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Abstract: We present a simple hyperspectral Stimulated Raman Scat-

tering (SRS) microscopy method based on spectral focusing of chirped

femtosecond pulses, combined with amplitude (AM) and polarization

(PM) modulation. This approach permits the imaging of low concentration

components with reduced background signals, combined with good hy-

perspectral resolution and rapid spectral scanning. We demonstrate, using

PM-SRS in a Raman loss configuration, the spectrally resolved detection

of deuterated dimethyl sulfoxide (DMSO-d6) at concentrations as low

as 0.039 % (5.5 mM). In general, background signals due to cross-phase

modulation (XPM), two-photon absorption (TPA) and thermal lensing (TL)

can reduce the contrast in SRS microscopy. We show that the nonresonant

background signal contributing to the SRS signal is, in our case, largely

due to XPM. Polarization modulation of the Stokes beam eliminates the

nonresonant XPM background, yielding high quality hyperspectral scans

at low analyte concentration. The flexibility of our combined AM-PM

approach, together with the use of variable modulation frequency and

lock-in phase, should allow for optimization of SRS imaging in more

complex samples.

© 2015 Optical Society of America

OCIS codes: (180.4315) Nonlinear microscopy; (290.5910) Scattering, stimulated Raman;

(300.6450) Spectroscopy, Raman.
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1. Introduction

Coherent Raman scattering (CRS) is a molecule-specific third-order nonlinear optical imaging

method wherein contrast is achieved via vibrational Raman resonances [1–5]. This technique

is based on the interaction of laser beams at pump frequency ωp and Stokes frequency ωS

with their frequency difference ∆ω = ωp −ωS matching the resonant frequency Ω of a specific

molecular vibrational transition of a target molecule within the sample. Amongst the different

CRS techniques, the most widely used is coherent anti-Stokes Raman scattering (CARS) in

which the detected signal is the generated blue-shifted anti-Stokes (ωAS = 2ωp −ωS) beam,

as illustrated in Fig. 1(a). The prime utility of this method is based on the generated anti-

Stokes beam being in some cases enhanced by orders of magnitude as compared to spontaneous

Raman scattering. This is because CARS is a stimulated rather than spontaneous process and

the magnitude of the CARS signal (ICARS) is proportional to the square of the pump intensity

(Ip) and is linear with the Stokes intensity (IS). Spectral-focusing-based CARS microscopy [6,7]

is a particularly simple and flexible implementation which permits rapid hyperspectral imaging

around a specific Raman shift, recording a partial Raman spectrum or combining CARS with

other techniques in order to achieve multimodal imaging. Spectral focusing allows for both

rapid contrast-based imaging and for the fastest spectral scanning, over a set range (e.g. <
1000 cm−1), of the Raman spectrum [5]. Such hyperspectral imaging has been widely used to

study live cells and tissues [7–13]. Here we demonstrate, as a proof-of-concept, a new combined

amplitude (AM) and polarization (PM) modulation scheme for optimizing spectral focusing

Stimulated Raman Scattering (SRS) microscopy. In samples where cross-phase modulation

(XPM) dominates the background, we show that PM largely eliminates this effect, leading to

rapid hyperspectral imaging at low analyte concentrations.

The analysis of CARS signal intensity and spectral lineshape is complicated by the coherent

addition of the resonant signal with a non-resonant background (NRB) signal due to electronic

four wave mixing (FWM) within the sample [14]. The NRB signal can overwhelm the reso-

nant signal in cases where the concentration of Raman resonant molecules is low [15]. This

causes spectral distortions in the Raman spectrum [16], coherent imaging artifacts [17–19] and

reduces the chemical detection sensitivity [20]. Quantitative measurements are complicated by

all these unwanted effects, as well as by the nonlinear dependence of the CARS signal on the

concentration of target molecules. The careful use of phase retrieval methods, such as the time-

domain Kramers-Kronig transform [21], removes the NRB contribution, yielding high quality

Raman-like spectra at low analyte concentrations. Nevertheless, phase retrieval does not elimi-

nate spatial-spectral coupling in CARS imaging [17] which can become an important distortion

effect at low analytes concentrations. We note that SRS is unaffected by spatial-spectral cou-

pling.
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SRS has gained popularity more recently because it addresses many of these concerns

[17, 22–26]. The SRS signal is generated at the frequency of an incident beam which acts as a

local oscillator. Indeed, SRS is based on the energy transfer between the pump and the Stokes

beams (Fig. 1(a)) where the measured signal may either be a power gain in the Stokes beam

(Stimulated Raman Gain - SRG) or a loss in the pump beam (Stimulated Raman Loss - SRL).

The SRL process is illustrated in Fig. 1(c). The SRS signal provides spectral information similar

to spontaneous Raman and is linearly proportional to the target molecule concentration. Despite

being free from the four-wave mixing (NRB) processes which plague CARS microscopy, SRS

is not “background free”. Indeed, SRS contains parasitic background signals which may be

spectrally overlapped with the SRS signal. These unwanted signals can be classified as being

due to two general categories of nonlinear effects: two photon absorption (TPA) and nonlin-

ear transient scattering. TPA can arise from the simultaneous absorption of one pump and one

Stokes, of two pump or of two Stokes photons. The former is seen as a loss by the detection

system and therefore is detected as a SRL signal [27, 28]. In contrast, nonlinear transient scat-

tering arises from the refractive index changes induced by the pump beam and experienced

by the Stokes beam. It is caused by two effects: (i) the purely nonresonant and instantaneous

cross phase modulation (XPM) [29], and (ii) thermal lensing (TL) or thermal scattering, a

time-averaged multiple pulse response which results from temperature-induced variations of

the refractive index due to absorption of either the pump or Stokes beams [28, 30]. TPA can be

reduced by using longer wavelengths for both the pump and the Stokes [26] whereas nonlinear

transient scattering effects can be reduced by using collection optics with large numerical aper-

ture [23, 26, 31, 32]. Nevertheless, in the case of very weak SRS signals, there remains a need

for improved contrast and sensitivity.

In this work, we present a scheme based on AM and PM of one of the two incident beams

(see Fig. 1(d)), permitting multimodal imaging with spectral focusing in a hyperspectral imple-

mentation, similar to a previously presented hyperspectral CARS arrangement [6]. In contexts

different from that presented here, the use of polarization schemes in SRS microscopy was

demonstrated previously. For example, polarization modulation at specific frequencies [33] was

used to achieve spectral modulation of the pump beam before the microscope but the polariza-

tion state at the sample was not modulated. In another example, an AM scheme with variable but

unmodulated polarization angle between the pump and the Stokes beams was used for Raman-

induced Kerr effect (RIKE) microscopy [34]. Variable but unmodulated polarization was also

used the measure the angle-resolved SRS response and the depolarization ratios in specific

systems [35]. We note, however, that in these prior schemes, neither the pump nor the Stokes

beams were modulated in polarization at the sample, the requirement for the method presented

here. For samples in which it is significant, XPM will contribute both when the polarization

of the pump and the Stokes beams are parallel and when they are perpendicular. On the other

hand, for those Raman bands which are highly polarized, the SRS signal will be maximum

when the polarizations are parallel, with almost no SRS signal being produced for perpendic-

ular polarizations. Therefore, modulating the relative pump-Stokes polarization at the sample

would successfully minimize the XPM background without adversely affecting the resonant

Raman signal. Since TL in unstructured media is relatively insensitive to the incident polariza-

tion, this same scheme may also serve to reduce TL-induced background effects. In general,

the angular dependence of the SRS response will depend on the symmetry of the Raman mode

being probed: in other words, the depolarization ratio is mode specific [35]. This means that a

PM-SRS scheme such as presented here will have a spectral contrast which depends on the sym-

metry of the Raman mode under study. Furthermore, any residual birefringence in the sample

may also reduce contrast. These effects are discussed in a following section. Finally, although

we present here both CARS and SRS spectra, we emphasize that our goal is not to compare sen-
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sitivity limits between these two modalities. In fact, it is expected that phase-retrieved CARS

spectra will have sensitivity limits similar to SRS [5, 25]. Our aim here is to demonstrate that

enhanced XPM background suppression can be achieved by PM in spectral focusing SRS mi-

croscopy. The paper is organized as follows. In Section 2, we describe the experimental setup

and the basic concept of the SRS AM-PM scheme. In Section 3, we present the experimental

results and determine the origin of the background signal in the studied samples. We present

our conclusions and outlook in Section 4.

2. Experimental setup

The experiments were performed using the chirped pulse (spectral focusing) arrangement

shown in Fig. 1(b). This arrangement may be used for either Stimulated Raman Gain (SRG) in

the Stokes beam or Stimulated Raman Loss (SRL) in the pump beam. In this manuscript, for

technical reasons, we present only the SRL case. We note, however, that the SRG scheme has

some advantages when TPA contributes significantly to the background. A Titanium:Sapphire

laser (Chameleon, Coherent, USA) produced the Stokes beam with a pulse duration of approx-

imately 200 fs (chirped to ∼1.3 ps), centered at a wavelength of 800 nm. The pump beam was

generated by a synchronously-pumped OPO (OPO PP auto FAN, APE, Germany), centered

at a wavelength of 680 nm with an approximately 200 fs pulse duration (chirped to a pulse

length of ∼2.5 ps). Due to specific anti-reflections coatings on our existing modulator, we have

chosen to demonstrate here SRL, as shown in Fig. 1(c). The experimental setup permits both

amplitude modulation (AM) and polarization modulation (PM) hyperspectral coherent Raman

microscopy. A Pockels cell (350-160, Conoptics, USA) induced polarization modulation (typi-

cally, 1-5 MHz) of the 800 nm Stokes beam. The two polarizations were separated by a polar-

izing beamsplitter which led to two beams, one shifted by half a modulation period (beam 2)

as compared to the other (beam 1). The polarization angle of beam 2 was then finely tuned to

90 degrees using a half wave plate (WPH05M-808, Thorlabs, USA) such that its polarization

was perpendicular to both beam 1 and the pump beam. The two 800 nm Stokes beams were

then combined using a beam splitter, creating a train of pulses whose relative polarization an-

gle was periodically modulated to be parallel or perpendicular to the pump beam polarization

(Fig. 1(d)). Implementing the amplitude modulation (AM) scheme required simply blocking

beam 2, thereby leaving beam 1 as the (AM) Stokes beam. The pump and the Stokes beams

were combined using a dichroic mirror. A fixed optical path length of glass (25 and 30 cm

of SF11 glass for the Stokes and pump beams, respectively) was placed in the paths of the

beams so as to induce a positive chirp, allowing for fast tuning of the Raman frequency by

time-scanned spectral focusing [6]. The chirped pulse duration of the pump and Stokes beams

were, respectively, around 2.5 and 1.3 picoseconds. The time delays between the pump and the

Stokes beam were controlled by two translation stages in the Stokes beam path.

The pump and Stokes beam were sent into an inverted microscope (IX-71, Olympus, Japan)

and focused into the sample with a microscope objective (UPlanSapo, 20x, NA 0.75, Olympus,

Japan). Galvanometer mirrors at the entrance of the microscope allowed the beams to raster

scan the sample, providing an image. The pump beam was collected in the forward direction

by a microscope objective (LUMPlanFI/IR, 40x, NA 0.8w, Olympus, Japan) and sent into a

photodiode (FDS10X10, Thorlabs, USA) after being filtered by two different optical filters

(BrightLine 750/SP, Semrock, USA and HQ680/60, Chroma, USA). In the backward direction,

a dichroic mirror (Z660DCXR, Chroma, USA) sent the back-reflected CARS signal through

a bandpass filter (D605/55M, Chroma, USA) to a photomultiplier tube. A function generator

(DS345, Stanford Research Systems, USA) produced the modulation signal for the Pockels

cell. We used a square wave modulation at a frequency of 2 MHz, chosen to reduce the con-

tributions of laser noise. The reference signal was also sent into a lock-in amplifier (UHFLI,
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Fig. 1. Principle of AM-PM SRS microscopy. (a) Energy level diagram for SRS and CARS

microscopy. (b) Experimental setup for AM-SRS and PM-SRS: (BS) beam splitter, (D)

dichroic mirror, (G) galvanometers mirrors, (S) sample, (O) microscope objective, (C) con-

denser, (P) photodiode, (F) filters, (PMT) photomultiplier tube, (Sh) shutter and (λ/2) half-

wave plate. (c) Stimulated Raman Loss (SRL) scheme used in the present experiment. The

analogous Stimulated Raman Gain (SRG) scheme may be readily implemented by apply-

ing the AM or PM modulation to the pump beam. (d) A depiction of the AM and PM SRS

microscopy scheme. In AM-SRS, the intensity of the Stokes beam is modulated while in

PM-SRS, the state of the linear polarization is modulated. A key aspect of the PM scheme

is that the total power (Pump+Stokes) transmitted through the sample may be chosen to be

invariant, minimizing thermal lensing effects. Importantly, PM-SRS can specifically reduce

the XPM background contribution to the signal.

Zurich Instruments) as the reference frequency. The photodiode signal was amplified by a tran-

simpedance amplifier (DHPCA-100, Femto Messtechnik GmbH, Germany) which provided the

input to the lock-in amplifier. The lock-in amplifier then extracted the SRS signal at the function

generator frequency. A time constant of 20 µs was used and the phase of the lock-in amplifier

was adjusted to maximize the SRS signal.

The spectral scans shown were obtained by acquiring images while continuously scanning

the time delay between the pump and the Stokes pulses. One data point in the spectrum cor-

responds to the average intensity across the region of interest (ROI) in an image. By adjusting

the chirp parameter of the pump and Stokes beams and the speed of the translation stage, the

effective spectral resolution can be varied. In the present case, the scan speed corresponded to

2.3 cm−1 per acquisition spectral data point. With the chirp parameters implemented, the Ra-

man spectral resolution was approximately 25 cm−1. Each image (256 × 256 pixels) took ∼2

seconds to acquire and the total acquisition time for a hyperspectral scan was 9 min 20 seconds.

The images displayed here have an image pixel size of 1.05 µm and are an average of 5 images

with an acquisition time of ∼2 seconds per image.

3. Discussion

In order to demonstrate a proof-of-concept for AM-PM-SRS microscopy, with particular in-

terest in hyperspectral imaging at low concentration, we chose to image simple solutions of

liquid water and deuterated dimethyl sulfoxide (DMSO-d6) at a range of concentrations. We

choose this specific compound because it has an isolated and unambiguous Raman signature

in the range 1750 to 2400 cm−1. DMSO-d6 has two Raman resonances at ∼ 2125 cm−1 and
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∼ 2000 cm−1 [36]. Although we focus here on background mitigation in SRS microscopy,

we find it illustrative to compare the more familiar (raw) CARS spectra with SRS spectra of

the same sample using the same laser pulses. To that end, in Fig. 2 we presents simultane-

ously recorded vibrational Raman spectra using AM-SRS and CARS in the spectral region

ranging from 1750 to 2400 cm−1 at two concentrations. At 10 % (1.4 M) DMSO-d6, the AM-

SRS Raman spectrum (Fig. 2(a)) reveals two well separated resonances. In contrast, the raw

CARS spectrum (Fig 2(b)) contains a large NRB signal due to electronic FWM: the Raman

resonance at ∼ 2150 cm−1 is barely visible. At an order of magnitude lower concentration

(1.25 % or 0.18 M), shown in the bottom row, the signal becomes considerably smaller. The

raw CARS spectrum (Fig. 2(d)) is dominated by the background signal. As is amply discussed

elsewhere, the resonant Raman signal can still be extracted from such data using phase retrieval

techniques [21]. Importantly, the AM-SRS spectrum still exhibits two clear Raman resonances

peaks due to DMSO-d6. However, the AM-SRS spectrum (Fig. 2(c)) now seems to contain a

background signal as well.
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Fig. 2. (a) Amplitude-modulated SRS (AM-SRS) microscopy spectrum and (b) raw CARS

spectrum at a concentration of 10 % (1.4 M) DMSO-d6 in water. (c) AM-SRS and (d) raw

CARS spectrum at 1.25 % (0.18 M) DMSO-d6 concentration in water. In all cases, the

pump and Stokes power were IP = 71 mW and IS = 146 mW . It can be seen that, at low

concentration, the unprocessed CARS signal is dominated by the non-resonant background.

However, in panel (c) it can be seen that a background signal also emerges for AM-SRS

microscopy. For a discussion, see the text.

As shown in Fig. 2(c), the AM-SRS Raman spectra exhibit nonresonant signals which will

limit the sensitivity at low concentrations. As is well known in SRS, this background can be

due to three nonlinear effects: resonant two photon absorption (TPA), thermal lens effects av-

eraged over multiple laser pulses (TL) and cross phase modulation (XPM). In order to exper-

imentally determine the origin of the unwanted background shown in Fig. 2(c), we studied a

completely non-resonant medium - pure water - which does not exhibit nonlinear absorption

at the wavelength used here. Using the same experimental setup, we recorded Raman spectra

via AM-SRS in a dilute solution of 0.6 % (88 mM) DMSO-d6 in water (Fig. 3(a)) and in pure

water (Fig. 3(b)). It can be seen that the background is present in both cases. As is well known,

pure water doesn’t exhibit pump-Stokes TPA at the wavelengths used here and, therefore, the

broad background signal seen in Fig. 3(b) must be due to either XPM or TL. In the present SRL
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implementation, the SRS signal results in a loss of pump signal power (∆Ip): an induced lens

resulting from TL and/or XPM can modify the divergence of the forward propagating SRS sig-

nal. Due to our detection geometry, not all forward propagating light is collected (i.e. vignetting

due to the physical size of the photodiode sensor) and, therefore, such induced lens effects can

appear as a loss and therefore contribute a background to the SRS hyperspectral scan.
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Fig. 3. (a) AM-SRS spectrum of 0,6 % (88 mM) DMSO-d6, showing a nonresonant signal.

Here Ip = 61 mW and IS = 95 mW . (b) AM-SRS spectrum of pure water also reveals a very

similar nonresonant background signal. Here Ip = 56 mW and IS = 151 mW . The upper

x axis denotes the time delay difference between the pump and the Stokes pulses. With

pure water ruling out two-photon absorption, this leaves two possible candidates for the

background signal: thermal lensing (TL) and cross-phase modulation (XPM).

Furthermore, from Fig. 3 we can see that the magnitude of the nonresonant signal depends on

the time delay between the pump and the Stokes beams (recall that in the chirped pulse scheme,

Raman tuning is achieved via scanning the time delay between the linearly chirped pump and

Stokes pulses). Since TL is averaged over multiple laser pulses, changing the time delay (by a

few picoseconds) between the pump and the Stokes pulses shouldn’t change any thermal non-

resonant signals because the heating processes due to the modulated (in this implementation)

Stokes beam should have a much longer focal-volume averaged dissipation time - on the order

of nanoseconds. As seen in Fig. 3, the maximum time delay between the two pulses is in the few

picosecond range, orders of magnitude shorter than the heat dissipation time scale. Therefore,

the nonresonant signals seen in Fig. 3 cannot be due to TL. This leaves (for the samples under

study here) XPM as the remaining possibility. We note that if TL effects were observed, they

could be minimized [23, 26, 31, 32] by implementing a polarization modulation (PM) scheme.

Indeed, TL is a photothermal effect averaged over many laser pulses and is due to energy from

one laser heating the sample (via weak absorption but integrated over many pulses), leading to

a temperature and, hence, refractive index gradient which modifies the propagation of the other

laser beam. The total heating and, therefore, TL depends on how strongly the sample absorbs

the modulated laser beam and on the power in this laser beam. In AM-SRS microscopy, thermal

effects are due to the change of power over a single modulation period. Therefore, in order to

avoid TL background signals, either (i) amplitude modulation should be avoided or (ii) a collec-

tion geometry which integrates the total forward propagating power must be implemented. The

former condition can be readily achieved through PM-SRS microscopy where we can ensure

the same average power on both polarization axes, resulting in constant average power over

the modulation cycles, thereby minimizing thermal lens effects. The complete cancellation of

thermal effects in a PM scheme will ultimately depend on the precision with which the optical

power can be balanced between the two polarization axes and on the nature of the sample.

The nonresonant background being caused, in the present samples, by XPM, we assume that
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the background signal is coming from the solvent which is, in our case, water. We consider the

XPM intensity to be proportional to the refractive index variations experienced by the Stokes

beam, which is given by [28]

IXPM ∝ δn
a
p = 3

χ
(3)
XPMIa

S

npnSε0c
(1)

where the superscript a =‖,⊥ represents the orientation of the polarization vector of the Stokes

beam with respect to the pump beam (see Fig. 1(d)), Ia
S is the intensity of the Stokes beam along

the polarization axis and χ
(3)
XPM is the cross phase nonlinear susceptibility, given by (using the

convention of Butcher and Cotter) [37]

χ
(3)
XPM = χ(3)(−ωp,ωS,−ωS,ωp). (2)
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Fig. 4. Spectral scans of 0.6 % (88 mM) DMSO-d6 solution using (a) AM-SRS and (b)

PM-SRS. The laser powers were Ip = 61 mW , I
‖
S = 95 mW and I⊥S = 174 mW . It can be

seen that the PM effectively removes the background due to XPM.

The cross phase nonlinear susceptibility terms are elements of a third rank tensor and since,

for the solvent, we are far from resonance in the spectral region analysed, we consider χ
(3)
XPM

to be independent of frequency. In isotropic media such as liquid water, the only nonvanishing

elements are χ
(3)
1111, χ

(3)
1122, χ

(3)
1212 and χ

(3)
1221 [38]. In our detection geometry, only two tensor

elements play a role: χ
(3)
1111, where the polarization vectors of the pump and Stokes beams are

both aligned parallel with respect to the same polarization axis; and χ
(3)
1221 where the polarization

vectors of the pump and Stokes beams are aligned orthogonally. For the PM-SRS scheme, the

refractive index variation is given by the difference in refractive index between the parallel

(δn
‖
p) and perpendicular (δn⊥p ) polarization alignment. As the XPM signal is proportional to

the refractive index variation, the ratio of the AM-SRS and PM-SRS XPM signal is given by:

∆IXPM
AM

∆IXPM
PM

=
δn

‖
p

δn
‖
p −δn

⊥
p

=
χ
(3)
1111I

‖
S

χ
(3)
1111I

‖
S −χ

(3)
1221I⊥S

(3)

=
I
‖
S

I
‖
S −ρI⊥S
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where ρ = (χ
(3)
1221)/(χ

(3)
1111) is the depolarization ratio of the solvent. The depolarization ratio

measures the degree of depolarization of the scattered field with respect to the incident field.

It ranges from 0 to 0.75: for high symmetry parallel polarized bands ρ ≈ 0, whereas for a

fully depolarized band ρ = 0.75 [39]. The depolarization ratio for liquid water varies across

the Raman spectrum: in the region of interest here, from 1750 cm−1 to 2400 cm−1, it achieves

an average value of 0.6 [40]. In contrast, for DMSO-d6, ρ assumes a value close to 0 for the

Raman bands at 2000 and 2125 cm−1 [41]. It is worth noting that a depolarized DMSO-d6

Raman band exists at ∼ 2250 cm−1 with a depolarization ratio of 0.75. This band, however,

is too far from the center of our set spectral range to be resolved at low concentration. The

PM-SRS scheme described here would have poor contrast for this particular Raman band.
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Fig. 5. Log-log plots of AM- and PM-SRS signals as a function of the DMSO-d6 concen-

trations, ranging between 0.039 % (5.5 mM) and 10 % (1.4 M). The laser powers were

the same for both the AM and PM SRS measurements: Ip = 64 mW , I
‖
S = 106 mW and

I⊥S = 178 mW . In the inset, we show the raw SRS spectra at the lowest DMSO-d6 concen-

tration recorded, 0.039 % (5.5 mM).

The terms on the left side of Eq. (3) represent the ratio of the XPM signals when using PM-

SRS and AM-SRS. Therefore, it suffices to measure the magnitude of the background signals

for I
‖
S = I⊥S in order to obtain the depolarization value of the sample component causing the

XPM signal; liquid water in our case. Using this approach, we were able to identify the origin

of the background signals shown in Fig. 3. We measured the depolarization ratio of pure water

by recording the associated Raman spectra, using AM-SRS and PM-SRS, by setting the laser

power to be the same for both polarizations of the Stokes beam (Fig. 1 with I
‖
S = I⊥S = 152 mW ).

We determined a depolarization ratio ρ of 0.59 for liquid water which is in good agreement with

values found in the literature [40]. This means that the background signal seen in Fig. 3 is due to

XPM and, therefore, it can be minimized via our PM scheme. The PM-SRS yields a differential

measurement between the SRS signals produced in the parallel and perpendicular geometries.

This differential is controlled by varying the power between the two polarization axes of the

Stokes beams (I
‖
S and I⊥S in Eq. (3)). Indeed, as shown in Fig. 4, we were able to largely remove

XPM effects using the PM-SRS modulation scheme. From Eq. (3), one would expect to use 5
3

more power in one arm (I⊥S ) than in the other (I
‖
S ) in order to completely cancel the XPM term.

For the data shown in Fig. 4, we used I
‖
S = 95 mW and I⊥S = 174 mW , a 10 % larger ratio. This

discrepancy is likely caused by some of the optical elements in the microscope setup of Fig. 1
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being polarization dependent, inducing more loss on one polarization axis. For this reason, in

order to balance the XPM signals, we had to compensate with about 10 % more power input. It

is worth noting that our PM-SRS method is best suited to highly polarized Raman bands. For

the PM scheme, the attenuation of the signal is directly proportional to the depolarization ratio:

a Raman band having a large depolarization ratio will be strongly attenuated. In cases where

the depolarization ratio of the probed Raman band is equal to or greater than the depolarization

ratio of the XPM signal, the SRS signal could vanish or obtain a negative value. In such cases,

the AM modality of our combined approach then applies. Our implementation easily converts

from PM- to AM-SRS simply by blocking (or chopping) one arm of the PM scheme output.

For a known sample, the relevant depolarization ratios can be obtained from the literature or

measured directly by comparing the intensity difference between the AM and PM signals. We

further note that the presence of net birefringence will reduce the contrast in our PM scheme,

For example, in the most extreme case that the modulated beam achieve circular polarization

in the medium, the PM-SRS contrast will in fact vanish. In the more realistic case of slight

elliptical polarization of the modulated beam, the PM-SRS modulated depth will be reduced and

therefore the imaging contrast will decrease (the “background” due to imperfect cancellation

of XPM and TL will begin to appear as it does in the AM case). Nevertheless, the flexibility of

our AM-PM approach allows us to optimize to the extent possible - but only on average across

the ROI - the SRS contrast for a given sample.

In order to characterize our PM-SRS method, we carried out a series of measurements on

dilute solutions of DMSO-d6 in water, ranging from 10 % (1.4 M) to 0.039 % (5.5 mM). We

also directly compared the sensitivity limits, in term of spectral peak visibility, of the two mod-

ulation schemes, as shown in Fig. 5. These results show that we are able to unambiguously

detect, via its Raman spectrum, DMSO-d6 at a low concentration of 0.039 % (5.5 mM). In our

current implementation it seems that, at the low concentration limit, the two modulation scheme

seem to differ little in term of intensity contrast. This is due to the fact the spectral signal-to-

noise ratios are close to one at the lowest concentrations, meaning that the system electronic

noise is still playing an important role at the smallest signal levels for each measurement. We

expect, therefore, that improvements in electronic signal recovery will push AM/PM-SRS sen-

sitivity limits even further. We discuss, below, the improved Raman peak contrast (and therefore

chemical contrast) offered by the PM-SRS scheme for samples in which XPM is the dominant

background.

In order to demonstrate the advantages of PM for hyperspectral imaging, we performed both

AM-SRS and PM-SRS imaging of an artificial sample composed of low concentration (0.3 %,

44 mM) DMSO-d6 droplets in octadecene. The only Raman resonances in the spectral region

1750 cm−1 to 2400 cm−1 are due to DMSO-d6: octadecene has no Raman resonances in this

range. The results are shown in Fig. 6. It can be seen that Raman spectral identification (i.e.

Raman peak visibility) of the target molecule DMSO-d6, via its main resonance at 2150 cm−1,

is significantly improved in such samples by the PM modulation scheme.

4. Conclusion

Implementations of SRS microscopy based on spectral focusing can be easily integrated with

other nonlinear optical imaging modalities such as SHG and TPEF, providing a simple yet po-

werful approach to label-free hyperspectral multi-modal imaging. In this paper, we presented

a new modulation scheme for spectral focusing SRS microscopy based on polarization modu-

lation (PM-SRS). Our PM-SRS scheme was able to largely remove background signals due

to XPM by appropriately balancing the power in the two (parallel and perpendicular) Stokes

beams. Depending on the origin of the background signals, which in turn will vary with the

specific sample under analysis, we are able to remove XPM effects and potentially TL with
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Fig. 6. Hyperspectral SRS imaging at low concentration. (a) AM-SRS and (b) PM-SRS

hyperspectral images of 0.3 % (44 mM) DMSO-d6 droplets in an octadecene medium. The

spectra associated with the droplet shown by the arrow are given in panel (c) for AM-SRS

and (d) for PM-SRS. In both schemes, Ip = 57 mW , I
‖
S = 110 mW and I⊥S = 176 mW . It

can be seen that, although the image intensity contrast appears similar in both AM and PM

schemes, the spectral identification (Raman peak visibility) of the target molecule is much

clearer in the PM scheme. The images size are 270×270 µm.

our scheme. In order to compensate for XPM effects, the power should be adjusted in the two

polarization axes as dictated by the depolarization ratio. Our scheme also readily permits both

AM- and PM-SRS microscopy. We compared the detection limits for AM-SRS and PM-SRS

microscopy and showed the expected linear relation between SRS signal and concentration.

We also compared AM-SRS with PM-SRS in a hyperspectral imaging modality. We showed

that PM-SRS enhances the spectral visibility of the vibrational Raman bands at low concen-

trations. The high sensitivity provided by PM-SRS, coupled with its enhanced “chemical” (i.e.

Raman band visibility) contrast, should allow for hyperspectral SRS microscopy in a range of

samples. We caution, however, that for samples with significant birefringence or for Raman

modes with a large depolarization ratio, the PM-SRS modality will have reduced contrast. In

such case, the AM-SRS scheme afforded by our implementation will still apply. Furthermore,

when the samples birefringence or XPM background vary spatially across a region of interest

(ROI), the balancing of the arms in PM-SRS can only be achieved only on average across the

ROI. Nevertheless, our implementation permits considerably flexibility in varying amplitude

and polarization, as well as lock-in frequency and phase and, therefore, we anticipate that this

approach will find use in optimizing Raman-based image contrast in a range of samples. Finally,

we note that, although in the present scheme we were limited to SRL detection, the PM-SRS

approach should perform even more favorably in a Stimulated Raman Gain (SRG) scheme. This

is because absorptive signals due to two-photon absorption are always a loss whereas SRG is

always a gain - and is therefore “out of phase” in a lock-in amplifier detection scheme [42] -

meaning that both TL and XPM effects should be largely removed by a PM-SRG scheme. We

are currently developing this approach, which will be discussed in a future publication.
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