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Theory of atomic scale quantum dots in silicon: dangling bond

quantum dots on silicon surface

Alain Delgado1, Marek Korkusinski2, P. Hawrylak1

1Department of Physics, University of Ottawa, Ottawa, Canada K1N 6N5 and

2National Research Council of Canada, Ottawa, Canada K1A OR6

Abstract

We present here a theory and a computational tool, Silicon-Qnano, to describe atomic scale

quantum dots in Silicon. The methodology is applied to model dangling bond quantum dots

(DBQDs) created on a passivated H:Si-(100)-(2×1) surface by removal of a Hydrogen atom. The

electronic properties of DBQD are computed by embedding it in a computational box of Silicon

atoms. The surfaces of the computational box were constructed by using DFT as implemented

in Abinit program. The top layer was reconstructed by the formation of Si dimers passivated

with H atoms while the bottom layer remained unreconstructed and fully saturated with H atoms.

The computational box Hamiltonian was approximated by a tight-binding (TB) Hamiltonian by

expanding the electron wave functions as a Linear Combination of Atomic Orbitals and fitting the

bandstructure to ab-initio results. The parametrized TB Hamiltonian was used to model large finite

Si(100) boxes (slabs) with number of atoms exceeding present capabilities of ab-initio calculations.

The removal of one hydrogen atom from the reconstructed surface resulted in a DBQD state with

wave function strongly localized around the Si atom and energy in the silicon bandgap. The DBQD

could be charged with zero, one and two electrons. The Coulomb matrix elements were calculated

and the charging energy of a two electron complex in a DBQD obtained.
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I. INTRODUCTION

There is currently interest in extending silicon based microelectronics to quantum tech-

nologies, including silicon nanocrystals, [1] gated quantum dots [2, 3] and dopants. [4, 5]

Recently, several groups have demonstrated the possibility of using Scanning Tunneling

Microscopy (STM) to remove Hydrogen atoms from a hydrogen passivated Si(100)-(2x1)

surface. [6–12] The removal of a Hydrogen atom from the surface creates a dangling bond

(DB) in a Silicon atom with corresponding energy in the gap of bulk Si, well below the

bottom of the conduction band. [7, 13] This dangling bond can be charged in a controlled

way with electrons drawn from n-type doped Si substrate. [6, 8]

When the dangling bond quantum dot is charged and/or manipulated, the quantum

structure involves a large number of atoms. The same is true for quantum circuits created

with dopants, nanocrystals and gated silicon quantum dots - the number of Silicon atoms

involved even in a very small circuit can easily exceed a million. Hence to develop an under-

standing of atomic scale quantum computing devices in silicon one needs a computational

tool suitable for designing circuits made of millions of atoms.

Here we describe Silicon-Qnano (Si-Qnano), a Qnano computational platform [14–16]

for the design of quantum nanostructures in silicon and apply it to atomic scale dangling

bond based quantum dots on a surface of silicon.

II. COMPUTATIONAL SILICON BOX WITH RECONSTRUCTED SURFACE

In this section we describe a finite Silicon computational box with a top reconstructed

and passivated surface in which impurities, defects, dangling bonds or external potentials

will be implemented. We start with a small box suitable for ab-initio calculations. Fig. 1(a)

shows the computational supercell used to model a box or a slab with 8 Si layers. The top

surface of Si, passivated with H atoms, aims at simulating a real Si surface and is follwed

by a vacuum region in the [0,0,1] direction. The bottom surface on the other hand aims

at simulating bulk silicon. This supercell is repeated periodically in the lateral and vertical

directions using the lattice vectors ~a1 = a1x̂, ~a2 = a2ŷ and ~a3 = a3ẑ. Here a1 =
√
2aSi,

a2 =
√
2aSi/2 and a3 = 2aSi + hvac where aSi is the lattice constant of bulk Si and hvac is the

height of the vacuum region.
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In order to understand the structure and electronic properties of our Si computational box

we perform Density Functional Theory (DFT) calculations using the PBE generalized gradi-

ent approximation to the exchange-correlation energy functional [17, 18] as implemented in

the Abinit code. [19] All calculations were performed using a plane wave basis set truncated

with a kinetic energy cutoff of 20 Ha (544 eV). A grid with 6 × 12 × 1 k-points was used

for Brilloin-zone integrations using Monkhorst-Pack method. [20] First, we optimized the

lattice constant of bulk silicon and obtained aSi = 5.46 Å. Note that this value agrees up to

0.03 Å with the experimentally observed lattice constant of Silicon, aexpSi = 5.43. [21] Next

we proceeded to surface reconstruction. First, for a given number of Si layers the thickness

of vacuum above the surface was varied until total energy did not depend on it. We found

that a vacuum region of 16 Å was enough to suppress interaction between periodic images in

the ẑ direction. Next, we varied the number of Si layers of the slab and found that 8 layers

FIG. 1. (color online) (a) Optimized atomic structure of the supercell used to model top surface

reconstruction of a Si-(100) slab. Bond lengths are reported explicitly in Angstrom. Dash (red)

arrows indicate the displacements of Si atoms, respective to their positions in bulk material, due

to surface reconstruction. (b) A larger slab supercell illustrating the formation of Si dimer rows

on the slab reconstructed surface.
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were sufficient to achieve convergence of the surface energy per surface unit cell. With 8 Si

layers there are 16 Si atoms and 6 Hydrogen atoms in a supercell as shown in Fig. 1(a).

Surface reconstruction was achieved by minimizing total energy with respect to the atomic

positions of H and Si atoms in the top four layers of the slab. Atomic coordinates were ad-

justed until maximum interatomic force was less than 0.001 eV/Å. In Fig. 1(a) we illustrate

with arrows the displacements of Si atoms with respect to their positions in the bulk ma-

terial. As seen in Fig. 1 the top Silicon layer is reconstructed, with formation of Si dimers

passivated with H atoms. The positions of Si atoms in the bottom layers were not optimized

as relaxation decreases very rapidly as we move away from the top surface. The bottom sur-

face is unreconstructed and fully passivated with H atoms to simulate a seamless transition

to the bulk material.

III. TIGHT-BINDING ELECTRONIC-STRUCTURE CALCULATIONS

In this section we describe the model tight binding (TB) Hamiltonian we use to approxi-

mately calculate the Kohn-Sham (KS) quasi-particles of the Si slab described in the previous

section. The KS quasi-particle Hamiltonian reads:

ĤQP =
~p 2

2m
+ Vatoms(~r) + VHartree(~r) + Vxc(~r), (1)

where Vatoms(~r) is the sum of atomic potentials, VHartree(~r) is the Hartree potential produced

by all electrons, and Vxc(~r) is the exchange-correlation potential. If we carry out fully

self-consistent density functional calculations as in previous section, the KS Hamiltonian

would have been expressed in terms of atomic, Hartree, and exchange-correlation potentials,

themselves functionals of the ground state electronic density. Since we do not know the

Hamiltonian for a large number of atoms, we parametrize it in a tight binding form by

expanding the electron wavefunction as a linear combination of atomic orbitals (LCAO) α

on atom at position ~R:

|φ〉 =
∑

~R,α

c~Rα|~Rα〉. (2)

In our tight-binding approach we retain ten valence orbitals for each Si atom: one s, three

p, five d and one additional s∗ orbital that accounts for higher lying states and by one s

orbital on each hydrogen atom. In this basis, a TB Hamiltonian can be written in second
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quantization as follows,

ĤTB =

NSi+NH
∑

i=1

N
(i)
orb

∑

α=1

εiαc
+
iαciα +

NSi+NH
∑

i=1

NN(i)
∑

j=1

N
(i)
orb

∑

α=1

N
(j)
orb

∑

β=1

tiα,jβc
+
iαcjβ. (3)

In Eq. (3) c+iα (ciα) is the creation (annihilation) operator of an electron on the orbital α

localized on the site i, εiα is the corresponding on-site energy, and tiα,jβ describes the hopping

of the particle between orbitals on neighboring sites. NSi and NH are, respectively, the total

number of Si and H atoms in the slab, N
(i)
orb is the number of atomic orbitals centered on

site i and NN(i) is the number of nearest neighbors of the i-th atom, that is, 4 for Silicon

atoms and 1 for hydrogen atoms.

Off-diagonal matrix elements (hopping parameters) of our Hamiltonian are calculated

according to Slater and Koster rules.[22] In this approach the hopping parameters tiα,jβ are

expressed as geometric functions of two-center integrals and depend only on the relative

positions of the two centers i and j. Contributions from three-center integrals are neglected.

A detailed explanation of how to evaluate tunneling matrix elements was already published in

Refs. [15,22]. Here on-site energies εα and tunneling matrix elements tiα,jβ are not directly

calculated, but obtained by fitting the TB band structure to analogous results measured

experimentally or obtained by first-principles calculations. In this work, we use our own

sets of TB parameters that fit the ab-initio DFT band structure of the passivated Si slab

with reconstructed surface. More details about the optimized set of TB parameters are given

in Sections IV and V.

IV. BAND STRUCTURE OF A Si BOX WITH HYDROGEN PASSIVATED AND

RECONSTRUCTED SURFACE - A TIGHT BINDING MODEL

In this section we report results and comparison of tight-binding (TB) and DFT calcu-

lations of the band structure of the Silicon box (slab) shown in Fig. 1. In Fig. 2(a) we

plot the energy bands of the model box calculated with DFT along the path defined by the

symmetry points G = (0, 0, 0), Y = (0, π/a2, 0), S = (π/a1, π/a2, 0) and X = (π/a1, 0, 0) of

the surface Brilloin zone. The supercell shown in Fig. 1(a) has 16 Si atoms and 6 H atoms.

With pseudopotentials accounting for core electrons, we have a total number of Ne = 70

valence electrons that occupy the first 35 spin-degenerated lowest-energy bands. The Fermi
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FIG. 2. (color online) Band structure of the reconstructed and Hydrogen passivated Silicon

slab shown in Fig. 1 calculated with (a) DFT using GGA-PBE approximation and plane waves as

implemented in the Abinit program and (b) a tight-binding (TB) method with a set of parameters

(see Table I) optimized to reproduce the ab-initio DFT band structure. Fermi level is indicated

with a dash (red) line.

level in Fig. 2 is indicated by a horizontal dash (red) line. The energy gaps at G, Y, S and

X points obtained with DFT calculations are reported in Table II.

We note that the DFT band structure in Fig. 2(a) reproduces very well the results

reported recently by Bohloul et al. in Ref. [23] using LDA and the projector augmented

wave method implemented in Vasp. [24] We also note that DFT calculations performed

within the LDA approximation by authors in Ref. [25] predict a larger electronic gap of 2.0

eV at the G point for a Si slab with a smaller lattice constant.

The lower panel of Fig. 2 shows the energy bands for the same slab obtained by di-

agonalizing the tight-binding (TB) Hamiltonian in Eq. (3) assuming periodic boundary
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TABLE I. Parameters used in the tight-binding (TB) Hamitonian to calculate the band structure

shown in Fig. 2(b). All values are in eV.

onsite energies hopping parameters

Si H Si-Si Si-H

εs -2.152 -1.0 tss -1.959 -1.959

εpx,y 4.229 - tsp 3.026 -

εpz 4.229 - tps 3.026 3.026

εd 13.789 - tppσ 4.104 -

εs∗ 19.117 - tppπ -1.518 -

tsd -2.285 -

tpdσ -1.355 -

tpdπ 2.385 -

tddσ -1.681 -

tddπ 2.588 -

tddδ -1.814 -

ts∗s -1.522 -

ts∗p 3.156 -

ts∗d -0.809 -

ts∗s∗ -4.241 -

conditions. Tight-binding parameters for Si atoms were taken from a parametrization by

Klimeck in NEMO1D [26] that describes the experimental band structure of bulk Silicon.

Then, we used a genetic algorithm to optimize the on-site energy of s-type atomic orbitals of

passivating Hydrogens in order to reproduce the band structure shown in Fig. 2(a) obtained

from DFT calculations. The optimized values for the s, p, d and s∗ orbital energies for Si

and H as well as required off-diagonal matrix elements are reported in Table I. As can be

seen from Fig. 2(b) this set of TB parameters captures all features of the band structure

predicted by DFT. Our TB parametrization predicts larger electronic gaps for all symmetry

points (see Table II), this is because the TB parameters for Si atoms were fitted to the

values, masses and gaps, which reproduce the experimental electronic structure of bulk Si.
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TABLE II. Energy gaps between the top of the valence band and the bottom of conduction band

(Egap) plotted in Fig. 2 calculated with DFT and tight-binding (TB) methods at the points G, Y,

S and X of the surface Brilloin zone. All values are given in eV.

DFT TB

Egap(G) 1.144 1.656

Egap(Y) 2.262 3.078

Egap(S) 3.401 4.139

Egap(X) 1.592 2.496

V. DANGLING BOND WIRES ON A H:Si-(100)-(2×1) SURFACE

If we remove a top H atom in the supercell shown in Fig. 3(a) and apply periodic

boundary conditions, the resulting slab will have an array of dangling bond wires (DBWs)

along the row of Si dimers separated by a single wire of saturated bonds and H-atoms as

illustrated in Fig. 3(b). This was also studied in Ref. [23] and we compare our DFT and

FIG. 3. (color online) (a) Sideview of a supercell with a missing Hydrogen atom generating an

array of infinite wires of dangling bonds (DBWs). (b) top view of a larger supercell illustrating

formation of DBWs on parallel dimer rows separated by the lattice constant a1 = 7.73 Å.
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TB results with DFT calculations reported in Ref. [23].

In Fig. 4(a) we show results of DFT calculation of energy bands for the Si slab defined in

Fig. 3. This supercell with a missing H atom has now an odd number of electrons Ne = 69,

so we performed spin-polarized DFT calculations to obtain the band structure. We did

not carry out geometry optimization of the model slab. Watanabe et al. [27] performed

geometry optimizations and found that the height of the unsaturated Si atoms is lowered

by only 0.1 Å. We used a Fermi-Dirac smearing to define the occupations of spin Kohn-

Sham orbitals at each k-point during self-consistent calculations. Converged results show

no spin polarization, with the highest energy occupied orbital equally populated by one half

of the unpaired electron. This translates into identical band structures for the two spin

components.

FIG. 4. (color online) (a) Energy band (in blue) in the gap of Silicon associated with DBWs

calculated with (a) DFT and with (b) tight-binding (TB) methods. Fermi level is indicated with

a dash (red) line.
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In Fig. 4(b) we plot the energy bands of the same Si slab obtained by solving the tight-

binding Hamiltonian, Eq. (3), with periodic boundary conditions. In our TB calculations,

removal of the Hydrogen atom is accounted for by i) setting to zero hopping parameters

between the unsaturated Si atom and removed H atoms, and ii) shifting the onsite energy of

the s orbital centered on this H atoms well up in energy to avoid indirect coupling with other

atoms. Furthermore, we adjusted onsite energies of s and p atomic orbitals of depassivated Si

atoms to the values εs = −1.7 eV and εp = 2.04 eV to improve the tight-binding description

of the midgap band of DB states with respect to DFT results.

Both DFT and TB calculations show appearance of a band of states in the energy gap of

Silicon, associated with the dangling bond wires. The energy band, marked in blue, describes

electronic states localized on Si atoms with dangling bonds on the surface. Notice that this

band shows dispersion in all directions in reciprocal space due to coupling of dangling bonds

localised on different dimer rows. Furthermore, our DFT and TB calculations predict an

energy-dispersion width for this band of 0.74 eV which is in excellent agreement with previous

calculations. [10, 23, 27] In Table III we report the energy difference between the top of the

valence band and the DB states at the symmetry points. Note that TB calculations place

these states at slightly higher energies as compared with analogous results calculated using

DFT.

TABLE III. Energy gaps between the top of the valence band and the midgap band of DB states

(EDB
gap) at points G, Y, S and X as plotted in Fig. 4 calculated with DFT and tight-binding (TB).

All values are given in eV.

DFT TB

EDB
gap(G) 0.570 0.716

EDB
gap(Y) 0.778 1.036

EDB
gap(S) 1.695 1.943

EDB
gap(X) 0.738 0.795
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VI. DANGLING BOND QUANTUM DOT ON THE SILICON SURFACE

We now turn to the description of a single dangling bond quantum dot on a passivated

and reconstructed Si surface. With a single DBQD we abandon periodic boundary condi-

tions in all directions and develop a Silicon computational box (SiCB) properly passivated

with Hydrogen atoms on all sides but only top reconstructed surface. Fig. 5 shows two

computational boxes, labeled by the number of unit cells (n) in the directions of ~a1 and ~a2

(na1 × na2). Fig. 5(a) shows the smallest possible slab of NSi = 32 Silicon atoms passi-

vated with Hydrogen. The top layer shows reconstructed and passivated surface, the bottom

surface and edges remain unreconstructed and fully saturated with H atoms with the goal

of simulating a seamless transition to the bulk of Silicon. For NSi = 32 Silicon atoms this

requires NH = 40 Hydrogen atoms, with a total number of electrons Ne = 168. In Fig. 5(b),

a much larger Silicon computational slab with NSi = 256 and NH = 184, with Ne = 1208 is

shown.

These SiCBs are finite clusters and we carry out ab-initio DFT calculations using the

Octopus code [28] to solve the Kohn-Sham (KS) equations in a real-space representation.

The real-space simulation domain was defined by using spheres centered at the atomic

positions with radius 5 Å and a uniform spacing of 0.19 Å between each grid point of the

FIG. 5. (color online) Silicon computational box (SiCB) with top reconstructed surface consisted

of (a) NSi = 32, NH = 40, Ne = 168 and (b) NSi = 256, NH = 184, Ne = 1208. The edges and

bottom surface are passivated with H atoms without reconstruction. SiCBs are labeled based on

the number of unit cells (n) in the directions of ~a1 and ~a2 (na1 × na2).
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generated mesh. We used atomic pseudopotentials to account for core electrons of Si atoms

and the PBE-GGA approximation to the exchange-correlation potential. On the other hand,

we performed tight-binding calculations with Si-Qnano with the parameters optimized to

reproduce DFT energy bands of a Si slab as discussed in the previous sections.

Fig. 6 shows the results of DFT and tight-binding calculations for the NSi = 32 Silicon

slab. The left hand side (Fig. 6(a)) shows the energy levels of the slab fully passivated with

Hydrogen. Black bars show KS orbital energies calculated with Octopus and red bars

show the TB energy levels obtained with Si-Qnano. We see energy levels filled with spin

up/down electrons up to the Fermi level which we take as reference energy level EF = 0.

The structure is fully passivated, there is an energy gap of Egap ≈ 3 eV opening in the

energy spectrum in both, DFT and TB, calculations. Fig. 6(b) shows the effect of a removal

of a Hydrogen atom from the top surface and hence a formation of the dangling bond. The

removal of a Hydrogen atom implies a removal of one electron, there are now Ne = 168− 1

FIG. 6. (color online) (a) Energy levels of the Silicon computational box (SiCB) shown in Fig.

5(a) with top reconstructed surface passivated with Hydrogen. Q denotes the net charge of the

SiCB. (b) Shows the effect of removal of a H atom from a top surface and a formation of a single

dangling bond (DB) state with energy in the gap of Silicon.
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electrons, with one electron on a Silicon dangling bond. In addition, we characterize the

cluster by the net charge Q. Because we removed both proton and electron, the net charge

remains Q = 0 even though there is a dangling bond and odd number of electrons.

The energy spectra for a surface with one dangling bond (DB) show emergence of an

energy level, marked in blue, in the energy gap. As we have an odd number of electrons,

in spin-polarized DFT, energy levels for spin up and spin down electrons are different, thus,

we have two localized levels that appear at 0.9 eV and 1.9 eV above the top valence state,

respectively. In red we show the energy spectrum for the same Silicon cluster with a DB

state obtained with Si-Qnano. We see that just like in DFT calculations, there is a bound

state, marked in blue, in the energy gap located at 1.5 eV above the top valence state.

The localized nature of the dangling bond state is shown in Fig. 7. In its left panel we

visualize the KS wave functions of the top valence and dangling bond states for the SiCB

shown in Fig. 5(a). This figure shows that while the valence state delocalizes over several Si

atoms of the cluster the wave function associated with the state in the gap is clearly localized

around the Si atom with a dangling bond. Furthermore, we also notice from the plotted

isosurface the pz atomic-like character of the DB KS orbital. A similar scenario is confirmed

FIG. 7. (a) Isosurfaces of Kohn-Sham (KS) wave functions of the top valence state and the

DB state with energy in the gap. (b) Energy levels of the Silicon computational box (SiCB)

1a1 × 1a2 shown in Fig. 5(a) and probability density P i
~R
of finding the electron localized around

the depassivated Si atom with position vector ~R calculated for each TB state |φi〉.
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by tight-binding calculations. In Fig. 7(b) we plot the probability density P i
~R
=

∑

α |C i
~Rα
|2,

of finding the electron localized around the Si atom with position vector ~R with a dangling

bond, due to removal of a Hydrogen atom, calculated for each eigenstate |φi〉. We see a

distinct peak of P i
~R
associated with the state in the energy gap indicating a strong electron

localization on the Si atom with the DB.

In Fig. 8 we show results obtained for a much larger computational box with NSi = 256

and NH = 184. We see that qualitatively the same result is obtained. The energy gap in the

spectrum appears, with the value EGap ≈ 2 eV, smaller than the energy gap for the smaller

cluster as shown in Fig. 6. Removal of a Hydrogen atom from the top surface results in

the appearance of a DB state in both, DFT and TB, spectra, located at 0.4 eV and 0.9 eV,

respectively, above the top valence state.

In Fig. 9 we plot the tight-binding energy spectra calculated with Si-Qnano of Si com-

putational boxes of increasing size with a single dangling bond at the top surface. The

FIG. 8. (a) Energy levels of the Silicon computational box (SiCB) 4a1 × 4a2 shown in Fig. 5(b),

Q denotes the net charge of the SiCB. (b) Shows the effect of removal of a H atom from a top

surface and a formation of a single dangling bond (DB) state with energy in the gap of Silicon.

(c) probability density P i
~R
of finding the electron localized around the depassivated Si atom with

position vector ~R calculated for each TB state |φi〉.

14



simulated slabs consist of a total number of Si atoms NSi ranging from 32 (smallest possible

cluster) to 14400, a SiCB with dimension 30a1 × 30a2. We used Lanczos method, as imple-

mented in Si-Qnano to calculate the energy levels of the finite slabs close to the top of the

valence band and to the bottom of conduction band. Notice that in all cases a gap opens

with the appearance of a state with energy in the gap (DB state) due to the creation of a

dangling bond on the top reconstructed surface. Dash (red) line in Fig. 9 shows the renor-

malization of the valence and conduction band edges as the size of the systems is increased.

The energy gap decreases, as expected for less confined systems and its value for the largest

SiCB EGap = 1.6 eV seems to approach the TB energy gap of an infinite slab as shown in

Fig. 4. We also observe that the energy of the DB state converges very rapidly with the

size of the Si slab due to the localized character of this state. For the largest SiCB with

FIG. 9. (a) Energy levels of Silicon computational boxes (SiCB) of increasing size with a single

dangling bond (DB) in the top reconstructed surface calculated with Si-Qnano. The DB state

is marked in blue, the arrow indicates single-electron occupation of this state. Dash (red) lines

illustrate the evolution of the top of the valence band and the bottom of conduction band with the

size of the finite slab.
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NSi = 14400 atoms, TB calculations with Si-Qnano place the DB state energy level 0.6 eV

above the top of the valence band.

VII. CHARGING ENERGY OF THE DANGLING BOND QUANTUM DOT

Scanning Tunneling Spectroscopy experiments show that the dangling bonds simulated

in the previous section are on average neutral, that is, the DB quantum dot is occupied

by a single electron. However, for n-type doped Silicon samples, additional electrons in the

conduction band can be loaded into the DBQD in a controlled way using gates. [6, 8] We

approximate the two-electron DBQD with a single configuration where two electrons with

opposite spins are populating the DB orbital, with net charge of DBQD Q = −1. The

charging energy UDB of a DBQD is given by the two-body Coulomb matrix element,

UDB =

∫

dx1dx2 φ∗

u(x1)φ
∗

d(x2)
e2

ǫ(x1,x2)|x1 − x2|
φd(x2)φu(x1), (4)

where φu and φd are spin up and spin down DB spin-orbitals, each occupied by one electron

at position x ≡ (~r) and ǫ(x1,x2) is the position-dependent dielectric function. In order to

evaluate Coulomb matrix element we express the TB orbitals in the LCAO basis,

|φi〉 =
∑

~R,α

C i
~Rα

|~Rα〉|χmα
〉, (5)

with χ denoting the spin wave function. It follows from Eq. (5) that the Coulomb matrix

element reads as,

UDB =
∑

~R1,α1

∑

~R2,α2

∑

~R3,α3

∑

~R4,α4

Cu∗

~R1α1
Cd∗

~R2α2
Cd

~R3α3
Cu

~R4,α4

× δmα1 ,mα4
δmα2 ,mα3

〈~R1α1, ~R2α2

∣

∣

∣

∣

e2

ǫ(~r1, ~r2) |~r1 − ~r2|

∣

∣

∣

∣

~R3α3, ~R4α4〉. (6)

Eq. (6) contains up to four-center integrals. We restrict the terms entering the latter

equation to be one-center and two-center Coulomb matrix elements. The integrals involving

atomic orbitals centered on the same atom and on atoms which are nearest-neighbors (NN)

are calculated numerically using Slater type orbitals to approximate the radial part of the

wave functions. The two-center integrals involving atoms that are not NN are treated as

long-range Coulomb interaction between two charges distributions as explained in Ref. [15].
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FIG. 10. Energy of the (a) neutral and (b) charged DB state for a SiCB 4a1 × 4a2 shown in Fig.

5(b) with a depassivated Si atom at the top surface calculated with DFT and Si-Qnano.

As we have shown in Fig. 7(b) and Fig. 8(c), for the dangling bond state the probability

density of finding the electron localized around the depassivated Si atom peaks at the large

value of 0.6. This implies that the onsite term in Eq. (6) will give most of the contribution

to the charging energy UDB of the DB quantum dot. Indeed, we found that the DB charging

energy shows practically no dependence with the size of the Si computational box. On the

other hand, the position-dependent dielectric function accounting for screening effects due

to the valence electrons and the Si-vacuum interface has been approximated. [15] More

specifically, on-site (dominant) contribution to the Coulomb interaction between the two

electrons in the DB state is screened by the effective dielectric constant ǫeff = (ǫSi + 1)/2

where εSi = 11.9 is the static dielectric constant of Silicon. [21] The smaller contributions

involving atomic orbitals centered on neighboring atoms and non-NN atoms are screened by

the dielectric constants (ǫSi/2) and ǫSi, respectively.

Fig. 10 shows the energy spectra of the SiCB shown in Fig. 5(b) with a DB on the
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top surface calculated with DFT and the TB approach implemented by Si-Qnano. The

DB states shown in Fig. 10(a) are occupied by 1 electron which corresponds to a neutral

DB quantum dot. On the other hand, Fig. 10(b) shows the energy spectra of SiCB with

net charge Q = −1 where an extra electron with opposite spin populates the DB state.

The DFT spectra are obtained solving the spin-unpolarized Kohn-Sham equations for the

negatively charged finite Si box. Notice that in this case the KS energy of the DB state

is shifted up by 1.2 eV with respect to the energy of the neutral DB state. This means

that each electron occupying the DB state for the system with Q = −1 feels a KS effective

potential due to the delocalized valence electrons plus a two-body Coulomb repulsion due

to the presence of a second electron in the DB qdot.

A similar analysis holds for electrons occupying the TB states calculated with Si-Qnano.

In this case, the energy of the DB state occupied by two non-interacting electrons will be

shifted up in energy by the charging energy UDB with respect to the singly occupied DB

state. In order to compare with DFT results, we used the TB wave function of the DB

state to compute the charging energy using Eq. (6) for which we obtained the value of 0.67

eV. This places the energy of the negatively charged DB state at 1.62 eV above the top of

the valence band which is in excellent agreement with DFT results as shown in Fig. 10(b).

In other words, our TB approach predicts a 0.67 eV upward shift for the energy level of

the charged DB relative to that of the neutral DB. We note that this number is in good

agreement with the value of 0.5 eV reported by Livadaru et al. in Ref. [9]. Furthermore, the

charged DB energy level predicted by Si-qnano defines a bound state with energy −0.85

eV relative to the bottom of the conduction band which is similar to the value of −0.95 eV

reported by authors in Ref. [11] to model STM experimental results on charged DB qdots.

The small deviations of our results relative to the data reported by other authors may be

related to the fact that we did not re-optimize the atomic position of the depassivated Si

atom due to the excess charge localization.

VIII. CONCLUSION

We have presented Si-Qnano, a new scalable computational platform to simulate atomic

scale quantum devices in silicon. We applied Si-Qnano to describe the dangling bond

quantum dots on a Si-(100)-(2x1) surface passivated with hydrogen. The dangling bond was
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shown to result in an energy level localised in the silicon gap, with wavefunction localised in

the vicinity of the dangling bond silicon atom. The DBQD was shown to acommodate up

to two electrons and charging energy was predicted. For small number of silicon atoms the

Si-Qnano results agreed very well with ab-initio calculations. However, Si-Qnano allowed

us to compute the electronic properties for silicon nanostructures involving tens of thousands

of atoms. Future work will apply Si-Qnano to dangling bond and dopant based quantum

circuits, gated quantum dots and nanocrystals in silicon.
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