated from each other by angles of 20°. These counters
were sensitive to electrons with energies greater than about 40 KeV and protons
of energy greater than 500 KeV, and the array would indicate not only the intensity
of these particles but also their angular distribution. The numbers of detectable
electrons far exceed those of protons, and it would be the intensity and distribution
of electrons that would be provided by the experiment.

This experiment functioned quite well, with failure in only one counter, which
tended to go into a "buzzing' condition at higher particle intensities. Analysis of
the results depends a great deal on the use of magnetic aspect data but, because
of the non-availability of these data, perhaps less can be done with the data than
was expected.

The second experiment carried a variety of detectors, mainly to study higher
energy particles. Two thin-walled Geiger counters, one shielded only by the sur-
rounding material, the other by additional lead, were operated separately and
also in coincidence. Both operated satisfactorily and gave data on the intensity
of cosmic rays.

_A solid-state silicon-junction particle detector, sensitive to protons of energies
above 1 MeV and alpha particles of energies above 5 MeV, failed to operate. A
thin-window Geiger counter mounted at 45° to the rocket axis also failed to
operate.

That the Geiger counter was not working was known from laboratory check-
outs, but since its function was essentially covered by one of the counters in the
angle detector package, it was decided to forego the replacement of the faulty
counter for reasons of available time and the effort required.
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During tests of the entire nose cone in the laboratory it was discovered that
there was interference from telemetry on several experiments, especially that
using the silicon-junction detector. This was overcome by braid-shielding all
interconnecting leads among the packages.

The time of failure of the silicon-junction detector is not known. The checkout
procedure was chosen to be fairly simple, since it was not possible to have some-

one well versed in the experiments accompany the payload to Churchill.

2) Plasma Probe Experiment (A.G. McNamara, NRC)

This rocket successfully met practically all of the desired experimental con-
ditions. Its trajectory passed through strong visual aurora while ground-based
equipments were recording conditions of strong magnetic disturbance, radio
wave absorption, and spectral emissions. The only major element missing from
the data was evidence of auroral radar reflections from the area covered by the
trajectory.

The experiment consisted of four Langmuir probes mounted on the rocket
nose cone and designed to measure electron density, temperature, and spatial
structure of the ionization within the aurora.

Final horizontal checkout during the countdown revealed a short-circuited
coaxial cable carrying the signal from one of the extending probes. However,
in view of the unparalleled auroral activity which was in progress during the
countdown, it was decided to proceed without delay and to fly with the remaining
three probes.

The two extending probes were timed to be released at about 70 km altitude;
a failure of unknown origin caused extension to occur at about 35 km. In spite
of the severe aerodynamic stresses, the probes survived and operated through-
out the flight. All three of the operating probes gave good data throughout the
flight.

The probe circuits were potted in 2 1b/ft? foam. This performed very ef-
fectively both in shock mounting and in temperature control. An electrical
thermometer imbedded in one of the circuits registered less than 1°C temperature
change during the flight. In-flight calibrations showed that no drift occurred in
the amplifiers.

The rocket roll period of about 2.5 seconds was compatible with the sweep
rate which was used, and gave reasonably good altitude resolution.

3) Potential Gradient Experiment (D.W. Johnson, Univ. of Sask.)

This experiment consisted of one electronic unit contained in a cylindrical
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package of 33 inches diameter by 5 inches long which was ejected from the nose
cone at T + 40 seconds. The unit contained two 100 milliwatt oscillators. One
oscillator was crystal-controlled at 231.4 mc/s, while the other was variable
(as a function of the potential gradient) about a mean 5 ke/s offset from the
frequency of the crystal-controlled oscillator. The experimental data were thus
contained in the magnitude and rate of change of frequency difference between
the two oscillators.

One end of the completed package was insulated from the remainder of the
assembly. This insulated end was connected to a voltage-sensitive capacitor in
the variable-frequency oscillator circuit. A change of potential between the in-
sulated and uninsulated parts of the package would, therefore, result in a fre-
quency shift of the variable-frequency oscillator.

For interpretation of the data it was necessary that the package tumble during
its flight. This was necessary because there was no means of determining the
altitude of the package during its free fall, and hence no means of knowing whether
the results reflected the maximum potential gradient of a region.

The signal was received on an AM receiver and the detected output was recorded
on a track of the telemetry magnetic tape. As the data were recorded at a low
signal-to-noise ratio, some signal processing had to be done. The tape was played
back through a narrow-band (a few cycles/second) filter tuned to the 5 ke/s
signal and recorded on a paper strip chart. The errors caused by wow and flutter
of the recorder were checked by also playing back an unmodulated subcarrier
oscillator.

4) Micrometeorite Experiment

This experiment included an electronic unit and two crystal microphones,
one resonant at 50 kc/s and the other at 100 ke/s. The microphones were mounted
diametrically opposite each other on the conical section of the nose cone. The
object was to count the number of micrometeorite impacts during flight, separate
the impacts into three energy levels, and record ambient noise by means of
associated electronic circuitry. Both systems performed perfectly throughout the
flight with no apparent loss of sensitivity due to aerodynamic heating. No impacts
were recorded in the two higher energy levels and ambient noise was negligible.
However, data at the lowest level are confused by electrical interference from
other equipment in the rocket (e.g., from the mechanical commutator and the
"in flight" calibration relays).

5) Magnetometers

The magnetometers, both the Schonstedt units and the unit from the University
of Alberta, did not operate during the rocket flight. It is suspected that the
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latching relay control on the battery supply did not latch to internal power, as none
of the equipment connected by this relay operated during flight.

6) Low-frequency Accelerometers

Records from the accelerometers during, and for a short period after the
thrust portion of the flight are shown in Fig. 8. The Z-axis accelerometer output
is of considerable interest as it is directly related to motor performance. Lateral
acceleration was quite low. The principal disturbance occurred at the onset of
motor burnout and lasted about 10 seconds from T + 15 to T + 25 seconds, with a
peak to peak amplitude of § g at approximately 2 ¢/s. All accelerometers were low-
frequency devices (natural resonance of about 30 c/s).

7) Parallactic Cameras

Cameras were operated at Belcher and O' Day south of the launch site for
photographic triangulation on aurora and the rocket-borne light. Ground haze
conditions in the general area of these stations prevented useful data from being
obtained.

The light on the rocket was extended and turned on at T + 45 seconds. Monitor
equipment in the rocket indicated the light functioned until T + 95 seconds.

8) Temperature Measurements

Most of the temperature sensors in the rocket were connected in a bridge
circuit to positive and negative voltage sources. The negative supply was taken
from the same source as used for the magnetometers. This supply was not con-
nected to its loads during flight so none of the temperature sensors using this
negative supply gave useful data.

Data were obtained from a thermistor measurement on the edge of a small
block of dielectric situated on the surface of the nose cone at station 90. The
circuit was not connected to the negative source. The measurement was made
because the configuration of the dielectric and its support was in some aspects
similar to that for a quadraloop antenna. It was desired to know how hot the
dielectric might become for future applications. A plot of the reduced data is
shown in Fig. 9. The dielectric material was Fluorosint.

It may be of interest to note some of the temperatures monitored during
checkout of the instrumentation while the vehicle was on the launcher. Heaters
installed in the nose cone were not used at any time. A temperature sensor
mounted about midway up on the H-frame in the conical section was monitored
periodically by means of an external line. This monitor indicated a temperature
of 75°F at the beginning of tests at approximately T - 3 hours. The temperature
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Fig. 9 Surface temperature at station 90

fluctuated to some extent during the countdown, probably owing to instrumentation
being in operation for part of the time. At T - 40 minutes the reading was 80°F
(during vertical checks following elevation of the launcher).

Temperatures were monitored through the subcommutator external line during
horizontal checks (T - 2;1; hours ). Temperatures at the top of the H-frame and
inside the nose cone surface at stations 40, 70, and 90.5 were all between 75°F
and 80°F. The temperature near the voltage regulators and transmitter in the
telemetry package (probably the hottest region in the telemetry package) was
110°F. This was probably the warmest region in the nose cone. A sensor mounted
on an amplifier just below the bulkhead indicated 90°F. This high temperature was
very likely a result of heat from the telemetry package being transmitted through
the bulkhead.

9) Signal Strength (F.V. Cairns, NRC)

The telemetry antenna system consisted of three blade antennas mounted at
120° intervals on the circumference of the rocket skin, together with power
dividers and feed cables. The transmitter power was divided equally between
one blade and the other two in parallel, with a phase shift of 180° between the
single blade and the two in parallel.

The recorded value of the signal strength at the terminal of the receiving
antenna exceeded 80 uv for the first 65 seconds of the flight. After 65 seconds
a regular pattern of variation was readily discernible. Between 65 seconds and
320 seconds this variation (between 20 uv and approximately 80 uv ) persisted with
a period of 2.45 seconds. At approximately 320 seconds indications of turnover
on re-entry were observed, and for the last 40 seconds of the flight the signal
strength varied between 5 uv and 25 uv (except for 2 or 3 drops to about 2 uv)
in a cyclical manner. A signal of 2 uv provides anS/Nratio of 10 db (assuming
500 ke/s bandwidth and 6 db noise figure ) at the receiver input. The received
signal strength was, therefore, adequate to ensure that there was no significant
degradation of telemetered data because of receiver noise.
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The calculated gain of the rocket antenna system assuming that transmitter
power, receiving antenna gain, and slant range are known, gives an indication
of the performance of the antenna system, and facilitates comparison of the
variations of recorded signal strength with measured radiation patterns. Since
the altitude of the rocket was not determined, the comparison of signal strength
with measured patterns must be done in a general way.

The maximum and minimum gain during a cycle of roll was calculated at
20-second intervals. The values of the maxima were found to be always less
than 1, and were less than 0.5 during most of the flight (relative to isotropic).

The minimum gains were, at times, less than 0.03. It had been expected that
the gain would be about 0.5 at the maxima and not less than 0.1 at the minima
during the part of the flight before turnover. There is, therefore, the possibility
that there was a deficiency in the antenna system. However, since the gain was
computed assuming normal transmitter power, it is possible that the result was
due to low transmitter power. A third possibility is that the rocket was in an
unfavorable attitude, from the point of view of receiving antenna flooding, through-
out the portion of the flight considered.

The computed value of the gain of the rocket antenna system changed in a
regular way during the period of cyclical variation of signal strength. 280 seconds
after lift-off it had the same value as 120 seconds after lift-off. This variation
could be interpreted as the effect of precession, with a period of roughly 160
seconds .

A similar gain computation was carried out for the 231.4 mc/s radiation
from the ejected package. Since velocity imparted to the package did not exceed
10 ft/sec, its trajectory for this purpose was considered to be the same as that
of the rocket. There is a possibility that the package was separated from the
rocket by aerodynamic drag in the first 10 seconds after ejection. The signal
strength from the package fluctuated violently during this period, and these
fluctuations are believed to have been caused by fluttering of the antenna because
of the combined effect of aerodynamic pressure and tumbling of the package.

The gain of the ejected package antenna should be approximately the same as
that of a dipole; i.e., a maximum of 1.6 or 0.8 allowing for polarization loss
(linearly polarized package antenna and circularly polarized receiving antenna).
The recorded maximum gains were below this by a factor of 10, or more, through-
out its flight. Sometimes the factor was as high as 50. This reduction must be
attributed to some factor in the package or to an error in calibration. It is not
likely that the calibration error was more than 3 db, so it seems that the low
signal strength must be attributed either to a loss in the antenna system or to
low transmitter power. There is, however, a possibility that the package was
oriented so that the ground receiving antenna was always pointed to a region near
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the minimum of the package radiation pattern. This does not seem very likely,
but the available data do not rule it out.

CONCLUSIONS

Only a preliminary assessment of the results of the scientific experiments is
given here. Further information on the experiments will be published in due course
by the scientists concerned.

A number of observations may be made concerning the engineering aspects of
launching the rocket and preparing the instrumentation. Standardization of packaging,
components, and wiring methods can be of considerable advantage. This is
particularly true when several rockets are being instrumented to be launched during
the same period of time. The only specific change proposed in future instrumentation
wiring, as a result of a failure, is the addition of a positive umbilical line indication
that all latching relays in the nose cone are latched to "flight' position prior to
lift-off . Failure of some circuits in rocket AA-I-26 (magnetometers and temperature
bridge) is considered to be due to a latching relay not being energized to the flight
position.
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