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Isochoric, isobaric and ultrafast conductivities of

aluminum, lithium and carbon in the warm dense matter regime
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L. Harbour and Laurent J. Lewis
Département de Physique, Université de Montréal, Montréal, Québec, Canada.

(Dated: October 12, 2017)

We study the conductivities σ of (i) the equilibrium isochoric state (σis), (ii) the equilibrium
isobaric state (σib), and also the (iii) non-equilibrium ultrafast matter (UFM) state (σuf) with the
ion temperature Ti less than the the electron temperature Te. Aluminum, lithium and carbon are
considered, being increasingly complex warm dense matter (WDM) systems, with carbon having
transient covalent bonds. First-principles calculations, i.e., neutral-pseudoatom (NPA) calculations
and density-functional theory (DFT) with molecular-dynamics (MD) simulations, are compared
where possible with experimental data to characterize σic, σib and σuf . The NPA σib are closest
to the available experimental data when compared to results from DFT+MD, where simulations of
about 64-125 atoms are typically used. The published conductivities for Li are reviewed and the value
at a temperature of 4.5 eV is examined using supporting X-ray Thomson scattering calculations. A
physical picture of the variations of σ with temperature and density applicable to these materials is
given. The insensitivity of σ to Te below 10 eV for carbon, compared to Al and Li, is clarified.

PACS numbers: 52.25.Os,52.35.Fp,52.50.Jm,78.70.Ck

I. INTRODUCTION

Short-pulsed lasers as well as shock-wave techniques
can probe matter in hitherto experimentally inaccessi-
ble regimes of great interest. These provide information
needed for understanding normal matter and unusual
states of matter, in equilibrium or in transient condi-
tions [1, 2]. Similar ‘hot-carrier’ processes occur in semi-
conductor nanostructures [3, 4]. Such warm dense mat-
ter (WDM) systems include not only equilibrium systems
where the ion temperature Ti and the electron temper-
ature Te are equal, but also systems where Ti 6= Te, or
highly non-equilibrium systems where the notion of tem-
perature is inapplicable [5]. While the prediction of a
quasi equation of state (quasi EOS) and related static
properties for two-temperature (2T ) systems [6] is sat-
isfactory, the conductivity calculations using standard
codes, even for sodium at the melting point, require mas-
sive quantum simulations with as much as ∼1500 atoms
and over 56 k-points (according to Ref. [7]), whereas even
theories of the 1980s evaluated the sodium conductivities
successfully via a momentum relaxation-time (τmr) ap-
proach [8], which is also used in Drude fits to the Kubo-
Greenwood (KG) formula used with density-functional
theory (DFT) and molecular dynamics (MD) methods.
The KG-formula and its scope are discussed further in
the Appendix.

The static electrical conductivities of WDM equilib-
rium systems (i.e., Ti = Te), as well as 2T quasiequilib-
rium systems, are the object of the present study. We
distinguish the isobaric equilibrium conductivity σib and
the isochoric equilibrium conductivity σic from the ul-
trafast matter (UFM) quasiequilibrium (isochoric) con-
ductivity σuf . The 2T WDM states exist only for times

shorter than the electron-ion equilibration time τei and
may be accessed using femtosecond probes.

We consider three systems of increasing complexity
above the melting point: (a) a ‘simple’ system, viz.,
WDM-aluminum at density ρ =2.7 g/cm3; (b) WDM-
lithium at 0.542 g/cm3; and (c) WDM-carbon (2.0-3.7
g/cm3) including the low-T covalent-bonding regime. As
experimental data are available for the isobaric evolution
of Al and Li starting from their nominal normal densities
and down to lower densities of the expanded fluid, we cal-
culate σib for Al and Li. The ultrafast conductivity σuf

is calculated for all three materials, as σis is conveniently
accessible via short-pulse laser experiments.

The electrons in WDM-Li are known to be non-local
with complex interaction effects. For instance, cluster-
ing effects may appear [9] as the density is increased.
WDM-carbon is a complex liquid with transient cova-
lent bonding where the C-C bond energy Ecc may reach
∼ 8 eV in dilute gases. The three conductivities σic,
σib, and σuf for Al, Li and C, are calculated via two
first-principles methods where, however, both finally use
a ‘mean-free path’ model to estimate the conductivity.
The two methods are: (i) the neutral pseudoatom (NPA)
method as formulated by Perrot and Dharma-wardana
[6, 10–12] together with the Ziman formula, and (ii) the
DFT+MD and KG approach as available in codes such
as VASP and ABINIT [13], enabling us to assess the ex-
tent of the agreement among these theoretical methods
and the available experiments. The liquid-metal exper-
imental data are still the most accurate data on WDM
systems available; they are used where possible to com-
pare with calculations.

Accurate experimental data for the isobaric liquid state
of Al [14, 15] and Li [17] are available, and provide a

http://arxiv.org/abs/1710.04191v1
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test of the theory. No reliable isobaric carbon data are
available; carbon at 3.7-3.9 g/cm3 and 100-175 GPa was
studied recently by x-ray Thomson scattering (XRTS)
[18]. Hence we evaluate only σic and σib in this case, for
ρ in the range of XRTS experiments and related simula-
tions [19]. The conductivity across a recently-proposed
phase transition [20] in low-density carbon (∼ 1.0 g/cm3)
near T ≃ 7 eV is not addressed here.

DFT+MD methods treat hot plasmas as a thermally
evolved sequence of frozen solids with a periodic unit
cell of N atoms — typically N ∼ 100, although order-
of-magnitude larger systems may be needed [7] for reli-
able transport calculations. The static conductivity σ is
evaluated from the ω → 0 limit of the KG σ(ω) using
a phenomenological model (e.g., the Drude σ(ω) [7, 21]
or modified Drude forms [22]). More discussion of these
issues is given in the Appendix. The N -ion DFT+MD
model does not allow an easy estimate of single-ion prop-
erties, e.g., the mean number of free electrons per ion (Z̄)
or ion-ion pair potentials.

The NPA methods, e.g., that of Perrot and Dharma-
wardana, reduce the many-electron, many-ion prob-
lem to an effective one-electron, one-ion problem using
DFT [10, 11, 48]. A Kohn-Sham (KS) calculation for
a nucleus immersed in the plasma medium provides the
bound and free KS states. While bound states remain
localized within the Wigner-Seitz (WS) sphere of the ion
for the regime studied here, the free electron distribution
nf (r) of each ion resides in a large “correlation sphere”
(CS) such that all gij(r) → 1 as r → Rc. We typically use
Rc = 10rws, i.e., a volume of some 1000 atoms. Several
average-atom models [23, 24] have similarities and signif-
icant differences among them and with the NPA method.
These are reviewed in the Appendix and in Ref. [20]. The
NPA method applies for low T systems even with tran-
sient covalent bonding. Hence, we differ from Blenski
et al. [24] who hold that “... all quantum models seem
to give unrealistic description of atoms in plasma at low
T and high plasma densities”. But in reality, the earli-
est successful applications of the NPA were for solids at
T = 0. Here we treat very low-T WDMs, e.g., Al, ρ=2.7
g/cm3, T/EF < 0.01, using the NPA, EF being the Fermi
energy and obtain very good agreement for equations of
state (EOS) data [6] and even for transport properties,
e.g., the electrical conductivity.

The NPA static conductivity is evaluated from the
Ziman formula using the NPA pseudopotential Uei(k)
and the ion structure factor S(k) [11] generated from
the NPA pair potential Vii(r). The latter is used in
the hypernetted-chain (HNC) equation or its modified
(MHNC) form inclusive of bridge functions, assuming
spherical symmetry appropriate to fluids. HNC methods
are accurate, fast and much cheaper than MD methods
which fail to provide small k-information, i.e., less than
∼ 1/Lbx where Lbx is the linear dimension of the sim-
ulation box. The Ziman formula can be derived from
the Kubo formula using the force-force correlation func-
tion and assuming a momentum relaxation time τmr.
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FIG. 1. (Color online) Static conductivities for Al from ex-
periment and from DFT+MD and NPA calculations. The
isobaric conductivity σib is at densities 2.37 ≤ ρ ≤ 1.65 g/cm3

(cf. triangular region (a)). The isochoric (σic, region (c)) and
UFM (σuf , region (b)) conductivities are for a density of 2.7
g/cm3. Enlarged views of regions (a) and (c) are given in
the Appendix. The blue-filled diamond gives the conductiv-
ity of normal aluminum at its melting point (0.082 eV, 2.375
g/cm3), viz. σ = 4.16× 106 S/m from experiment (quoted in
Ref. [16]) and σ = 4.09 × 106 S/m from the NPA.

Zubarev’s method can also be used [25] to derive the
Ziman formula. Details regarding the conductance for-
mulae and their limitations are given in the Appendix.

II. THE CONDUCTIVITIES OF WDM
ALUMINUM

Surprisingly low static conductivities for UFM alu-
minum at 2.7 g/cm3, extracted from x-ray scattering data
from the Linac Coherent Light Source (LCLS) have been
reported in Sperling et al., Ref. [26]. Calculations of σic

using an orbital-free (OF) form of DFT and MD revealed
sharp disagreement with the LCLS data [27]. Sperling et

al. [26] found the conductivity data of Gathers [14] to dif-
fers strikingly from the LCLS data and the OF results.
In Fig. 4 of Ref. [26], they attempt to present a theoret-
ical σic at 2.7 g/cm3 that agrees approximately with the
Gathers’ data and to some extent with the LCLS data.
The Gathers data are reviewed in the Appendix.
However, in our view, the LCLS, OF, and Gathers σ

should indeed differ, in the physics involved as well as in
the actual values, because:
(i) the Gathers data are for the isobaric conductivity σib

of liquid aluminum from ρ = 1.7 to 2.4 g/cm3 (cf. region
(a) in Fig. 1).
(ii) The orbital-free simulation [27] and the DFT+MD
simulations [34] are for the isochoric equilibrium (Te =
Ti) σic of Al at ρ=2.7 g/cm3 (region (c) in Fig. 1).
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FIG. 2. (Color online) Isobaric conductivity of aluminum
from near its melting point to about 0.4 eV, expanded
from Fig. 1 comparing the NPA, experiment (Gathers) and
DFT+MD results. The experimental conductivity of Al at its
melting point (filled blue diamond) [16], with density 2.375
g/cm3 is displayed and aligns with the NPA calculations for
the Gathers data showing the very good agreement between
the NPA and two independent experiments.

(iii) The LCLS data applies to UFM-aluminum σuf , Ti 6=
Te, with the ions ‘frozen’ at Ti ≃ T0, as proposed in
Ref. [40]. The UFM-conductivity is shown as region (b)
in Fig. 1. The ultrafast conductivity σuf is essentially
isochoric, with Ti ≃ T0 at the density ρ0. The timescales
in UFM experiments are too short for (ρ, Ti) to differ
significantly from (ρ0, T0). The evaluation of the ultrafast
conductivity σuf was discussed in detail in Ref. [40], and
here we extend our study of ufm-conductivities.

A. Isobaric conductivity

In Fig. 1, we globally compare our NPA-Ziman isobaric

conductivities for aluminum with the isochoric and ufm
conductivities, shown in regions (b) and (c). The three
conductivities evolve in characteristic ways as a function
of temperature.

The experimental data of Gathers for σic are compared
with our results in more detail in Fig. 2, and we find ex-

cellent agreement with our NPA calculation. DFT+MD
calculations using a 108-atom simulation cell are shown
in both figures for σib and σic, where the PBE functional
available in VASP and ABINIT was used; they fall be-
low the experimental σib or the NPA σib, a common trend
for the DFT+MD+KG σic as well, as discussed further in
the Appendix. It should be noted that Gathers gives two
isobaric resistivities in columns four and five of Table-II
(Ref. [14]), causing some confusion; Gathers’ results are
further discussed in the Appendix.

The isochoric conductivity of Al at 0.082 eV (nominal
melting point) is≈ 5×106 S/m; the experimental isobaric
conductivity [16] at the melting point is σib = 4.1 × 106

S/m, with density 2.375 g/cm3 instead of the room-
temperature density of 2.7 g/cm3 due to thermal expan-
sion. The value of 4.08 ×106 S/m obtained from NPA
for aluminum at 2.375 g/cm3 is in excellent agreement
with experiment. It is shown as a filled blue diamond
symbol in figure 1. This value drops to 3.8 ×106 S/m if
a bridge contribution (MHNC) is not used in calculating
the ion-ion structure factor.

B. Isochoric conductivity

The isochoric system, region (c) in Fig. 1, is at ρ0 =
2.7 g/cm3, rws ≃ 2.98 a.u. (~ = |e| = me = 1), for
all T = Ti = Te. The NPA value of σic at T = 0.082
eV (nominal melting point) is ≈ 5 × 106 S/m; this is
higher than the experimental value usually quoted [16] of
σib = 4.1× 106 S/m as the density of normal aluminum
becomes 2.375 g/cm3 instead of 2.7 g/cm3 due to ther-
mal expansion. In region (c) we see the OF conductivity
of Ref. [27] going to a minimum at T ∼5 eV and subse-
quently rise as T increases; DFT+MD+KG becomes in-
creasingly prohibitive at these higher temperatures. The
NPA calculations show a first minimum at ∼ 6 eV, fol-
lowed by a maximum at 25 eV, and another minimum at
∼ 70 eV. These features in the NPA results are due to
the concurrent increase in Z̄ as well as the competition
between different ionization states. This effect — the
conductance minimum or resistivity saturation — occurs
when electrons become non-degenerate (i.e., µe ≤ 0), i.e.
when all electrons (not just those near EF ∼ 12 eV) begin
to conduct.
While we favour this explanation of the minimum in

the conductivity and first presented it in our discus-
sion [28] of the Mlischberg experiment, some authors
(e.g., R. M. More in Ref. [2], and also Faussurier et
al. [29]) have proposed an explanation in terms of resistiv-
ity saturation, as in Mott’s theory of minimum conduc-
tance in semiconductors. The electron “mean-free path”
λ = v̄τmr, where v̄ is a mean electron velocity, is claimed
to reduce to the mean interatomic distance at resistiv-
ity saturation. However, τmr evaluated using the Ziman
formula is a momentum-relaxation time associated with
scattering within the thermal window of the Fermi dis-
tribution at the Fermi energy (more accurately, at an
energy corresponding to the chemical potential). Since
2kF is of the order of an inverse rws, it is not surprising
that one can connect a length scale related to rws to λ.
But it does not describe the right physics of the conduc-
tivity minimum. Even the simplest form of the Ziman
formula already shows the conductivity minimum, and
it is a single-center scattering formula using a Born ap-
proximation within a continuum model; it contains no
information on the interatomic distance since one can
even set S(k) = 1 and obtain the resistivity saturation.
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In contrast, the resistivity saturation seen in Fig. 1 for
the NPA calculation manifests itself from approximately
half the Fermi energy (≃ 6 eV) corresponding to Z̄ = 3,
to about 70 eV corresponding to a much higher ionization
of Z̄ ≈ 7. The increased ionization prevents the chemi-
cal potential from becoming rapidly negative and delays
the onset of the steep rise in conductivity. These features
cannot be explained via a limiting mean free-path model.
In fact, in an isochoric system the interionic distance does
not change and one cannot have the complex structure
shown in the NPA σic in such a model. For Te = 6 eV to
about T = 25 eV, Z̄ = 3 for Al and steadily converts to
Z̄ = 4, and then a decline and a rise are accompanied by
the conversion of Z̄ = 4 to Z̄ ≃7 by T ∼ 70 eV.
Fig. 1 of Faussurier et al. [29] displays the isochoric re-

sistivity for aluminum together with results from Perrot
and Dharma-wardana [28]. However, the latter gives the
scattering as well as the pseudopotential-based resistivity
for aluminum where the mean electron density n̄ is held
constant, not the usual isochoric resistivity where the
ion density ρ̄ has to be held constant. Electron-isochoric
and ion-isochoric conditions are equivalent initially and
as long as Z̄ = 3 for aluminum; but the comparison be-
comes misleading beyond T ≈ 15 eV. Fig. 1 of Faussurier
et al. [29] also displays the aluminum isochoric resistivity
from Yuan et al. [30]. However, as explained in sec. 3
of the Appendix, both Faussurier and Yuan use an ion-
sphere model which leads to ambiguities in the definition
of Z̄ and µ0, leading to non-DFT features which are ab-
sent in the NPA model. Hence their resistivity estimates
are not directly comparable to ours. Sufficiently accu-
rate experiments are not yet available at such high tem-
peratures to distinguish between different theories and
validate one or the other. Such models should also be
tested using cases where accurate experimental data are
available (e.g., in the liquid-metal regime).
A further aspect of conductivity calculations is the

need to account for multiply-ionized species. For T >
EF /2, Z̄ begins to increase beyond 3 and departs sub-
stantially from an integer (e.g., Z̄ = 3.5 at 20 eV ). It is
thus clear that a multiple ionization model with several
integral values of Z̄, (e.g, a mixture Z̄ = 3 and Z̄ = 4)
should be used, as implemented in 1995 by Perrot and
Dharma-wardana [11], for lower-density aluminum. The
isochoric data σic reported in Fig. 1 uses the approxima-
tion of a single ionic species with a mean Z̄.

C. Ultra-fast conductivity

The nature of ultrafast matter and its properties are
determined by the initial state of the system. That is, if
the initial system were a room temperature solid, and if
the experiment were performed with minimal delay after
the pump pulse of the laser, then the ion subsystem would
remain more or less intact. However, the initial state can
also be the liquid state and this will lead to different
results. Both these cases are studied to compare and
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FIG. 3. (Color online) Ultra-fast conductivity of Al at density
2.7 g/cm3 for (i) solid initial state at 0.06 eV, and (ii) liquid
initial state just above melting point 0.082 eV. Curve (i) was
also displayed in Fig. 1 for comparison with σib and σic.

contrast the resulting σuf for Al.

(i) For the case where the initial state is solid (FCC
lattice), we assume for simplicity that the ion subsystem
structure factor S(k) can be adequately approximated by
its spherical average since aluminum is a cubic crystal.
The major Bragg contributions are included in such an
approximation. In fact, the spherically-averaged S(k) is
taken to be the ion-ion S(k) of the supercooled liquid
at 0.06 eV as that is the lowest temperature (closest to
room temperature) where the Al-Al S(k) could be calcu-
lated. The results are in fact insensitive to whether we
use the S(k) at 0.06 eV, 0.082 eV (melting point) or 0.1
eV. Furthermore, here we are using the simplest local (s-
wave) pseudopotential derived from the NPA approach
using a radial KS equation. Hence the use of a spheri-
cally average S(k) is consistent, and probably within the
large error bars of current LCLS experiments (see Fig.4,
Ref. [26]). The NPA σuf results (Fig. 3) for the case where
the initial state is below the melting point (mimicking
solid Al) have been compared in detail with the experi-
mental data in Ref. [40]. Currently, no DFT+MD+KG
results for σuf are available for comparison. One notes
that the σuf at Te = Ti = 0.6 eV does not go to the
conductivity of solid (crystalline) aluminum, but goes to
a lower value, possibly consistent with that of a super-
cooled liquid. The lower conductivity, compared to the
FCC crystal is qualitatively consistent with the drop in
the conductivity from the solid-state, room temperature,
density = 2.7 g/cm3 value of σ ≃ 41 × 106 S/m to the
liquid-state value at the melting point, 4 ×106 S/m. The
drop predicted by the NPA σuf is larger. Hence this cal-
culation appears to need further improvement for T < 1.0
eV, e.g. using the structure factor of the FCC solid and
including appropriate band-structure effects.

(ii) The second model we study has molten Al at its
nominal melting point (0.082 eV) but at its isochoric den-
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sity of 2.7 g/cm3 as the initial state. This mimics the case
where the pump pulse had warmed the ion subsystem to
some extent. Then we use the S(k) and pseudopoten-
tials evaluated at 0.082 eV (nominal melting point), and
regard that they remain unchanged while the electron
screening and all properties dependent on the electron
subsystem are evaluated at the electron temperature Te.
The resulting σuf is shown in Fig. 3, together with the
case where the initial state was assumed to be a temper-
ature (e.g.,the room temperature 0.026eV, or 0.06 eV)
which is below the melting point. The two curves clearly
suggest that the LCLS-experiments (see Ref. [40] for de-
tails) for Al are more consistent with the initial state (i.e.,
the state of matter at the peak of the laser pulse) being
solid, and with no significant pre-melt.

D. XC-functionals and the Al conductivity

Using a DFT+MD+KG approach, Witte et al. [31] ex-
amined the σ for Al at ρ = 2.7 g/cm3 and T = 0.3 eV
computed with the exchange-correlation (XC) function-
als of (i) Perdew, Burke, and Ernzerhof (PBE) [32] and
(ii) Heyd, Scuseria, and Ernzerhof (HSE) [33]. Their re-
sults agree with those of Vlček et al. [34] for the PBE
functional; our DFT+MD calculations also agree well
with those of Vlček et al. as seen from the region (c)
in Fig. 1. However, Witte et al. propose, from their
Fig. 1, that their HSE calculation agrees [35] best with
the experimental data of Gathers [14]. This is based on a
calculation of the conductivity at 0.3 eV only (≈ 3500 K),
which is compared with the corresponding entry in Table
II, column 4, of Ref. [14], viz. resistivity=0.451µΩm, i.e.,
conductivity = 2.22 ×106 S/m. However, this datum is
given by Gathers for a volume dilation of 1.44 (column
3), i.e., ρ = 1.875 g/cm3, and not 2.7 g/cm3. Witte et

al. incorrectly interprets column 4 of Gathers’ Table II
as providing isochoric conductivities of Al at 2.7 g/cm3.
Gathers’ tabulation and the several resistivities given are
indeed a bit confusing; we reconstruct them in Table 1
of the Appendix for convenience.
Columns 4 and 5 in Ref. [14] give two possible re-

sults for the isobaric conductivity of aluminum, with col-
umn 5 giving the experimental resistivity as a function of
the nominal input enthalpy, i.e., “raw data”. Column 4
gives the resistivity where in effect the input enthalpy has
been corrected for volume expansion; this is not the iso-
choric resistivity of aluminum, as proposed by Sperling
et al. [26] and by Witte et al. [31].
All the resistivities in Gathers Table II, column 4 can

be recovered accurately by our parameter-free NPA cal-
culation using the isobaric densities. Also, the fit formula
given in the last row of table 23 of Gathers’ 1986 review
[15] confirms that Table II, column 4 in Ref. [14] is indeed
the final isobaric data at 0.3 GPa. Our NPA calculation
at the melting recovers the known isobaric conductiv-
ity [16] at 0.082 eV. which is also consistent with the
Gathers data.

The HSE functional includes a contribution (e.g., 25%)
of the Hartree-Fock exchange functional in it. If there is
no band gap at the Fermi energy, the Hartree-Fock self-
energy is such that several Fermi-liquid parameters be-
come singular. Hence the use of this functional in WDM
studies may lead to uncontrolled or unknown errors. Fur-
thermore, previous studies, e.g., Pozzo et al. [7], Kietz-
mann et al. [39], show that the PBE functional success-
fully predicts conductivities. Those conductivities, if re-
calculated with the HSE functional are most likely to be
in serious disagreement with the experimental data.
DFT is a theory which states that the free energy is

a functional of the one-body electron density, and that
the free energy is minimized by just the physical den-
sity. It does not claim to give, say, the one-electron ex-
citation spectrum or the density of states (DOS). The
spectrum and the DOS are those of a fictitious non-
interacting electron system at the interacting density,
and moving in the KS potential of the system. The
KS potential is not a mean-field approximation to the
many-body potential, but a potential that gives the ex-
act physical one-electron density if the XC-functional is
exact. Hence any claimed “agreement” between the DFT
spectra and physical spectra is not relevant to the quality
of the XC-functional, except in phenomenological theo-
ries which aim to go beyond DFT and recover spectra,
DOS, bandgaps etc., by including parameters in ‘meta-
functionals’ which are fitted to a wide array of properties.
There is however no theoretical basis for the existence of
XC-functionals which also simultaneously render accu-
rate excitation spectra, DOS and bandgaps in a direct
calculation.

E. The variation of the conductivity as a function
of temperature

The evolution with temperature of the conductivity
can be understood within the physical picture of elec-
trons near the Fermi energy (chemical potential) under-
going scattering from the ions in a correlated way via
the structure factor. This in turn invokes the relation of
the structure factor to the Fermi momentum kF , and the
breakdown of the Fermi surface as T/EF is increased,
while the breakdown is countered by ionization which
increases the Fermi energy. At sufficiently high tempera-
tures the chemical potential µ tends to zero and to neg-
ative values. The conductivity then becomes classical,
and finally Spitzer-like. The conductivity minimum (re-
sistivity plateau) in WDM systems occurs near the µ ≈ 0
region and is not related to the Mott minimum conduc-
tivity.
The differences between σic and σuf , both isochoric,

arise because the structure factors S(k, Ti) of the two
systems are different, while Uei(k) and the Fermi-surface
smearing for them are essentially the same at Te, with
Z̄ ≃ 3 for Al. The ion structure factor at different
temperatures, calculated using the NPA pseudopotential



6

0 1 2 3 4
k/kF

0

1

2

S(
k)

T= 0.1 eV
T= 1.0 eV
T= 2.0 eV
T= 5.0 eV

0 1 2 3 4 5 6
k/kF

0 0

0.5 0.5

1 1

1.5 1.5

2 2

2.5 2.5

S(
k)

T=0.05 eV
T=0.2 eV
T=0.5 eV
T=1.0 eV

Al, 2.7 g/cm
3

2kF

(a) (b)

Li, 0.542 g/cm
3

2kF

FIG. 4. (Color online) (a) Static structure factor S(k) of iso-
choric aluminumWDM at different temperatures; S(k) at 2kF
changes by 65% from T = 0.1 to T = 5 eV. In ultrafast alu-
minum S(k) remains ‘fixed’ at the initial temperature, even
when Te changes. (b) Evolution of S(k) for isochoric Li at
0.542 g/cm3 as a function of temperature. As T increases,
the peak broadens and shifts away from 2kF .

Uei(k, Te) and used for evaluating σic, are shown in Fig. 4
(a). The Uei and S(k), and hence σ, are first-principles
quantities determined entirely from the NPA-KS calcula-
tion. If the initial temperature T0 at the time of creation
of the Al-UFM were 0.082 eV (i.e., ∼melting point), then
the corresponding S(k, T0) is used in evaluating σuf at all
Te, together with the Uei(k, Te). More details of σuf and
comparison with LCLS data may be found in Ref. [40].
The isobaric system differs from the isochoric and ultra-
fast systems due to volume expansion. Hence the S(k)
and the Uei are calculated at each ‘expanded’ density.

Degenerate electrons (Te/EF < 1) scatter from one
edge (e.g., −kF )of the Fermi surface to the opposite edge
(kF ), with a momentum change k ≃ 2kF and their scat-
tering contribution essentially determines σ. Thus the
position of 2kF with respect to the main peak of S(k)
and its changes with Te explain the Te dependence of
σ(Te). For aluminum at ρ = 2.7 g/cm3, 2kF lies on the
high-k side of the main peak, and as Ti = Te increases,
the peak broadens into the 2kF region (see Fig. 4(a)),
resulting in increased scattering. In the isochoric UFM
case both Ti and S(k) do not change, but as Te increases
the window of scattering f(k)(1 − f(k)) increases (here
f(k) is the finite-T Fermi occupation number), and σuf

decreases.

Given that the NPA is a first-principles (i.e.,
‘parameter-free’) DFT scheme, the excellent agreement
between the NPA σib and the Gathers aluminum data
for σib (see Fig. 2) confirms the accuracy of NPA pseu-
dopotentials Uei and structure factors, and enhances our
confidence in the NPA predictions for σic. In addition,
experiments at other density ranges were found to be in
good agreement with NPA calculations [36] and with the
DFT+MD calculations of Dejarlais et al. [37]. Further-
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FIG. 5. (Color online) Isobaric (σib), isochoric(σic), and ultra-
fast (σuf) conductivities of Li at density 0.542 g/cm3. Isobaric
experimental conductivities σib are for 0.5 ≤ ρ ≤ 0.4 g/cm3.
The DFT+MD+KG σic value of Witte et al. at 0.6 g/cm3

and the NPA-Ziman value for σic are also shown.

more, the NPA approach becomes more reliable at higher
temperatures (T/EF > 1) while the DFT+MD meth-
ods rapidly become impractical due to the large number
of electronic states that are needed in the calculation
due to the spread in the Fermi distribution. At lower T
ion-ion correlations and interactions become important
and DFT+MD treats them well. However, at low T , the
higher conductivities imply longer mean free paths and
the need for simulation cells with larger Lbx [38]. Good
DFT+MD+KG results, when available, provide bench-
marks for calibrating other methods.

III. THE CONDUCTIVITIES OF WDM
LITHIUM

The three conductivities σic, σib, and σuf for Li are
shown in Fig. 5. The isobaric data are in the triangular
region. The isochoric conductivities σic at a density of
ρ=0.542 g/cm3, i.e., rws = 3.251, are given for a range of
T , while one value at ρ=0.6 g/cm3 and Te = Ti =4.5 eV,
is also given. This is for conditions reported by Witte
et al. [41]. The experimental isobaric data from Oak
Ridge [17] for σib (0.5 g/cm3 at 0.05 eV to 0.4 g/cm3

at 0.1378 eV), as well as the NPA σib, are also shown.
Unlike aluminum, Li is a “low electron-density” material
with Z̄ = 1. Hence its EF ∼ 5 eV is small compared
to that of aluminum. For Li, 2kF lies on the low-k side
of the main peak as can be seen in Fig. 4(b). The UFM
conductivity σuf remains higher than the σic, and its tem-
perature dependence can be understood, as discussed in
sec. II E, by the position of kF with respect to S(k) as
Te varies.
The agreement between the NPA-σib and the Oak

Ridge data for isobaric Li is moderate. The NPA-Li
pseudopotential is the simplest local (s-wave) form and
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FIG. 6. (Color online) The Oak Ridge experimental data
compared with the NPA and the DFT+MD+KG conductivity
of Kietzmann et al. [39]. Their 600K and 1000K results have
been slightly extrapolated to the low-density region covered
by the experiments. The curve at 2000K given by Kietzmann
et al. is above the boiling point of Li, and is not representative
of the behaviour of Li at 1500K.

corrections (e.g., for the modified DOS) have not been
used. In Fig. 6 we have attempted to compare the
Oak Ridge experimental data for liquid lithium with the
DFT+MD+KG calculations of Kietzmann et al. [39]. We
use their calculations as a function of density for 600K
and 1500K. The Kietzmann calculation at 2000K is also
shown in Fig. 6, but since the boiling point of lithium
under isobaric conditions is ≃ 1600K, their calculation
at 2000K cannot be justifiably used to estimate a value
for 1500K from the data of Kietzmann et al. which also
include the two points at 600K and 1000K. Nevertheless,
their results are consistent with the observed trend and
agree with our NPA results to the same extent as with
the Oak Ridge data.

Disconcertingly, the NPA+Ziman and the DFT+MD
σic for ρ =0.6 g/cm3 and T = 4.5 eV reported by Witte
et al. [41] using a 64-atom simulation cell disagree by a
factor of five. But the NPA-XRTS calculations for Li
(see the Appendix) agree very well with the DFT-XRTS
of Witte et al.. Furthermore, we had already shown that
the pair-distribution functions from NPA for Li for the
density range of interest are in good agreement with the
simulations of Kietzmann et al. (see Ref. [6]). However,
at T=4.5 eV, µ=0.035 a.u., i.e., the plasma is nearly
classical. Hence small-k scattering becomes important
in determining σ. A simulation cell of length a=20.26
a.u.holds for 64 atoms. The smallest momentum accessi-
ble is π/a = 0.16/(a.u.), and fails to capture the smaller-k
contributions to σ. These could cause the observed dif-
ferences between the NPA and DFT+MD+KG results.
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FIG. 7. (Color online) (a) Isochoric conductivity, σic, and
ultrafast conductivity σuf for carbon at ρ = 3.7 g/cm3 from
NPA and DFT+MD, and isochoric conductivity from NPA
for ρ=2.0 g/cm3. (b) Ion-ion S(k) for several temperatures;
note nearly constant value of S(k) at 2kF (indicated by a
vertical line).

IV. THE CONDUCTIVITIES OF WDM
CARBON

Solid carbon is covalently bonded, with strong
sp3, sp2, sp bonding (with a bond energy of∼ 8 eV) being
possible. Hence efforts to create potentials extending to
several neighbors, conjugation and torsional effects etc.,
have generated complex semi-empirical “bond-order” po-
tentials parametrized to fit data bases but without any T
dependence. Transient C-C bonds occur in liquid-WDM
carbon. Normal-density liquid C near its melting point
is a good Fermi liquid with four ‘free’ electrons (Z̄ =4)
per carbon. An early comparison of Car-Parrinello cal-
culations for carbon with NPA was reported by Dharma-
wardana and Perrot in 1990 [42]. NPA successfully pre-
dicts the S(k) and g(r), inclusive of pre-peaks due to
C-C bonding [20] as also obtained from DFT+MD sim-
ulations of WDM-carbon[18, 19]. The NPA and Path
Integral Monte Carlo g(r) [43] also agree closely [20]. No
experimental σib are available; hence we calculate only
σic and σuf to display the remarkable difference in the
conductivities of complex WDMs with (transient) cova-
lent bonding, compared to simpler WDMs like Al and Li.

Figure 7(a) displays σic and σuf for isochoric carbon
at 3.7 g/cm3. Here EF is ∼ 30 eV (for Z̄ = 4) and the
WDM behaves as a simple metal, with σ dropping as
T increases, and then increasing at higher Te when µe

becomes negative. The conductivity (for T ≤ 0.5EF ) is
determined mainly by the value of S(k) at 2kF , shown
in Fig. 7(b). This is set by the C-C peak in S(k), which
is relatively insensitive to T , and hence σ is also insensi-
tive to temperature (compared to WDM Al or Li) in this
regime. The insensitivity of S(k = 2kF )to temperature
also leads to the strikingly different behavior of the ul-
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trafast conductivity for liquid carbon as compared to σuf

and σic of WDM-Al or Li. In WDM-carbon the ultra-
fast and isochoric conductivities are very close in magni-
tude. The DFT+MD σic values for 3.7 g/cm3 differ from
the NPA at low-T where strong-covalent bonds dominate.
The N ∼ 100 atom DFT+MD simulations may be seri-
ously inadequate due to such C-C bond formation. The
NPA itself deals only in a spherically averaged way with
the covalent bonding. That approximation is probably
sufficient for static conductivities if the bonding is truly
transient. In any case, accurate experimental σib data
for liquid carbon are badly needed.

V. CONCLUSION

Although it is not necessary in principle to distin-
guish between isochoric and isobaric conductivities, as
the specification of the density and temperature is suffi-
cient, the use of such a distinction is useful in comparing
experiment and theory. We see from our calculations
that the temperature variations of the three conductiv-
ities have distinct features. Furthermore, the ultrafast
conductivity is indeed a physically distinct property as
the ion subsystem remains unchanged while only the elec-
tron subsystem is changed during the short time delay be-
tween the pump pulse and the probe pulse. Thus in this
study we have found it useful to distinguish isochoric,
isobaric and ultrafast conductivities of WDM systems,
using Al, Li and C as examples. The NPA σib are in ex-
cellent agreement with the aluminum experimental data
of Gathers [14], while the DFT+MD+KG with 108-atom
simulations estimate a lower conductivity. The NPA re-
sults are in moderate agreement with Oak Ridge σib for
Li, as is also the case with DFT+MD+KG calculations.
The carbon σic, σuf from NPA have a striking behaviour
in the regime of (normal) densities studied here, and dif-
fer from Al and Li. We attribute this to the effect of
transient C-C bonds.

Appendix

This appendix addresses the following topics:

• Neutral pseudoatom (NPA) calculation of the
X-ray Thomson scattering (XRTS) ion feature
W (q) for comparison with the density-functional-
theory/molecular-dynamics (DFT+MD) calcula-
tions of Witte et al. [41], where the excellent agree-
ment is in clear contrast to the disagreement for the
conductivity datum for Li reported by Witte ıet al.

• Details of the neutral pseudoatom (NPA) model.

• Ziman formula for the conductivity using the NPA
pseudopotential and the ion-ion structure factor
S(k).

• Examples of DFT+MD and KG calculations for Al,
Li, and C, and Drude fits to the KG conductivity
of Al and Li.

• Review of the isobaric and the isochoric conductiv-
ities of aluminum in the context of the experiment
of Gathers, and the disagreement with the conduc-
tivity of Al reported in Fig.1 of Ref. [31] by Witte et
al. using the Heyd, Scuseria, and Ernzerhof (HSE)
functional.
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FIG. 8. (Color on line) Comparison of quantities rele-
vant to XRTS calculated using NPA+HNC (this work) and
DFT+MD (Witte et al. [41]) for lithium. Values for k smaller
than about 0.6/Å are not available from the DFT+MD simu-
lation due to the finite size of the simulation cell. Here q(k) is
the Fourier transform of the free-electron density at the Li ion
in the plasma, while f(k) is the bound-electron form factor
and N(k) = f(k) + q(k). The ion feature W (k) = N(k)2S(k)
involves the ion-ion structure factor S(k). Experimental
points are from Saiz et al. (2008) cited in Witte et al., Fig. 8

1. X-ray Thomson Scattering calculation for Li at
density ρ = 0.6 g/cm3 and temperature T = 4.5 eV.

The calculation of XRTS of WDM using the NPA
method has been described in detail in Ref. [46]. The
XRTS ion feature W (k) for Li at T = 4.5 eV and ρ = 0.6
g/cm3 has been calculated (see Fig. 8) to compare our
NPA results with the results from the DFT+MD simula-
tions by Witte et al. (Ref. [41], Fig.8). This establishes
the excellent agreement with the electronic structure part
of the NPA calculation and the ionic part, Sii(k), re-
sulting from the DFT+MD calculations, irrespective of
the exchange-correlation (XC) functional used. That
is, while we have used the local-density approximation
(LDA) of the finite-T XC functional Fxc based on the
classical-map hyper-netted-chain scheme (CHNC) [44],
Witte et al. have used the T = 0 Perdew-Burke-
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Ernzerhof (PBE) XC functional [32] which includes gra-
dient corrections.
The mean ionization Z̄ for Li obtained in the NPA is

unity, in agreement with that used by Witte et al.. They
calculate the quantities q(k), f(k), N(k), and W (k) =
N(k)2S(k). The quantity q(k) is the ‘screening cloud’,
i.e., the Fourier transform of the free-electron density at
the Li ion in the plasma, while f(k) is the bound-electron
form factor. Their sum is denoted by N(k) = f(k)+q(k).
Finally, W (k) = N(k)2S(k) is the ion feature and in-
volves the ion-ion structure factor S(k).
The excellent accord between our XRTS calculation

and that of Witte et al. establishes that our S(k),
electron charge distributions, and potentials Uei(k) and
Vii(k) are fully consistent with the structure data and
electronic properties coming from DFT+MD. The S(k)
and Uei(k) are the only inputs to the Ziman formula for
σ0. Nevertheless, our estimate of the conductivity dis-
agrees strongly with the Kubo-Greenwood estimate of
Witte et al. . Given the relatively good agreement that
we found with the Oak Ridge experimental data, as well
as with the Kietzmann data (see Fig. 6), this disagree-
ment is a priori quite surprising; one possible contrib-
utory factor will be taken up in our discussion of the
Kubo-Greenwood formula, viz., that it may be caused
by the use of a small 64-atom DFT+MD simulation cell.
The conductivity estimate by Witte et al. for T=0.3

eV at 2.7 g/cm3 is also problematic and it is taken up
below, in our discussion of Gathers’ results for aluminum.

2. Details of the NPA model and Z̄

The NPA model used here [11, 12] has been described
in many articles; we summarize it again here for the
convenience of the reader, as it should not be assumed
that it is equivalent to various currently-available ion-
sphere (IS) average-atom (AA) models such as Purgato-
rio [45] used in many laboratories. While these models
are closely related, they invoke additional considerations
which are outside DFT. We regard the NPA model as
a rigorous DFT model based on the variational prop-
erty of the grand potential Ω([n], [ρ]) as a functional of
both one-body densities n(r) and ρ(r), directly leading
to two coupled KS equations where the unknown quanti-
ties are the XC-functional for the electrons and the ion-
correlation functional for the ions [47]. Approximations
arise in modeling those XC-functionals and decoupling
the two KS equations for simplified numerical work.
The NPA model assumes spherical symmetry when

dealing with fluid phases, and calculates the KS states
of a nucleus of charge Z immersed in an electron gas of
input density n̄. The ion distribution ρ(r) is approx-
imated by a neutralizing uniform positive background
containing a cavity of radius rws, with the nucleus at
the origin. The Wigner-Seitz (WS) radius rws is that of
the ion-density ρ̄, i.e., rws = {3/(4πρ̄)}1/3. The effect
of the cavity is subtracted from the final result where

by the density response of a uniform electron gas to the
nucleus is obtained. The validity of this approach has
been established in previous work, for the WDM systems
investigated here and reviewed in Ref. [10]. The solution
of the KS equation extends up to Rc = 10rws, defining
a correlation sphere (CS) large enough for all electronic
and ionic correlations with the central nucleus to have
gone to zero. The WS cavity plays the role of a nominal
ρ(r) to create a pseudoatom which is a neutral scatterer
and greatly facilitates the calculation. The KS equations
produce two groups of energy states, viz, negative and
positive with respect to the energy zero at r → ∞ out-
side the CS. States in one group decay exponentially to
zero as r → Rc, and in fact become negligible already
for r → rws in the case of low-Z elements. These states,
fully contained within the WS sphere, are deemed bound
states, and allow one to define a mean ionization per ion,
Zb = Z − nb, where nb is the total number of electrons
in the bound states and Z is the nuclear charge:

Zb = Z − nb; nb =
∑
nl

2(2l+ 1)

∫
d~rfnl|φnl(r)|2. (A.1)

Here fnl = 1/{1 + exp(xnl)}, xnl = {ǫnl − µ0}/T is
the Fermi factor for the KS state φnl with energy ǫnl.
The non-interacting electron chemical potential µ0 is
used here. Furthermore, there are plane-wave-like phase-
shifted KS states which extend through the whole corre-
lation sphere. These are continuum states and their elec-
tron population is the free-electron distribution nf (r).
The nucleus Z, the bound electrons nb, the cavity with
a charge Zc = (4πn̄/3)r3ws and the free electrons form
a neutral object and hence it is a weak scatterer called
the ‘neutral pseudoatom’ (NPA). The Friedel sum ZF

of the phase shifts of the continuum states and the cav-
ity charge Zc add up to zero when the KS-equations are
solved self-consistently. Thus

Zc = ZF =
2

πT

∫
∞

0

kfklk{1− fkl}
∑
l

(2l+ 1)δl(k)dk.

(A.2)
Here fkl is the Fermi occupation factor for the k, l-state
with energy ǫ = k2/2. Full self-consistency requires that

Zb = Zc = ZF , n̄ = Z̄ρ̄. (A.3)

Hence, given an input mean free-electron density n̄, the
WS radius (equivalently ρ̄) is iteratively adjusted till self-
consistency is obtained, i.e., Eq. A.3 is satisfied to a
chosen precision. The mean ionization ρ̄ is thus seen
to be the Lagrange multiplier ensuring charge neutral-
ity, as first discussed in Ref. [48]. The ρ̄ resulting from
the input n̄ may not be the required physical ion density,
and hence several values of n̄ and the corresponding ρ̄
are determined to obtain the actual n̄ that corresponds
to the required experimental ion density ρ̄. This process
produces a unique value of Z̄, and the problem of having
several different estimates of Z̄, as found in IS-AA mod-
els [23, 45] does not arise here. The agreement among
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ZF , Zc, Zb is essential to the convergence of the NPA-
KS equations. It is sensitive to the exchange-correlation
(XC)-functional Fxc(T ) and to the proper handling of
self-interaction (SI) corrections, whenever Z̄ is close to
a half-integer. Using a valid Z̄ is essential to obtaining
good conductivities.

We emphasize that a key difference between IS models
and the NPA is that the free electrons are not confined to
the Wigner-Seitz sphere, but move in all of space as ap-
proximated by the correlation sphere. These differences
are discussed in Sec. 3.

In this study we use the local-density approximation to
the finite-T XC-functional as parametrized by Perrot and
Dharma-wardana [44]. This simplest implementation (in
LDA) is a useful reference step needed before more elab-
orate implementations (involving SI, non-locality, etc. in
the XC-functionals) are used.

Since Z̄ is the free-electron density per ion, it can de-
velop discontinuities whenever the ionization state of the
element under study changes due to, e.g., increase of T
or compression. This behaviour is analogous to the for-
mation or disappearance of band gaps in solids. In fact,
if the NPA model is treated with periodic boundary con-
ditions, as for a solid with one atom in the unit cell, then
the discontinuity in Z appears as the problem of correctly
treating the formation of a gap in the density of states
(DOS) at the Fermi energy. A proper evaluation of such
features in the DOS and band gaps is difficult in DFT
as this is a theory of the total energy as a functional of
the one-body density, not a theory of individual energy
levels. The one-electron states are given by the Dyson
equation. Thus band-structure calculations inclusive of
GW-corrections are used in solids to obtain realistic band
gaps and excitation energies. In dealing with discontinu-
ities in Z̄, a similar procedure is needed [49], including
the use of self-interaction (SI) corrections and XC func-
tionals that include electron-ion correlation corrections,
i.e., Fei(n, ρ) [47, 50].

It should be mentioned that some authors have claimed
that Z̄ “does not correspond to any well-defined observ-
able in the sense of quantum mechanics” [51],i.e, that
there is no quantum operator corresponding to Z̄. This
view is incorrect as quantities like the temperature T ,
the chemical potential µ, and the mean ionization Z̄ are
quantities in quantum statistical physics. There may be
no operator for them in simple T = 0 quantum theo-
ries. In most formulations of quantum statistical physics
these appear as Lagrange multipliers related to the con-
servation of the energy, particle number and charge neu-
trality. They can also be incorporated as operators in
more advanced field-theoretic formulations of statistical
physics (e.g., as in “thermofield-dynamics” of Umezawa).
Some of these broader issues are discussed in Chapter 8
of Ref. [52].

Finally, it is noted that the mean number of elec-
trons per ion, viz., Z̄ in, e.g., gas-discharge plasmas, is
routinely measured using Langmuir probes, or derived
from optical measurements of various properties includ-

ing the conductivity and the XRTS profile [53] for WDM-
plasmas. Hence Z̄ is a well-established measurable prop-
erty.

3. Some Differences between the NPA model and
typical average-atom models

To our knowledge, no conductivity calculations using
the Purgatorio model for isobaric aluminum are available
for comparison with experimental data. Such a compari-
son is also problematic due to the lack of an unequivocal
value for the mean ionization Z̄ in IS-AA models [45]. We
list several differences with the NPA which particularly
affect conductivity calculations:
1. Most average-atom models are based on the IS-AA

model where the free-electron pileup around the nucleus
is strictly confined to the Wigner-Seitz sphere:

Z̄ = 4π

∫ Rws

0

∆nf (r)r
2dr; IS-AA model. (A.4)

This condition, Eq. A.4, was used in Salpeter’s early IS
model, in the Inferno model of Lieberman, and in codes
like Purgatorio [45] derived from it, to determine an elec-
tron chemical potential µ0

ws. It is also used in Yuan et

al. [30], Faussurier et al. [29], Starrett and Saumon [54],
and in other AA codes discussed in Murillo et al. [23].
However, µ0

ws is not identical with the non-interacting
µ0 because it includes a confining potential applied to
the free electron density nf (r) constraining the electrons
to the IS. As it is applied via a boundary condition, it
is a non-local potential. The KS XC potential is also
a non-local potential and hence the use of Eq. A.4 con-
taminates the XC potential. On the other hand, DFT is
based on mapping the interacting electrons to a system
of non-interacting electrons whose chemical potentially is
rigorously µ0, as used in the NPA model that we employ.
In the NPA we use a CS with a large radius Rc.

Z̄ = π

∫ Rc

0

∆nf (r)r
2dr; NPA model. (A.5)

The upper limit of the integral is Rc ≈ 10rws and hence
deals with a sphere large enough for all correlations with
the central ion to have died down at the surface of the
sphere. This enables the use of the non-interacting chem-
ical potential in the NPA, as needed in DFT, since all
equations use the large-r limit beyond the CS as the ref-
erence state.
The constraint placed by Eq. A.4 is clearly invalid at

low temperatures where the de Broglie wavelength of the
electrons, being proportional to 1/

√
T , exceeds rws at

sufficiently low T . Hence such AA-models become invalid
at low temperatures and are not true DFT models. In
contrast, the first successful applications of the NPA (in
the 1970s) were to low-temperature solids.
2. The use of the constraint placed by Eq. A.4 in AA

models has far reaching consequences as it prevents the
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possibility of providing a unique definition of the mean
ionization, as emphasized by Stern et al. [45] in regard to
the Inferno code. In fact even at high temperatures, there
are at least two definitions of Z̄ that differ, and hence the
estimates of the electrical conductivity are not unambigu-
ous. This is not the case in the NPA. The problem of
discontinuities in Z̄ and the under-estimate of bandgaps
by DFT theory were already discussed in the previous
subsection.

3. The IS-AA models do not satisfy a Friedel sum
rule for Z̄, while the f -sumrule is also constrained by the
condition imposed by Eq. A.4.

4. As the electrons are confined to the WS sphere
in IS-AA models, they cannot display pre-peaks due to
transient covalent bonding as found in liquid carbon, hy-
drogen and other low-Z WDMs. This was confirmed by
Starrett et al. [55] for carbon for their AA model. The
bonding occurs by an enhanced electron density in the
inter-ionic region between two WS spheres, and this is
not allowed in IS models. In contrast, the NPA model
shows pre-peaks in gii(r) corresponding to transient C-C
bonding in liquid carbon, and produces a pair-potential
with a minimum corresponding to the C-C covalent bond
distance at sufficiently low T [20]. Similar pre-peaks are
found via NPA calculations for warm-dense hydrogen and
low-Z elements in the appropriate temperature and den-
sity regimes [62].

4. Pseudopotentials and pair-potentials from the
NPA

The KS calculation for the electron states for the NPA
in a fluid involves solving a simple radial equation. The
continuum states φk,l(r), ǫk = k2/2, with occupation
numbers fkl, are evaluated to a sufficiently large energy
cutoff and for an appropriate number of l-states (typi-
cally 9 to 39 were found sufficient for the calculations
presented here). The very high-k contributions are in-
cluded by a Thomas-Fermi correction. This leads to an
evaluation of the free-electron density nf (r), and the free-
electron density pileup ∆n′(r) = nf (r)−n̄. A part of this
pileup is due to the presence of the cavity potential. This
contribution m(r) is evaluated using its linear response
to the electron gas of density n̄ using the interacting elec-
tron response χ(q, Te). The cavity corrected free-electron
pileup ∆nf (r) = ∆n′(r) − m(r) is used in constructing
the electron-ion pseudopotential as well as the ion-ion
pair potential Vii(r) according to the following equations
(in Hartree atomic units) given for Fourier-transformed

quantities:

Uei(k) = ∆nf (k)/χ(k, Te), (A.6)

χ(k, Te) =
χ0(k, Te)

1− Vk(1−Gk)χ0(k, Te)
, (A.7)

Gk = (1− κ0/κ)(k/kTF); Vk = 4π/k2, (A.8)

kTF = {4/(παrs)}1/2; α = (4/9π)1/3, (A.9)

Vii(k) = Z2Vk + |Uei(k)|2χee(k, Te). (A.10)

Here χ0 is the finite-T Lindhard function, Vk is the bare
Coulomb potential, and Gk is a local-field correction
(LFC). The finite-T compressibility sum rule for electrons
is satisfied since κ0 and κ are the non-interacting and in-
teracting electron compressibilities respectively, with κ
matched to the Fxc(T ) used in the KS calculation. In
Eq. A.9, kTF appearing in the LFC is the Thomas-Fermi
wavevector. We use a Gk evaluated at k → 0 for all k in-
stead of the more general k-dependent form (e.g., Eq. 50
in Ref. [44]) since the k-dispersion in Gk has negligible ef-
fect for the WDMs of this study. Steps towards a theory
using self-interactions corrections in the Fxc, a modified
electron DOS, self-energy corrections etc., have also been
given [49]. In this study we use the above equations, and
only in the LDA.

5. Calculation of the ion-ion Structure factor

The ion-ion structure factor S(k) is also a first-
principles quantity as it is calculated using the ion-ion
pair potential, Eq. A.10 given above. For simple fluids
like aluminum we use the modified hyper-netted-chain
(MHNC) equation.

g(r) = exp{−βVii(r) + h(r)− c(r) +B(r)},(A.11)

h(r) = c(r) + ρ̄

∫
d~r1h(~r − ~r1)c(~r1), (A.12)

h(r) = g(r)− 1. (A.13)

Here c(r) is the direct correlation function. Thermody-
namic consistency (e.g., the virial pressure being equal
to the thermodynamic pressure) is obtained by using
the Lado-Foiles-Ashcroft (LFA) criterion (based on the
Gibbs-Bogoliubov bound for the free energy) for deter-
mining B(r) using the hard-sphere model bridge func-
tion [56]. That is, the hard-sphere packing fraction η is
selected according to an energy minimization that sat-
isfies the LFA criterion. The iterative solution of the
MHNC equation, i.e., Eq. (A.11), and the Ornstein-
Zernike (OZ) equation, Eq. (A.12), yield a gii(r) for the
ion subsystem. The LFA criterion and the associated
hard-sphere approximation can be avoided if desired, by
using MD with the pair potential to generate the g(r).
The hard-sphere packing fraction η calculated via the
LFA criterion is the only parameter extraneous to the
KS scheme used in our theory. In calculating the S(k)
of complex fluids like carbon, where the leading peak in
g(r) is not determined by packing effects but by transient
C-C bonding, we use the simple HNC equation.
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FIG. 9. (Color online) KG conductivity σ(ω) for Al, Li, and
C. Note the slight non-Drude behaviour of Li σ(ω) near 0.08
a.u. in panel (b). The carbon σ(ω) is highly non Drude-like,
with the peak moving to higher energy as T is lowered; no
Drude form is shown for carbon.

6. Calculation of the electrical conductivity

The electrical conductivity is calculated from the nu-
merically convenient form of the Ziman formula given
in Ref. [11]. The Ziman formula is sometimes derived
from the Boltzmann equation. However, the KG for-
mula and also the Ziman formula can both be derived
from the Fermi golden rule [57]. The Ziman formula uses
the ‘momentum-relaxation time’ approximation, while
the KG formula typically uses the same approximation
when extracting the static conductivity using a Drude fit
to the dynamic conductivity σ(ω). The Ziman formula
used here is:

σ = 1/R R = (~/e2)(3πn̄Z̄)−1I (A.14)

I =

∫
∞

0

q3Σ(q)dq

1 + exp{β(ǫq/4− µ)} , (A.15)

ǫq = (~q2/2m), β = 1/T, (A.16)

Σ(a) = S(q)|Uei(q)/{2πε(q)}|2, (A.17)

1/ε(q) = 1 + Vqχ(q, T ). (A.18)

The “Born-approximation-like” form used here is valid
to the same extent that the pseudopotential Uei(q) con-
structed from the (non-linear) KS nf (r) via linear re-
sponse theory (Eq. A.7) is valid. The S(k) used are
available even for small-k unlike in DFT+MD simula-
tions where the smallest accessible k-value is limited by
the finite size Lbx of the simulation cell.

7. The Kubo-Greenwood conductivity

The KG dynamic conductivity σ(ω) is a popular ap-
proach to determining the static conductivity of WDM
systems via DFT+MD [59]. In our simulations we have

used N=108 atoms in the simulation cell, with a 2×2×2
Monkhorst-pack k grid; the PBE XC functional was used.
The energy cutoff was taken to be sufficiently high that
the occupations in the highest KS states were virtually
negligible. The quenched-crystal KS-eigenstates φν(r)
and eigenvalues ǫν , where ν is a band-index quantum
number, are used in the Kubo-Greenwood conductivity
as provided in the standard ABINIT code. Usually six
to ten such evaluations were obtained by evolving the
quenched crystal by further MD simulations (using only
the Γ point), and in each case the σ(ω) was obtained – see
Fig. 9 for typical aluminum, lithium and carbon results
for σ(ω).
The aluminum σ(ω) is well-fitted by the Drude form:

σ(ω) = σ0/(1 + (ωτ)2), σ0 = n̄τ. (A.19)

However, there is no justification for using a Drude form
for carbon. The peak position in σ(ω) roughly corre-
sponds to the ‘bonding → antibonding’ transition in the
fluid containing significant covalent bonding (see Fig.
4(b) of the main text) at 0.5 eV. This is seen from the
strong peak in g(r) near 3 a.u. (1.55 Å ) corresponding
to the C-C bond length. This suggests that the N = 108
simulation is quite inadequate for complex liquids like
carbon, as bonding reduces the effective N of the simu-
lation. In the case of carbon, the static limit of the KG
σ(ω) was simply estimated from the trend in the ω → 0
region rather than using a Drude fit. Furthermore, the
different quenched crystals (108 atoms in the simulation)
gave significant statistical variations, as reflected in the
error bars shown in Fig. 4(a) of the main text. At higher
T , e.g., for T = 1 − 2 eV, the estimated conductivity
behaves similar to that from the NPA, but somewhat
less conductive. The KG formula does not include any
self-energy corrections in the one-electron states and ex-
citation energies, and less importantly, no ion-dynamical
contributions either, as the ions are stationary (Born-
Oppenheimer approximation). The form of σ(ω) includ-
ing ion dynamics has been discussed by Dharma-wardana
at the Cargèse NATO work shop in 1992 [58].

8. The conductivity of Li at T =4.5 eV and density
0.6 g/cm3

The conductivity of Li, at density ρ = 0.6 g/cm3 at 4.5
eV estimated by Witte et al. [41], is roughly a factor of
five less than that obtained from NPA+Ziman. While the
NPA calculation may differ from another calculation by,
at worst, a factor of 2, it is hard to find an explanation
for this strong disaccord, given the good agreement in
the XRTS calculation. One possibility is the use of a
64-atom cell in DFT+MD for Li at a chemical potential
µ ∼ 0. DFT+MD and KG using N ∼ 100 atoms in
the simulation seems to significantly underestimate σ0

for low-valence substances like Li, Na, especially as T is
increased. Low-valence materials have a small µ = EF

and hence a modest increase in T can push µ to small
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FIG. 10. (Color online) Isochoric conductivity of aluminum
from near its melting point to about 0.7 eV, expanded from
Fig. 1 of the main text, and now including the Witte et al. [31]
calculation of the Al-conductivity at 0.3 eV and ρ = 2.7
g/cm3. Our DFT+MD data and those of Vlček are shown.

values where small-k scattering is important, and finally
to µ < 0 values (classical regime).
At low T/EF the major contributions to σ are provided

by electron scattering between −kF and kF , kF =
√
2EF ,

i.e., momentum changes of the order of 2kF . However,
at finite T , µ replaces EF , and as T increases µ → 0
and to negative values. The scattering momenta near
µ → +0 are in the small-k region, These contribute sig-
nificantly to σ at T = 4.5 eV for Li at 0.6 g/cm3. In Li,
if a 64-atom simulation is used, an appropriate length
a of the cubic simulation cell would be a = 20.26 a.u.
The smallest momentum accessible by such a simulation
is π/a=0.16/(a.u.) and hence the corresponding Kubo-
Greenwood formula will not sample the small k < 0.16
region. We see from Fig. 8 also that the DFT+MD simu-
lations do not provide values for k smaller than ≈ 0.6/Å
due to the finite size of the cell used in Ref. [31].
Hence such DFT+MD+KG calculations of σ are

strongly weighted to the larger-k strong scattering regime
and predict a low conductivity. The results of Pozzo et

al., where a 1000-atom simulation was needed for Na is
a case in point. However, such large simulations are be-
yond the scope of many laboratories while NPA-type ap-
proaches usually provide results to within a factor of two
in the worst case.

9. Isobaric and isochoric conductivity of aluminum
in the liquid-metal region

High-quality experimental data (errors of ± 6 %) are
available for the isobaric conductivity σib of liquid alu-
minum at low T [14, 15]. The relevant region, viz.,

(a) of Fig. 1 of the main text, is shown enlarged to
display the experimental and calculated data in Fig. 2.
The NPA calculation is in excellent agreement with the
experiment of Gathers, to well within the error bars.
On the other hand, the DFT+MD calculation captures
about 75% of the experimental conductivity. A ∼100-
atom simulation cannot capture the k-values smaller than
π/a ∼ 0.12/(a.u.) for Al at this density, and may con-
tribute to some of the under-estimate.
Isochoric conductivities (with ρ = 2.7 g/cm3) of alu-

minum obtained from the NPA and from DFT+MD by
us and by Vlček et al. [34] are shown in Fig. 10, together
with a single data point from Witte et al. [31] with the
PBE functional, and with the HSE functional. The re-
sult obtained using the HSE XC-functional is a strong
underestimate compared to other DFT+MD [60, 61], the
orbital-free calculation and the NPA estimates.
In Ref. [31] Witte et al. strongly argue for the HSE

functional even for aluminum, a ‘simple’ metal proven to
work well with more standard approaches. The value of
2.23 ×106 S/m quoted by them at 0.3 eV, 2.7 g/cm3, is
taken to agree with experiment, based on their interpre-
tation of the experimental data of Gathers [14]. However,
as discussed below, Gathers’ datum at 0.3 eV (≃3500K)
is for isobaric aluminum at ρ = 1.875 g/cm3 and 0.3 GPa.

10. The experimental data of Gathers

Gathers measures the resistivity of aluminum in an
isobaric experiment, starting from the solid (ρ0=2.7
g/cm3, v0=0.37 cm3/g) and heating to the range 933K to
4000K at 0.3 GPa [14]. Gathers himself recommends the
Gol’tsova-Wilson [63, 64] volume expansion data rather
than those measured by him. In Table II of the 1983
publication of Gathers [14], the experimental resistivity
(“raw data”) calculated using the nominal enthalpy in-
put to the sample is given in column 5. The apparatus
and the sample undergo volume expansion; the resistivi-
ties for the input enthalpy corresponding to the volume
expanded sample (using the Gol’tsova-Wilson data) are
given in column 4 of the same table. Hence the “volume
corrected” isobaric resistivity for aluminum in the range
(T=993K, ρ=2.42g/cm3) to (T=4000K, ρ=1.77g/cm3)
are the values found in column 4 while column 5 gives
the “raw data”. Column 4 resistivities agree with the
isobaric resistivity values that may also be obtained from
the fit formula given in the last row of Table 23 of the
1986 Gathers review[15].
Since Table II as given by Gathers is somewhat mis-

leading, we have recalculated the resistivities R using
the fit equations given by Gathers. Eq. (8) gives the
(expansion-uncorrected) “raw data”, labeled RG. The
expansion correction essentially brings the input heat to
the actual volume of the sample. Thus equation (9),
where the enthalpy input is corrected for volume expan-
sion agrees with Gathers’ fit equation given subsequently
in 1986 [15] and hence labeled R1986. Gathers uses the
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TABLE I. Gathers’ data for Al recalculated from his 1983 fit
equations (6)-(10) and also from his fit equation (reproduced
as Eq. A.24) given in the last row of Table 23 of the 1986
review [15]

T v/v0 ρ RG REq.(9) = R1986 σib

(K) — (g/cm3) (µΩm) (µΩm) 106 (S/m)
Eq.(7) Eq.(8) Eq.(9) 1/REq.(9)

Gathers Col.3 — Col.5 Col.4 1/R1986

933 1.12 2.42 0.261 0.233 4.30
1000 1.12 2.41 0.268 0.238 4.20
1500 1.18 2.29 0.331 0.281 3.56
2000 1.24 2.18 0.370 0.324 3.08
2500 1.30 2.08 0.476 0.367 2.73
3000 1.37 1.97 0.560 0.409 2.44
3500 1.44 1.87 0.651 0.451 2.22
4000 1.52 1.77 0.751 0.494 2.03

enthalpy as the primary variable in equation (8) and (9),
but also gives RG directly as a function of v/v0 in equa-
tion (10). Thus Eqs. (8) and (10) yield the same resis-
tivity RG at a given density and corresponding T , while
Eq. (9) is the volume-corrected equation restated in the
1986 review.
According to Gathers, the experimental resistivities

have an error of ∼ ±6%. The relevant equations from
Gathers’ 1983 work are given below:

H = 0.0048910+ 0.0010704T (A.20)

+2.3084 · 10−8T 2,Gathers Eq.(6),

v/v0 = 1.0205 + 8.3779 · 10−2H (A.21)

+4.9050 · 10−3H2,Gathers Eq.(7),

R9 = 0.1494 + 7.9448 · 10−2H (A.22)

−1.3189 · 10−3H2,Gathers Eq.(9),

1.12 ≤ v/v0 ≤ 1.56; i.e. (A.23)

2.411 g/cm
3 ≤ density ≤ 1.731 g/cm

3
.

The enthalpy H can be eliminated in Gathers’ Eq. (9),
i.e. (A.22), using the preceding equations. The result
agrees with the fit equation given in the subsequent 1986
review article [15], Table 23 (last row). This is given as a
fit for the isobaric resistivity (at 0.3 GPa) (µΩ m), viz.,

R(v) = −1.0742 + 4.1997× 103 · v − 2.5124× 106 · v2.
(A.24)

Here v is the volume in m3kg−1 with 4.1×10−5 ≤ v ≤
5.78×−4. The resistivity calculated from this equation
agrees with column 4 of Table II of Gathers [14].

The NPA calculation which takes the nuclear charge,
temperature and density as the only inputs and uses the
finite-T PDW XC-functional(LDA) [44] gives excellent
agreement for σib with the Gathers’ data at all densi-
ties listed in Table I, as seen in Fig. 2. At T = 0.3 eV,
ρ =1.875 g/cm3 σib = 2.22 × 106 S/m, while the HSE
functional used with MD+DFT+KG gives this conduc-
tivity only at 2.7 g/cm3, as reported by Witte et al. [31].
Our DFT+MD estimates of the isochoric conductiv-

ity using the PBE functional, the DFT+MD estimates of
Vlček et al., and the Witte et al. DFT+MD estimate [31]
using the PBE functional for 2.7 g/cm3 at 0.3 eV are in
close agreement. They all fall below the NPA+Ziman
estimate, and we attribute this partly to the inability of
the DFT+MD+KG approach to access small-k scattering
contributions unless the number of atoms N in the sim-
ulation is sufficiently large. Furthermore, as T/EF → 0,
the estimate of the derivative of the Fermi function and
also the matrix-element of the velocity operator probably
require an increasingly more dense mesh of k-points.
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Phys. Rev. B, 84, 054203 (2011)

[8] S. Sinha, P. L. Srivastava, and R. N. Singh, J. Phys.
Condens. Matter 1, 1695 (1989).

[9] I. Tamblyn,J.-Y. Raty and S. A. Bonev, Phys. Rev. Lett.
101, 075703 (2008)

[10] M. W. C. Dharma-wardana, Contr. Plasma Phys, 55, 85
(2015).

[11] F. Perrot, and M.W.C. Dharma-wardana, Phys. Rev. E.
52, 5352 (1995).

[12] F. Perrot, Phys. Rev. E 47, 570 (1993).
[13] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169

(1996); VASP; X. Gonze and C. Lee, Computer Phys.
Commun. 180, 2582-2615 (2009); ABINIT.

[14] G. R. Gathers, Int. J. Thermophys. 4, 209 (1983).
[15] G. K. Gathers, Reports on Progress in Physics, 49 no:4,

341 (1986).
[16] The experimental value is quoted in: R. Leavens, A.

H. MacDonald, R. Taylor, A. Ferraz, and N. H. March,
Phys. Chem. Liq. 11, 115 (1981).

[17] R. K. Williams, G. L. Coleman, and D. W. Yarbrough,
Oak Ridge National Laboratory technical report,
ORNL/TM-10622 (1988).



15

[18] D. Kraus, J. Vorberger, D. O. Gericke, V. Bagnoud, A.
Blazevic, W. Cayzac, A. Frank, G. Gregori, A. Ortner,
A. Otten, F. Roth, G. Schaumann, D. Schumacher, K.
Siegenthaler, F. Wagner, K. Wunsch, and M. Roth Phys.
Rev. Let. 111, 255501 (2013).

[19] H. D. Whitley, D. M. Sanchez , S. Hamel , A. A. Correa
, and L. X. Benedict, Contrib. Plasma Phys. 55, 390
(2015).

[20] M. W. C. Dharma-wardana, ArXive [cond-mat]
1607.07511 (2017)

[21] V. Recoules, J. Clerouin, G. Zerah, P. M. Anglade, S.
Mazevet, Phys. Rev. Lett. 96, 055503 (2006)

[22] Dafang Li, Dafang Li, Haitao Liu, Siliang Zeng, Cong
Wang, Zeqing Wu, Ping Zhang and Jun Yan Nature-
Scientific Reports, 4, 5898 (2014)

[23] M. S. Murillo, Jon Weisheit, Stephanie B. Hansen, and
M. W. C. Dharma-wardana, Phys. Rev. E 87, 063113
(2013).

[24] T. Blenski, R. Piron, C. Caizergues, B. Cichocki, High
Energy Density Physics, 9, 687-695 (2013).

[25] H. Reinholz, R. Redmer, G. Röpke and A. Wierling,
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Zastrau, J. Hastings,L. B. Fletcher, S. H. Glenzer, Phys.
Rev. Lett. 115, 115001 (2015).
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