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The behaviour of a pipeline embedded in a creeping medium is examined. Approximate solutions for a beam in 
a creeping foundation are developed, and characteristic nondimensional load-displacement relationships are presented. 
A comparison of these approximate solutions provides upper and lower bound solutions that are consistent with finite 
element analyses. Furthermore, the simplified solutions can be readily adapted for analyzing the uplift behaviour of 
shallow pipelines. These solutions can also be used to analyze the creeping behaviour of laterally loaded piles. The 
results are presented in the form of nondimensional charts that permit hand calculations and rapid verification of the 
structural design of the pipelines and piles. An approximate three-dimensional solution that accounts for embedment 
is proposed. 

Key words: creeping behaviour of pipelines, creeping foundation, laterally loaded pile. 

Le comportement d'un pipeline enfoui dans un milieu en fluage est examine. Des solutions approximatives pour 
une poutre dans une fondation sujette au fluage sont developpees, et des relations caractkristiques adimensionnelles 
charge-deplacement sont presentees. Une comparaison de ces solutions approximatives fournit des solutions des limites 
inferieure et superieure qui sont consistantes avec les analyses en elements finis. De plus, les solutions simplifikes peuvent 
Ctre aisement adaptkes a I'analyse du comportement en soul&vement de pipelines peu profonds. Ces solutions peuvent 
aussi Ctre utiliskes pour analyser le comportement en fluage de pieux charges lateralement. Les resultats sont presentis 
sous la forme de chartes adimensionnelles qui permettent des calculs a la main et une verification rapide du calcul 
structural des pipelines et des pieux. Une solution approximative 3-dimensionnelle tenant compte de I'enfouissement 
est proposee. 

Mots clPs : comportement en fluage des pipelines, fondation en fluage, pieu charge lateralement. 
[Traduit par la redaction] 
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Introduction 

The understanding of soil-pipeline interaction, particu- 
larly in the context of a frozen surrounding medium, is 
important for pipeline and pile design. The different aspects 
that need to be considered, particularly when involved with 
the design of pipelines, are (i) the mechanics of frost suscep- 
tibility and frost heave which essentially constitute the load- 
ing process, (ii) the modelling of mechanical properties of 
frozen ground, and (iii) the mechanical response of the pipe- 
line. Though each of these aspects has been well studied 
individually, there is a lack of proper understanding of the 
interaction between frozen soil and pipelines subjected to  
uplift. 

Rajani and Morgenstern (in preparation) have recently 
summarized the state of knowledge in each of the identified 
aspects related to  frozen ground. The analysis of the inter- 
action of frost heave with a pipeline is a complex problem 
in which many processes need to be examined for a proper 
understanding of the complete system. In the present work, 
we propose to  decouple the frost heave process in frost- 
susceptible soil from the pipeline in the non-frost-susceptible 
soil. This implies that we can apply an attenuated frost heave 
rate at the transition zone of the two types of rnedia rather 
than the free-field frost heave rate (that which is usually mea- 
sured in the laboratory). This is illustrated in Fig. l using 
data from the Caen, France, experiments (Dallimore and 
Printed in Canada / Imprim6 au Canada 

Crawford 1984) where the pipeline is embedded in both sand 
and silt. The attenuation of the free-field frost heave is prob- 
ably a function of the dimensions and mechanical properties 
of the adjacent frozen ground. Ladanyi and Lemaire (1984) 
attempted to back-analyze the Caen experiments using a 
simplified model based on the elastic Winkler foundation 
that accounted for free-field frost heave in an idealized man- 
ner. Here, we assume that the attenuated relation can be 
readily approximated from the stress dependence of the free- 
field frost heave rate (Konrad and Morgenstern 1982). 

Previous attempts at solving this problem related to pipe- 
lines have been made by Nixon et al. (1983) and Selvadurai 
(1988). Nixon et al. (1983) simplified the problem to that 
of plane strain conditions and applied the free-field frost 
heave over a predetermined section of the frost-susceptible 
soil and studied its attenuation specifically at the interface 
of the frost-susceptible and non-frost-susceptible soils. How- 
ever, the pipeline was considered as a passive component 
of the whole system, and hence its interaction effects were 
not studied. Selvadurai (1988) analyzed the elastic behaviour 
of an embedded pipeline at shallow depth using the thermo- 
elastic analogy. Frozen soil hardly behaves as an elastic 
material, and hence the application of this analysis is limited. 

The classical studies of Glen (1955) indicate that the flow 
law of ice-rich soils is that of the Norton type. The Norton 
creep relationship, rewritten in the generalized form as pro- 
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time, days 

FIG. 1. Differential frost heave at the interface of discontinuous 
permafrost. 

posed by Ladanyi (1972), is 

where E is the axial strain rate, u is the axial stress, io and 
uo are proof strain rate and proof stress, respectively, and 
B and n are creeping constants. Typically, n is about 3 
(Morgenstern et al. 1980) for ice at low stresses and icy silts 

(McRoberts et al. 1978). In search for the dependence of 
n and B on temperature, Morgenstern et al. (1980) found 
from analyses of available creep data that ice behaves more 
as a linearly viscous material at temperatures close to O°C. 
The constant B is found to be temperature and material 
dependent. 

The motivation for studying the behaviour of a pipeline 
(beam) on an elastoplastic foundation is that, for ice, n is 
found to be within the range of 3 to 4 and this is sufficiently 
large so as to be analogous to a rigid-plastic material 
(n - a ) .  Of course, the material behaviour is linearly 
viscous when n = 1 in a Norton-type relationship. The 
former aspect has been studied (Rajani and Morgenstern, 
in preparation), and here we confine ourselves to n between 
the bounds indicated above. In this paper we present the 
solution of a beam on a creeping foundation, and an approx- 
imate three-dimensional (3D) solution is proposed. 

Since the development of the solution is of a general 
nature in that it can be readily adapted to the analysis of 
a pipeline or a pile free at the head, we shall refer to either 
structure as a beam and the surrounding medium as the 
foundation. 

Review of previous work 

Fliigge (1975) presented the solution of a finite beam on 
a linear viscous foundation, i.e., n = 1. Fliigge's solutions 
are based on the correspondence principle, which states that 
when a viscoelastic system is subjected to a constant load 
or displacement, then displacements or stresses depend on 
time and are calculated in the same manner as those in an 
elastic system, except that the elastic material properties are 
replaced by viscoelastic parameters. As indicated by Fliigge 
(1975), the conditions of equilibrium, kinematics, and con- 
stitutive relationships must be satisfied for the correspon- 
dence principle to be applicable for the analysis of visco- 
elastic systems. It is important to point out that this 
procedure, in which the time variable is separated in the anal- 

ysis, is also often referred to as Hoff's elastic analogy (1954). 
The application of the correspondence principle is not 
limited to linear elastic systems as shown by Hoff (1954). 
A direct consequence of the correspondence principle or 
Hoff's elastic analogy is that the distribution of stresses in 
space within the system remains constant. This phenomenon 
is often referred to as stationary creep, and it needs to be 
contrasted with secondary creep where creep occurs with a 
constant rate of strain. 

In an indeterminate structure where the material behaves 
according to the secondary creep law (eq. [I]), a redistribu- 
tion of stresses occurs during the transient phase and the 
structure behaves as though the material were subjected to 
primary creep. Hence, to distinguish this phenomenon from 
primary creep, which is a material property, it is often 
referred to as statical creep. In the present analysis, we are 
dealing with an indeterminate structure (i.e., beam in a 
creeping formation), and we will observe statical creep, 
which should not be confused with primary creep. 

Most of the developments for the solution of a beam in 
a creeping medium have taken place with particular reference 
to laterally loaded piles in permafrost. Furthermore, all these 
developments consider the foundation to be of the Winkler 
type, which makes the problem more amenable to a simple 
solution. Early solutions proposed by Ladanyi (1973) and 
Rowley et al. (1973) were essentially along the same lines 
as the nonlinear analysis of laterally loaded piles in unfrozen 
ground, i.e., nonlinear p-y representation of the frozen 
ground, wherep is intensity of pressure. Nixon (1984) dealt 
with a short rigid pile as well as a flexible pile embedded 
in frozen soil that follows the secondary creep law (eq. [I]). 
In the case of a flexible pile, Nixon (1984) established a dif- 
ferential equation treating the foundation as a creeping 
Winkler foundation and solved it numerically using the finite 
difference technique. More recently, Foriero and Ladanyi 
(1990) have proposed a solution where the lateral reaction 
due to creep is represented by Maxwell springs and the creep 
displacements of the surrounding medium are evaluated 
using finite elements. Almost always, the effectiveness of 
the different methods have been demonstrated by comparing 
the predictions with pile load test carried out by Rowley 
et al. (1973, 1975). 

After looking in detail at the different solutions and strat- 
egies it is evident that comparing the solutions on a case by 
case basis does not permit us to gain insight and hence 
develop an understanding of the role of the different param- 
eters. A more comprehensive analytical framework is 
desirable. 

Consequently, in the present paper, we attempt to obtain 
upper and lower bound analytical approximate solutions that 
enhance the understanding of the behaviour of a laterally 
loaded beam in a creeping medium. In nonlinear finite ele- 
ment analysis of lateral loads in unfrozen soil, discrete 
springs are often used in which the spring characteristics that 
are assigned correspond to the nonlinear behaviour of the 
foundation response. Using simple energy concepts, we 
develop simple relations for defining spring characteristics 
when the foundation follows the material law as described 
by [I]. This permits the use of conventional finite element 
programs for analyzing these types of problems. In a previ- 
ous paper (Rajani and Morgenstern, in preparation), we pre- 
sented the solution to the problem of a beam in an elasto- 
plastic foundation, i.e., the limiting solution when n - a . 
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TABLE 1. Indentation factors 

Feature Indentation factor I,, Reference 

Cavity expansion strip footing solution Nixon (1978); Ladanyi (1983) 

Flat indenter on semi-infinite half-space I,, = 7, 4 where 4 = - 
(4+) 

7r + ', and + = 0.445 Ponter et al. (1983) 
J5 

Long cylinder streamline solution (plane strain) I,, = 
n 

Foriero and Ladanyi (1989) 

Beam embedded in a creeping medium 

For the present analysis we assume that the beam is buried 
in a homogeneous and isotropic, elastic and nonlinear 
viscous medium and that, when subjected to uplift, the beam 
deforms with a double curvature. We recognize that, in fact, 
for shallow pipelines this may not be totally valid. The creep 
behaviour of the medium is represented by a Norton-type 
relation (eq. [I]). If the elastic subgrade modulus is repre- 
sented by k,, then the foundation stiffness k,' is given by 
kb = bk,, where b is the beam width (pile or pipeline diam- 
eter). Nixon (1978) has related the displacement rate (w) of 
a long cylinder to the stress on the loaded area, and this is 
given by 

where p is the intensity of pressure on the loaded area, and 
If is the influence factor dependent on n and the geometry 
of the loaded beam. Since the beam width is b, then the reac- 
tion per unit length q is given by 

and B' = (IfBb/2)/(b)" is the creep compliance coefficient 
for the foundation. The above relation can be rewritten in 
the general form 

where F,(= pb) is the resistance per unit length offered by 
the surrounding medium, and I,(= (2/If)%) is the indenta- 
tion factor. Indentation factors for a von Mises material as 
determined by Nixon (1978), Ladanyi (1983), Ponter et al. 
(1983), and Foriero and Ladanyi (1989) are shown in 
Table 1. We note from [3] that as n -- oo the indentation 
factor becomes Prandtl's bearing capacity factor Nc. While 
indentation factors for a flat indenter and a circular disk 
(plane strain) as determined by expressions in Table 1 
approach Prandtl's limiting value, the cavity expansion solu- 
tion for a strip footing is unbounded. The slight difference 
in the solution for the long cylinder and the flat indenter 
studied by Ponter et al. (1983) is due to the shape of the 
two indenters. The variation of the indentation factor with 
creep coefficient n is shown in Fig. 2 and demonstrates that 

'"1 cylindrical cavity (Ladanyi 1975) I 

5 7 -flat indentor (Ponter et al. 1983) 

- - - - - - - - - 

streamline solution around a circular disk 

0 
1 3 5 7 9 11 13 

creep exponent n 

FIG. 2. Indentation factors for a semi-infinite creeping medium 
(von Mises material). 

it is preferable to use the indentation factor as proposed by 
Foriero and Ladanyi (1989). 

A consequence of the double curvature mentioned earlier 
is that the transition point 0 (Fig. 3) is a point of inflexion 
implying a stress boundary condition of zero moment. On 
the other hand, if we choose to look at the problem as that 
of a pile subjected to a lateral load P ,  then the equivalent 
problem of a pipeline subjected to frost heave would be 
given by a prescribed displacement of wo = PP/k;, where 
P4 = k,'/4EI and where E is the elastic modulus and I is 
the moment of inertia for the pipeline. We also note that 
the resulting problem is statically indeterminate. 

The variational approach to determine the governing dif- 
ferential equation for equilibrium is adopted to establish 
bounded solutions. We will invoke the stationary condition 
for the total potential (Il), i.e., 6II = 0. The problem can 
be conveniently separated into two time frames. On initial 
application of the load P ,  i.e., at t = 0, there will be an 
immediate elastic response (we), and this response can be 
determined by the usual beam on elastic foundation type 
solutions. Subsequent creep response (w,) will depend on 
the interaction of the beam and the creeping characteristics 
of the foundation material. The total (accumulated) response 
can be estimated by the application of superposition of states 
which can be expressed as 

The above approximation defines the superposition of an 
elastic response, determined as if there were no creep, and 
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(b) z 

edge of discontinuous permafrost 

X 

free field heax 

t 
deformed pipeline 

point of inflexion 

FIG. 3. Beam embedded in a creeping medium. (a) Cross section. ( b )  Longitudinal section. 

a pure creep response, determined as if there were no elastic 
response. 

The elastic response can be obtained readily from Hetenyi 
(1974). The total potential (II) in rate form (Boyle and 
Spence 1983) for the creep steady-state resposne of the semi- 
infinite beam under end load P ,  where the beam follows the 
small-displacement elastic Euler-Bernoulli relation and the 
foundation obeys the Norton-type creep law, is given by 

qw, dx - Pwc(o) 
0 

where w, is the creep displacement rate at the point of 
application of the load P ,  and M is the bending moment. 
Upon substituting for the moment M according to the 
Euler-Bernoulli theory, i.e., - M = EIw", and the medium 
reaction q from [2b], we get after integration by parts 

The governing differential equation is given by [6a], and 
the natural boundary conditions are the relations in [6b] and 
[6c]. We note that these natural boundary conditions cor- 
respond to the physical conditions of moment and shear 
equilibrium at x = 0. The differential equation expressed 
in [6a] is similar to that obtained by Nixon (1984). Analyti- 
cal solutions for [6a] are very difficult to obtain for n # 1, 
and hence we have to resort to either approximate or numer- 
ical techniques. However, for a linear viscous foundation, 
i.e., n = 1, an exact solution for the equation can be found. 
There exists an interest in a solution for this particular case 
from a practical point of view. Morgenstern et al. (1980) 
have shown that frozen soil behaviour can be idealized as 
a linear viscous material when the temperatures are near 
freezing (0°C). Moreover, the solution for a linear viscous 
foundation is readily comparable to solutions obtained by 
other approximate methods and provides insight into the 
general behaviour that is often obscured by other solution 
techniques. 

Linear viscous foundation, i.e., n = 1 
We obtain the following solution upon integrating [6a] 

with respect to time and applying the boundary conditions 
expressed by [6b] and [6c]: 

[7] w, = 2PpJV'te cos P,x 

Hence the total response can be where a = et. 

determined as stated in [4] and is given by 

[8] w = (2PP/k,')[e -OX cos Ox + (k;Btt) "e -OcX cos P,x] 

The end displacement at the point of application of the load 
is 

In the case of a beam on an elastic foundation, the charac- 
teristic length P represents the relative elastic stiffness of the 
beam and foundation. The solution given by [7] for the 
creeping foundation results in an equivalent characteristic 
length that is an inverse function of time t and the creep 
parameter B' . This solution clearly demonstrates why the 
technique of solving a beam on a creeping foundation using 
a time-dependent k-modulus has been successful. 

An approximate upper bound solution for a beam on a 
linear viscous foundation according to the Rayleigh-Ritz 
method described later is 

The reason why a separate solution has to be sought when 
n = 1 will be discussed when dealing with the Rayleigh-Ritz 
method of analysis. A lower bound solution for a beam on 
a linear viscous foundation obtained based on Martin's ine- 
quality described later is given by 

The total response as expressed by [8] clearly shows that 
the initial static response sets up a stationary stress wave 
along the beam-foundation system, and the subsequent 
creep response sets up another stress wave that is of similar 
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TABLE 2. J integrals for particular values of n 

MORGENSTERN 

Creep exponent n J, integral J, integral 

shape to that of the elastic response. Furthermore, the creep 
stress response is modified by the so-called reduced 
k-modulus and propagates with time towards the semi- 
infinite end. Though this argument has been demonstrated 
for linear viscous foundations, similar effects will be present 
for foundations with n f 1. These findings are in complete 
accordance qualitatively with field experimental results of 
a buried chilled pipeline facility at Caen, France, as reported 
by Dallimore and Crawford (1984). 

Creeping foundation, i.e., n z I 
As stated before, for a creeping foundation, direct solu- 

tion of the differential equations becomes almost impossible 
for n # 1. Consequently, we have to resort to approximate 
techniques where we can obtain reasonable estimates and 
bounds. In this paper, we will approach the problem using 
two methods that guarantee upper and lower bounds. The 
two methods are essentially based on the minimization of 
the total potential II; the first approach is the Rayleigh- 
Ritz method, and the second approach is based on the 
application of Martin's inequality. 

Upper bound: Rayleigh-Ritz 
The theorem of minimum potential energy dissipation 

states that, for the particular case of a beam on a creeping 
foundation, amongst all kinematically admissible curvatures 
( K ~ )  and displacement rates (wk), the actual curvatures and 
displacement rates minimize the functional II of [5]: 

Since K ~ ,  wk must be kinematically admissible, they must 
satisfy the natural boundary conditions obtained in [6]. An 
obvious choice for wk that satisfies the required boundary 
conditions is that which corresponds to the spatial elastic 
solution. Hence, we assume for wk 

[I31 w(x, t) = u(t)w,(x) 

In the above assumed solution, u(t) is the function that 
depends on time. We also note that this assumed solution 
is also in accordance with the correspondence principle or 
Hoff's (1954) elastic analogy. Substituting [13] in [12] and 
carrying out the minimization with respect to displacement 
rate u, we obtain 

where 

Equation [14] identifies the dimensionless time as 
rk;Br (P@)n-'t, and we shall see that it appears recurrently 

strain rate, & 

FIG. 4. Geometrical interpretation of Martin's inequality. 

in the rest of the analysis. Once again, the static response 
has been factored out to isolate the displacement amplifica- 
tion due to creep alone. The J1 integral can be evaluated 
for particular values of n, and sample values are given in 
Table 2. The J2 integral given in Table 2 is defined after 

[241. 
Equation [14] breaks down for the particular case when 

n = 1, and it is necessary to obtain a particular solution 
(eq. [9]), but the procedure remains the same. It is to be 
expected that the solution will deteriorate with increasing 
values of n, as equilibrium will be steadily violated. The 
Rayleigh-Ritz procedure together with a series solution as 
proposed by Heteyni (1974) for beams on elastic foundations 
could lead to an improvement in the accuracy of the solu- 
tion. However, to do so analytically would be somewhat 
involved algebraically. An added advantage of this modified 
procedure lies in cases of beams of variable cross section 
EI or in which a nonlinear moment curvature relation exists. 

Lower bound: Martin's inequality 
In general terms, Martin's inequality (Boyle and Spence 

1983) for the power creep law can be stated as 

where we identify UB, iB with the actual solution a, i ,  and 
UA, iA with statically admissible surface tractions along the 
beam-foundation interface. Martin's inequality derivation 
is based on a postulate for material stability formulated by 
Drucker (1951) which in turn ensures that the constitutive 
relation is monotonic, i.e., the increase in stress causes an 
increase in strain rate. A geometrical interpretation of [15] 
can be deduced from Fig. 4. The first and second terms of 
[12] correspond to strain and complementary energy dissipa- 
tions in the areas represented by the polygons JMKOL and 
JNMOL, respectively. It then becomes obvious why the ine- 
quality holds true for any monotonic functional relation. 
In our particular beam-foundation system, the beam is 
assumed to behave entirely elastically, and only the founda- 
tion is composed of the creeping material. Rewriting [I51 
in terms of the moments and curvature rates and taking into 
account the two different components of the system, we have 
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FIG. 7. Tip displacement with time for a semi-infinite beam on FIG. 8. Tip displacement with time for a semi-infinite beam on 
a nonlinear creeping foundation using Martin's inequality. a nonlinear creeping foundation using the finite element method. 

where J2 = (ePZ cos z ) ~ + '  dz. J2 has been tabulated for 
different values of n in Table 2. Once again we note the 
recurrent dimensionless time parameter in [24]. A much 
improved solution is obtained if the corrected shear as stated 
in [21] is used. The corresponding solution is given by 

Nonetheless, it should be emphasized that the solution 
should deteriorate for large values of n but, as we shall see 
later for the range of values of n that we are concerned with, 
a good approximate solution is obtained. 

Finite elements 
Although the above solutions provide insight into the 

behaviour and understanding of the system, they do limit 
the analysis to ideal situations, i.e., homogeneous medium. 
In the last three decades the finite element method has 
proved immensely useful in solving problems previously 
intractable by analytical or approximate means. The solu- 
tion of beams on nonlinear foundations is now routinely 
carried out using available finite element codes. One code 
that has incorporated within it a truss element with the 
Norton-Bailey creep law is the finite element code ADINA 
(ADINA R&D, Inc. 1987). However, the characterization 
(i.e., spacing of springs, cross-sectional area, length, etc.) 
of the truss springs has to be done with care so that 
equivalence is maintained between the beam on a continuous 
creeping foundation and the beam on a discretized 
foundation. 

It is natural to expect that, as spacing of the discretized 
truss springs becomes small, the resulting approximation will 
be accurate. In a practical situation we wish to get away with 
as few truss springs as possible. Boresi et al. (1978) have 
shown that spacing s of truss springs can be estimated by 

We note that, although the above criterion is developed for 
a beam on an elastic foundation, we observe from the devel- 
opment of the solution for a beam on a linear viscous foun- 
dation that the characteristic length 0, is essentially the 
same as P except that the effective foundation modulus is 
time dependent (inverse relation). Consequently, for the 

steady-state solution, if necessary, the spacing(s) could be 
steadily increased with time, and thus the spacing of the 
springs guided by [26] is more than adequate for the com- 
plete analysis. 

The material characteristic of the truss spring has to be 
adequately represented for the elastic response and the creep 
response. Hence, if we arbitrarily fix the length of the springs 
to say, L, then conflicting definitions of cross-sectional areas 
arise in attempting to satisfy both responses. A plausible 
way to remedy this situation is to first satisfy the require- 
ments of creep response and then redefine the elastic 
modulus of the spring. In order that the spring represents 
adequately the creep response, the rate of work done by the 
spring should be equal to that done by the continuous creep- 
ing medium, i.e., 

1271 (Qw)spring = (b9~w)creeping foundation 

where Q and q are the axial and foundation reactions in the 
spring and continuous medium, respectively. If the material 
properties of both the spring and the continuous foundation 
are defined as in [l] and [2], then on substitution in [27] 
we obtain the cross-sectional area of the spring Aspring as 

Consequently, the elastic modulus of the springs ESpring has 
to be 

The above characterization of creep springs is independent 
of the particular geometry and loading of the beam- 
foundation system. A pertinent question that may be posed 
is how long should the beam-foundation system be to simu- 
late a semi-infinite condition. Den Hartog (1952) has pro- 
vided an elegant argument for this problem which essentially 
concludes that if PX 1 4 (where X i s  the length of beam- 
foundation system) then the beam-foundation system can 
be treated as a semi-infinite beam. Since we are dealing with 
a nonlinear viscous creeping foundation, the corresponding 
creep characteristic length should be used, i.e., 

1301 xzigFinfinit,  2 4 4 J 4 ~ ~ ~ 1  t (PP)" - 
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FIG. 9. Comparison of different methods of determining tip FIG. 1 1 .  Comparison of different methods of determining tip 
displacement with time for a semi-infinite beam on a nonlinear displacement with time for a semi-infinite beam on a nonlinear 
( n  = 3) creeping foundation. ( n  = 7) creeping foundation. 
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FIG. 10. Comparison of different methods of determining tip 
displacement with time for a semi-infinite beam on a nonlinear 
( n  = 5) creeping foundation. 

We note from the above that length (x;gFinfinite) of the 
beam-foundation system extends with time and should be 
added to the length obtained for elastic response. Hence, 
provision should be made at the outset for the time span 
of the analysis so that adequate length of the beam- 
foundation system is always ensured. 

Various techniques have been proposed for carrying out 
time integration for solving creep problems. An implicit time 
integration, a-method, was used in the analysis, as explained 
by Bathe (1982). When a = 0, the method reduces to the 
Euler forward method, and when a > 0 it is the implicit 
method. One particular advantage of the implicit time inte- 
gration scheme is that the method is unconditionally stable 
for a > % for any time step size, though it may not 
necessarily converge to the correct solution. 

Comparison between the different solutions 

As indicated before through the approximate analyses, 
the nondimensional time factor (= k;B1 (P/3)n-'t) has 
been identified and conveniently provides a basis for ade- 
quate comparisons between the different methods. It has 
become customary to evaluate the response for the types of 

problems considered in this paper to either measures of the 
displacement or displacement rates, and here we use the 
former measure, since both features can be readily appre- 
ciated from a single plot. Figure 5 shows the comparison 
between all the methods discussed in this paper for a linear 
viscous foundation creeping material. The approximate 
upper and lower bounds provide reasonably good estimates 
if we compare them with the available exact solution. The 
finite element solution is comparably close to the exact solu- 
tion and could be improved with finer discretization and 
using smaller time steps in the time integration procedure. 
Figures 6-8 show displacement-time histories for Rayleigh- 
Ritz, Martin's inequality, and finite element solutions, 
respectivley, for varying values of n. The solutions as 
obtained using the Rayleigh-Ritz and the finite element 
methods clearly show the role of statical creep indicated 
earlier. Also, these methods reveal an interesting phenome- 
non that there exists a particular nondimensional time when 
the response is independent of the creep exponent n. As 
expected this effect is masked when a lower bound solution 
is obtained using Martin's inequality. If we compare the 
steady-state responses in terms of displacement rates, then 
the comparison is good. Similarly, Figs. 9-1 1 show the same 
previous responses except that each solution is compared 
with each other for particular n values of 3,5 ,  and 7, respec- 
tively. The solution obtained using Martin's inequality is 
insensitive to n < 5 but diverges for n > 5 and thus no 
longer represents a lower bound. This is to be expected as 
discussed earlier, since one of the natural boundary condi- 
tions (end shear) is increasingly violated for increasing 
n values. If, on the other hand, the response is measured 
in terms of steady state (displacement rates), then all the 
approximate methods compare well. 

Conclusions 

The various solutions have highlighted the role of the dif- 
ferent parameters in the total response of a beam embedded 
in a creeping foundation. Simplified analytical upper and 
lower bounds for a beam in a creeping foundation subjected 
to an end load have been developed. A simple finite element 
modelling procedure has been outlined which facilitates the 
general solution for this type of problems if a truss spring 
with Norton's creep law is available in a general finite ele- 



RAJANI AND MORGENSTERN 787 

ment code. The finite element analysis confirms the bounds 

established using variational principles. Although the upper 

bound established using the Rayleigh-Ritz approach exhibits 

all the basic characteristics shown to  exist by the finite ele- 

ment method, the lower bound estimates are poor because 

of the inability of the selected functions to satisfy the natural 

boundary conditions for all values of the creep exponent n. 
Nonetheless, the analytical solutions developed here remain 

upper and lower bounds as long as n I 5. All the results 

have been obtained in nondimensional form, which permits 

rapid evaluation for design purposes. 

B. Rajani and M. Morgenstern (in preparation) have dem- 

onstrated how the bearing capacity factor Nc can be 

adjusted to  account for finite shallow burial. Through [3] we 

have shown how the indentation factor In tends towards the 

Prandtl bearing capacity factor Nc for large values of n. 
Consequently, the indentation factor In can be similarly 

adjusted to  account for shallow burial of pipelines. 

The solutions permit the rapid evaluation of the arnplifica- 

tion of the elastic response of a beam embedded in a creep- 

ing foundation. To  obtain an  accurate creep response it is 

equally important to  obtain a proper estimate of the elastic 

response. The application of the above solutions for pipe- 

lines and laterally loaded piles will be treated in a subsequent 

publication. It is pertinent to  indicate that the approximate 

solutions presented in this paper cannot be directly applied 

to  the case of pipelines subjected to  steady upwards move- 

ment, i .e., frost heave. Our purpose in developing approx- 

imate analytical solutions was to  confirm the validity of the 

proposed finite element scheme. Finite element analysis is 

a flexible tool that permits the specification of arbitrary 

boundary conditions, loading patterns, and geometries. In 

fact, the finite element solution for a pipeline subjected to 

a steady displacement is only valid as long as the end dis- 

placement applied is slow enough so that the load increment 

between a specific time interval is nearly constant. 
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List of symbols 

cross-sectional area for discretized foundation 
spring 
beam width, pipeline or pile diameter 
creep proportionality constant 
creep foundation compliance for plane strain 
cohesion 
beam elastic modulus 
soil elastic modulus 
elastic modulus for discretized foundation 
spring 
embedment depth 
beam moment of inertia 
creep influence factor 
creep indentation factor 
integrals dependent on creep exponent n 
foundation stiffness 
foundation subgrade modulus 
length of discretized foundation spring 
bending moment 

reaction intensity pressure 
nondimensional load parameter 
creep exponent in Norton relation 
Prandtl bearing capacity factor 
reaction per unit length 
axial force in discretized foundation spring 
discrete spring spacing 
shear 
nondimensional time parameter 
displacement and displacement rates time 
dependent functions 
volume 
creep displacement and displacement rates 
elastic displacement 
accumulated transverse displacement 
transverse displacement in the z-direction 
nondimensional displacement parameter 
longitudinal coordinate axis 
additional length of beam-foundation system 
for discretization during creep 
axis normal to x-axis 
implicit integration parameter 
elastic and linear viscous characteristic lengths 
proof strain rate 
soil weight density 
total potential 
soil Poisson's ratio 
curvature 
stress and proof stress 
yield stress of surrounding medium 


