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Calibration is the process of computing the intrinsic (internal) camera parameters from a series of images. Normally calibration
is done by placing predefined targets in the scene or by having special camera motions, such as rotations. If these two restrictions
do not hold, then this calibration process is called autocalibration because it is done automatically, without user intervention.
Using autocalibration, it is possible to create 3D reconstructions from a sequence of uncalibrated images without having to rely
on a formal camera calibration process. The fundamental matrix describes the epipolar geometry between a pair of images, and it
can be calculated directly from 2D image correspondences. We show that autocalibration from a set of fundamental matrices can
simply be transformed into a global minimization problem utilizing a cost function. We use a stochastic optimization approach
taken from the field of evolutionary computing to solve this problem. A number of experiments are performed on published
and standardized data sets that show the effectiveness of the approach. The basic assumption of this method is that the internal
(intrinsic) camera parameters remain constant throughout the image sequence, that is, the images are taken from the same camera
without varying such quantities as the focal length. We show that for the autocalibration of the focal length and aspect ratio, the
evolutionary method achieves results comparable to published methods but is simpler to implement and is efficient enough to
handle larger image sequences.

Keywords and phrases: autocalibration, dynamic hill climbing, fundamental matrix, evolutionary computing, epipolar geometry,
3D reconstruction.

1. INTRODUCTION

Calibration is the process of computing internal physical
quantities of a camera’s geometry. Parameters such as focal
length, center of projection, and CCD sensor array dimen-
sions are required in order to get 3D information from a se-
ries of images. Autocalibration has become popular recently
because of the desire to create 3D reconstructions from a se-
quence of uncalibrated images without having to rely on a
formal calibration process. The standard calibration model
for a pinhole camera has five unknown intrinsic parameters
defined in a 3 × 3 calibration matrix (K). These parameters
are the focal length, aspect ratio, sensor skew, and the cen-
ter of projection x and y (the principal point). The accu-
rate estimation of these 5 parameters directly from an image
sequence without having a formal calibration process is the
goal of autocalibration.

Autocalibration works by computing aforementioned
quantities directly from 2D image correspondences, and then
using invariants of these quantities to find the camera cali-
bration. The fundamental matrix and the full projective re-
construction are two quantities that can be computed from
a set of 2D image correspondences, and they are the basis
of most autocalibration algorithms. As such autocalibration
algorithms can be divided into three classes that we will re-
fer to as classes A, B, and C. In class A algorithms, we com-
pute the calibration matrix K from the fundamental matrix
(the recovered epipolar geometry) [1, 2, 3, 4, 5]. In class B al-
gorithms (K) is computed from a projective reconstruction
[6, 7, 8] of the scene. Class C algorithms auto calibrate from
homographies and planar features within an image sequence
[9, 10].

While class C algorithms can compute intrinsic camera
parameters from a set if interimage homographies [11], we
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loosely consider them autocalibration routines. Because a
homography is a planar transformation, class C algorithms
require the use of planar targets [12] or the automatic detec-
tion and correspondence of planar regions within an image
sequence. While it has been shown that planar regions may
be robustly detected in images [13], it is highly probable that
an image sequence will exist where there are no planar ob-
jects, or the existing planar objects are not suitable for robust
detection. The aforementioned requirements must be known
a priori for computing the calibration parameters, and there-
fore class C algorithms are not generalized, rather they rely
on specific features that may not be present. Due to these
facts, it is questionable whether or not a class C algorithm is
truly an autocalibration routine in the sense that it requires
a target (therefore not autocalibration), or is presupposed by
the planar region detection/correspondence problem (there-
fore not generalized). Because of these problems, class C al-
gorithms are not considered in this work.

In this work we compare against class B algorithms which
are thought to be numerically superior to other calibration
methods. Since the projectively reconstructed frames must
all be warped to a consistent relative base, class B algorithms
are computationally difficult in comparison to simply find-
ing the fundamental matrix between image pairs. It is often
claimed that class B autocalibration algorithms are superior
to class A and class C algorithms because those algorithms
do not enforce the constraint that the plane at infinity (an
invariant between projective and Euclidean space) should be
the same over the entire image sequence [14]. It is precisely
this constraint that makes class B algorithms computation-
ally difficult. In this work, we provide evidence that class A
algorithms combined with the use of evolutionary systems
produce as accurate an autocalibration as their class B coun-
terparts.

Another concern with class A algorithms is the existence
of extra degenerate motions, these being pure rotations, pure
translations, affine viewing and spherical camera motions
[14, 15]. However, there exist many practical situations that
do not contain these degenerate motions. Also, in many cases
autocalibration is the only option, and even a less accurate
autocalibration result is better than no calibration at all. For
example, there are many photographs and video clips in exis-
tence for which there is no knowledge of the camera. In order
to reconstruct the 3D world from those image sequences, au-
tocalibration is the only option.

Autocalibration has been criticized in the past [16] be-
cause many different calibrations will provide a 3D re-
construction with reasonable Euclidean structure. In other
words, the corresponding reconstruction will usually look
good because the different right angles look square and the
different length ratios look correct. However, this depends
considerably on the image sequence and the camera used to
acquire that sequence. All that we can conclude from this
fact is that using the “look” of a reconstruction to evaluate
the autocalibration results is unreasonable. It is necessary to
have the ground truth camera calibration to do a proper per-
formance evaluation. In this paper we evaluate the proposed
autocalibration algorithms on image sequences for which the

ground truth camera calibration is known a priori as well as
comparing against results of class B algorithms.

The constraining equations for the two autocalibration
methods presented in this work are nonlinear and based on
the fundamental matrix. In what follows, we will show in
depth that it is possible to reformulate the process of auto-
calibration into the minimization of a cost function of the
calibration parameters [17, 18]. While this type of reformu-
lation has been achieved for class A algorithms and is clearly
evident in class C algorithms, this is not the case for class B
algorithms. For example, in [7] the basis of the class B auto-
calibration algorithm is the modulus constraint. The modu-
lus constraint is a nonlinear relationship between the cam-
era calibration parameters and the projective camera matri-
ces that makes autocalibration possible [6]. The application
of the modulus constraint produces a set of X polynomial
equations for every pair of images, and a system of polyno-
mial equations for the entire image sequence. Given an M
image sequence, we have XM−1 equations in the system. The
solution of such a polynomial system is very difficult to com-
pute. One possibility is to find all the permutations of ex-
act solutions in closed form and then to combine the results
[5]. This is rather cumbersome. Another way to solve such
a polynomial system is to use a continuation method [19].
Unfortunately, continuation methods only work well for a
small number of equations, and are not suitable for the large
polynomial systems generated by long image sequences. By
contrast, the methods presented in this work are computa-
tionally efficient (with a known upper bound on the number
of times the cost function will be executed) even for large im-
age sequences. Furthermore, the accuracy of these algorithms
improves as the image sequence lengths increase.

In this work, we examine two class A autocalibration al-
gorithms based on the fundamental matrices, one based on
Kruppa’s equation [1, 3, 5], and the second based on the
idea of finding the calibration matrix which optimally con-
verts a fundamental matrix to an essential matrix [4]. In both
cases the problem can be formulated as the minimization of
a cost function of the calibration parameters, which will be
described in detail in Sections 3 and 4. The correct camera
calibration is the global minimum of this cost function over
the space of possible camera parameters. In the past, claims
have been made that such minimization approaches to au-
tocalibration are sensitive to the initial starting point of the
gradient descent algorithm [2, 20]. However, when comput-
ing only one parameter, the starting point is irrelevant be-
cause we can accurately solve the associated 1D optimization
problem using standard numerical approaches [21]. When
there is more than one parameter, such as focal length and as-
pect ratio, we use a simple stochastic approach [22] from the
field of evolutionary computing to overcome this problem.
We show experimentally that for this type of cost function,
the stochastic method reliably finds the global minimum. As
well, a number of experiments are performed on image se-
quences with known camera calibration. We compare the re-
sults of our method against class B results on some of the
same image sequences, and provide evidence that shows that
the stochastic approach achieves results that are comparable.
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Figure 1: Epipolar geometry of two cameras (O and O′) in an arbi-
trary position, view arbitrary scenes.

This paper continues by providing a brief description
of epipolar geometry, followed by a summary of two class
A algorithms for computing the fundamental matrix in
Section 3. In Section 4 we continue by outlining our method
that combines class A algorithms with evolutionary systems.
In Section 5, we outline our experimental results and follow
up with conclusions.

2. BACKGROUND

To explain the basic ideas behind the projective paradigm,
we must first define some notation. We work in homoge-
neous coordinates, which are defined as an augmented vec-
tor created by adding one as the last element. A projection of
a point (in the homogeneous Euclidean coordinate system)
M = [X ,Y ,Z, 1]T to a point m on image plane can be de-
scribed using the following standard equation:

sm = PM. (1)

Here s is an arbitrary scalar, P is a 3 × 4 projection matrix,
and m = [x, y, 1]T , a 2D homogeneous point on the image
plane.

Knowing the camera calibration simply enables us to
easily move from a projective space into Euclidean space.
This requirement spawned much research into autocalibra-
tion techniques.

2.1. The fundamental matrix

The fundamental matrix F is a 3 × 3 matrix of rank two
that defines the epipolar geometry between two images from
uncalibrated cameras [23] and characterizes the position of
the two cameras independent of the scene structure. Con-
sider a point in 3D space, M = [X ,Y ,Z, 1]T , and its pro-
jected image in two different camera locations (Figure 1),
m1 = [x1, y1, 1]T and m2 = [x2, y2, 1]T . Then the epipolar
constraint is

m1
TFm2 = 0. (2)

The fundamental matrix can be computed from a set of cor-
responding 2D points between the two images. This pro-
cess is considered to be overly sensitive to noise when com-
pared to iterative methods [24, 25], but in fact a simple pre-
processing data normalization step improves the accuracy
and produces good results [26].

2.2. Intrinsic camera parameters

If a camera is calibrated, then the calibrationmatrix (K), con-
taining the internal parameters of this camera (focal length,
pixel dimensions, etc.), is known. Using this calibration ma-
trix (K), we can generate the actual 2D image coordinates on
the camera-sensing element.

The standard linear camera calibration matrix (K), used
to convert from image coordinates in pixels to world coordi-
nates on the camera-sensing element in millimeters, has the
following entries [14, 23]:

K =



f ku − f ku cot(θ) u0

0
f kv

sin(θ)
v0

0 0 1


 . (3)

Here f is the focal length in millimeters, ku and kv are the
number of pixels per millimeter (width and height, respec-
tively), and u0, v0 are the center of projection. If we let αu and
αv be f ku and f kv respectively bymultiplying the focal length
( f ) in mm by k, given in mm/pixel, this allows us to work in
pixel units. The ratio αu/αv is now the aspect ratio and is of-
ten (but not always) one. The skew angle θ is almost always 90
degrees because modern camera-sensing elements are man-
ufactured accurately. Making these basic assumptions leaves
us with four free intrinsic camera parameters αu, αv, u0, and
v0. The calibration matrix K can therefore be rewritten in a
much simpler form as

K =


αu 0 u0
0 αv v0
0 0 1


 , (4)

where the focal lengths (αu and αv), and principal point
(u0, v0) are all quantified in pixels.

It has been shown [16] that autocalibrating the center of
projection u0, v0 is not practically useful. For this reason, in
this work, we attempt to autocalibrate only the focal length
and the aspect ratio and assume that the center of projec-
tion is set to be the center of the image. However, results are
encouraging when autocalibrating all 4 (focal length, aspect
ratio, principal point u and v) intrinsic camera parameters.

2.3. The essential matrix

The essential matrix can be considered the calibrated form of
the fundamental matrix. It also encodes the epipolar geom-
etry between two camera views and the epipolar constraint
still holds given two points p1 and p2 in the camera coordi-
nate system:

p1
TEp2 = 0, (5)



1116 EURASIP Journal on Applied Signal Processing

where

E = [t]× R, (6)

where t is the translational motion (vector) between the 3D
camera positions, and R is the rotational motion (matrix)
(see Figure 1). The essential matrix can also be computed
from a set of camera coordinate correspondences between
two different calibrated cameras [27].

A side effect of computing the essential matrix is the
Euclidean 3D location of the corresponding points and the
camera positions. This is also true for the fundamental ma-
trix, but these coordinates are found in a projective space.
The camera position is also found when computing F, but
again, only in a projective space.

2.4. The absolute conic

An important concept for autocalibration is the invariant na-
ture of the image absolute conic on multiple image frames.
Because it is invariant under Euclidean transformations, its
relative position in multiple camera frames remains constant
for constant intrinsic camera parameters. The absolute conic
has the equation

x2 + y2 + z2 = 0. (7)

The absolute conic can be seen as a calibration object that
occurs in all views of a scene, and once located can be used
to compute the intrinsic camera parameters [6].

3. AUTOCALIBRATION FROM THE
FUNDAMENTALMATRIX

Our first class A algorithm relies on the fact that the funda-
mental matrix can be decomposed into terms of the essential
matrix and the camera calibration matrices. Our second al-
gorithm relies on the existence of the projection of the abso-
lute conic within an image pair.

3.1. Autocalibration via equal eigenvalues

Single image pairs

The essential matrix can be considered as the calibrated ver-
sion of the fundamental matrix. Given the camera calibration
matrix K and the fundamental matrix F, then the essential
matrix E is related by the following equation:

E = KTFK. (8)

Since F is a 3× 3 matrix of rank two with the condition that
there are exactly two nonzero eigenvalues, E is also of rank
two. The essential matrix (E) however has an added con-
straint that the two nonzero eigenvalues must be equal [23].
It is this constraint that is used to create the autocalibration
algorithm [4]. The goal is to find the calibration matrix K
that makes the two eigenvalues of E equal, or as close to equal
as possible. Given two nonzero eigenvalues of E, σ1 and σ2
where σ1 > σ2, in the ideal situation (σ1 − σ2) should be zero.

Consider the difference (σ1 − σ2)/σ1, which can be rewritten
as

1−
(
σ2
σ1

)
. (9)

If the eigenvalues of E are equal, (9) computes to zero; as
they differ, (9) approaches one. Clearly, (9) becomes the cost
function to be minimized.

Multiple image pairs

Since we are dealing with a sequence of M images, we can
have at mostM − 1 adjacent image pairs. Since a fundamen-
tal matrix is computed between each adjacent image pair,
we therefore have M − 1 different fundamental matrices Fi
(i = 1, . . . ,M − 1). Based on our assumption that the intrin-
sic parameters of the camera do not vary, our goal is to findK
by minimizing the cumulative values of (9) for all the funda-
mental matrices (Fi) in the sequence. Assume Fi is the funda-
mental matrix relating images IK and IK+1. To autocalibrate
over the M image sequence, we must find the K that mini-
mizes

M−1∑
i=1

ωi
(
1− σ2

σ1

)
, (10)

where ωi is a weighting factor, between zero and one, which
defines the confidence we have in the computed fundamental
matrix Fi. The weights ωi are set in proportion to the num-
ber of matching 2D feature points that support a given fun-
damental matrix. The larger the number of 2D points that
support the epipolar geometry characterized by F, the more
confidence we have in that fundamental matrix, and there-
fore the smaller the weight (remember we are minimizing).
Each weight ωi is normalized to a range from zero to one.

3.2. Autocalibration via Kruppa’s equations

In a similar manner, we can convert Krupp’s equations into
a cost function that can be used in either single or multiple
image pairs.

Single image pairs

Another way to perform autocalibration from the funda-
mental matrix is to use Kruppa’s equations [14, 23]. To un-
derstand these equations, we must first define the absolute
conic. In Euclidean space the absolute conic lies on the plane
at infinity, and has the equation

x2 + y2 + z2 = 0. (11)

The absolute conic contains only complex points that satisfy
the equation MTM = 0. If we consider a standard camera
projection matrix

P = K[R| − Rt], (12)

where R is the rotational component of the motion between
camera positions and −Rt is the translational component of
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the camera motion, then a 3D point x on the absolute conic
projects to a 2D point:

m = P(M) = KRM, (13)

where

M = RTK−1m; (14)

and sinceMTM = 0, this implies

mTK−1RRTK−1m = mTK−TK−1m = 0. (15)

This clearly shows that any 2D pointm is on the image of the
absolute conic if and only if it lies on the conic represented
by the matrix

K−TK−1. (16)

From projective geometry the dual absolute conic for (16) is
given by

KKT (17)

and is often labeled as C. If we can find C, then we can di-
rectly compute the camera parameters K by Cholesky factor-
ization [28].

Kruppa’s equations relate the fundamental matrix to the
terms of the dual absolute conic. The first form of these equa-
tions required the computation not just of the fundamen-
tal matrix, but also of the two camera epipoles, which are
known to be unstable [23]. Recently, a new way of relating
the fundamental matrix and the dual absolute conic was de-
scribed which does not require the computation of the cam-
era epipoles [1]. Consider the singular value decomposition
of a fundamental matrix F to be UDVT . We let the column
vectors of U and V be u1, u2, u3 and v1, v2, v3, respectively.
This gives the new form of Kruppa’s equation as

vT2 Cv2
r2uT1Cu1

= −vT2 2Cv1
sruT1Cu1

= vT1 Cv1
s2uT2Cu2

. (18)

To autocalibrate, we must find the C which makes these three
ratios equal, or in the case of estimation, as close to equal as
possible. We let factor1 be equal to

vT2 Cv2
r2uT1Cu1

− −v
T
2 2Cv1

sruT1Cu1
, (19)

and we define factor2 and factor3 similarly as the other two
possible permutations of the system of ratios. Autocalibra-
tion can then be achieved by finding the C (KKT) that mini-
mizes the sum of the factors squared.

Multiple image pairs
Given the same M − 1 fundamental matrices defined in
the previous section, then autocalibration with the Kruppa
method overM images requires the minimization of

N−1∑
i=1

ωi
(
factor21 + factor22 + factor23

)
. (20)

Again, ωi is a weight factor, between zero and one, which is
the confidence in the computed fundamental matrix Fi as de-
scribed in the previous section.

4. THE EVOLUTIONARY APPROACH

Since the two autocalibration methods based on the funda-
mental matrix have an associated cost function, we can use
a gradient descent algorithm to find the solution. The caveat
here is that there are often many local minima in the cost
function, so the solution that is found depends on the start-
ing point. However, we note that the calibration parameters
can all be bounded; that is, the center of projection rarely
varies from the image center, the aspect ratio is generally one,
and the skew is almost always 90 degrees. Thus we are at-
tempting to find the global minimum for a set of real-valued,
bounded optimization parameters. This problem has been
dealt with in the field of evolutionary computing.

Experimentally, local gradient descent algorithms that
start from different points in the search space do not con-
verge to the same global minimum. We can therefore com-
fortably conclude that there must exist a number of local
minima. Because of this, we need an evolutionary approach
that can handle such a situation because any local search al-
gorithm will converge prematurely at a local minimum. We
use an evolutionary approach that can find the global mini-
mum, which is the best of the set of local minima.

There are many possible evolutionary approaches, but
they are not all equally applicable to every problem. We use
the ideas around genetic algorithms (GAs) [29]. The idea
behind GAs is to simulate evolution by defining each solu-
tion as a chromosome, and then defining the appropriate
crossover andmutation operators.While GAs are a very pow-
erful framework, they must be adapted and tuned specifically
for each application. In our application of function mini-
mization, the process of simulated annealing has also been
successful [17]. The idea behind simulated annealing is to
perform function optimization by simulating the process of
annealing crystals, essentially by slowly lowering the temper-
ature. The issue we face is, which evolutionary approach is
best? We define this problem to mean the simplest and most
effective algorithm that arrives at the correct answer.

As the camera calibration problem is being recast as a
parameter optimization problem for a set of real-valued,
bounded optimization parameters, we use the dynamic hill
climbing technique that combines the strengths of GAs and
hill climbing techniques that was specifically designed for
this type of problem. Dynamic hill climbing (DHC) can be
considered a hybrid evolutionary algorithm because the al-
gorithm makes use of concepts such as fitness, population
expansion, and mutation, but utilizes a hill climbing tech-
nique for determining local extrema. Also, by using a mutat-
ing coordinate frame combined with local extrema exploita-
tion, DHC has been empirically shown to outperform classi-
cal GAs, simulated annealing, and typical hill climbers when
optimizing parameters of the De Jong [30] test suite [22].
DHC optimization results on the De Jong test suite were
independently confirmed in [31] and subsequently used in
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range image registration. The compared methods included
genetic algorithms, simulated annealing and the DHC al-
gorithm. Experimental results showed that the DHC algo-
rithm was the most successful evolutionary approach for this
type of bounded, real-valued function optimization. For the
above reasons, we choose DHC and we describe the dynamic
hill-climbing algorithm in detail next.

4.1. Dynamic hill climbing

The workhorse behind the DHC algorithm is simple yet very
efficient hill climbing algorithm; and the use of population
expansion via mutation to cover the search space. The pro-
cess begins by selecting an individual randomly from the
population (search space) and applying mutations to the sin-
gle individual, expanding the population. The parent and all
the offspring (mutations) are considered for the next genera-
tion, with the fittest individual from the family surviving. At
each generation the age of individual is increased, however
when the offspring are determined to be the fittest and se-
lected for survival, they inherit the age of the parent. Themu-
tations are performed by scalar adjustment to each of the co-
ordinates in each direction. This means that we perform 2N
mutations in anN-dimensional search space, keeping within
any bounds that may limit the search space.

As the age of the population increases, the magnitude
of the mutations proportionately decreases allowing conver-
gence toward the local extrema, and a more thorough explo-
ration near the local extrema as the population ages. While a
variety of heuristics may be used to determine the magnitude
of the scalar adjustment, we use a logarithmic halving of the
bounded dimensions of the search space. This results in an
upper bound of O(logD) generations where D is the largest
range within the search parameters. Furthermore, in an N-
dimensional search space, there areN generations considered
as the mutations adjust only a single parameter at a time. Fi-
nally, because each generation will perform the fitness eval-
uation 2N times, we have an upper bound of 2N2 log(D)
function evaluations and an upper bound ofO(N2 logD) fit-
ness function evaluations. Within the scope of camera cali-
bration, we have an upper bound of the search space being
five-dimensional and a reasonable practical range for the pa-
rameter space, limitingD allowing us to determine a concrete
upper bound on the time complexity for camera calibration.

Mutating coordinate frames
A static coordinate frame results in premature cessation at a
local extrema (the foothill problem) because the hill climber
cannot move in the direction necessary to reach the true ex-
trema. For example, if a hill climber can move in only 4 di-
rections, say the major compass directions, when a true ex-
trema can be reached by moving in a northwest direction the
classical hill climber will fail. DHC addresses this issue by al-
lowing a mutating (dynamic) coordinate system. DHC keeps
a historical record of previous movements and constructs a
new basis via a Gram Schmidt orthogonalization of the last
two positions. By doing this, DHC is able to adjust for direc-
tional changes within the structure of the search space, which
avoids the foothill problem in certain cases.

1

0.8
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0
0 0.2 0.4 0.6 0.8 1

Figure 2: Scatter plot of 2D search space generated by 250 SDRS
points with a trend line indicating an even disbursement of start
points.

Exploiting local optima

Dynamic hill climbing also tries to avoid early convergence to
a local extrema by ensuring that diversity of the population
is considered directly, and independently of fitness function.
Because the local hill climber has a mutation size that de-
creases with age, the local area is searched more thoroughly
to help ensure that there is no other local extrema with bet-
ter fitness. Once a local extrema is found, the individual is
moved to a separate pool of static individuals that have found
local extrema. When the search system stalls, DHC will ex-
amine the pool of static individuals who have achieved a lo-
cal extrema and select a new population that is as different as
possible from the static pool.

To facilitate this, DHC examines the hamming distance
(the number of differing bits) between the two individuals
and tries to maximize the distance. We note here that it is
possible that this strategy is not without its own problems.
The following example illustrates this. Suppose a local ex-
trema exists at 127, bit set 11111110, themaximumhamming
distance results in bit set 00000001, or 128, which is not suf-
ficiently far from 127. However, it should be noted that a suf-
ficiently large population reduces the probability of getting
stuck when using this strategy of exploiting the local optima.

4.2. Coverage of search space

The basic idea in the DHC approach is to repeatedly perform
gradient descent in the search space but to start the gradient
descent in an area of the search space that is as far removed as
possible from previous solutions.We call this principal of op-
eration statistically distributed randomized starting (SDRS).

The effect is to cover the search space very thoroughly,
and at the same time avoiding areas that have been previ-
ously explored and therefore avoiding the local minimum.
This covers the search space very effectively, as is shown in
Figure 2. In this figure we show the start points of the gradi-
ent descent in a 2D SRDS process. It is clear from the distri-
bution that the search space is uniformly explored.
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SDRS ( )
For each parameter in the search space,

find the largest region that has not had a start point,
compute a random point X in this region,
set point X to the start point for this parameter

Endfor
Return N-dimensional StartPoint for
the next gradient descent (DHC)

Algorithm 1

SRDS covers the search space as completely as possible
with a user specified number of starting points. Essentially
SRDS is a simplified variation of DHC exploitation of local
optima. The only operating parameter is the number of re-
peated gradient descents to try, and this is manually set to be
approximately one hundred. It is important to note that the
range of the calibration parameters, focal length and aspect
ratio is bounded. In practice, the focal length is in the range
of 1 to 5000 pixels, and the aspect ratio is in the range of .5
to 2.0. Under these conditions and operating parameters, the
DHC algorithm has had good practical success.

The pseudocode for SDRS is presented in Algorithm 1.

4.3. Autocalibration algorithm

The algorithm ESTIMATE K returns the calibration param-
eters in the matrixK that produced theminimum value from
the cost function. It is based on the SRDS and the DHC algo-
rithms described previously. As we have shown in the previ-
ous sections, the actual evaluation of the cost function for the
two different autocalibration methods is very efficient and
the upper bound on the number of calls to these functions
is also known to be O(N2 log(D)). The equal eigenvalues ap-
proach requires only the computation of the eigenvalues of
a 3 × 3 matrix, and for the Kru ppa approach the compu-
tation of three ratios based on the SVD of a 3 × 3 matrix.
Furthermore, precomputing the SVD and storing them in
a lookup table for use by the algorithm can further opti-
mize the process and reduce the time required to execute the
cost function. A single gradient descent of the cost function
uses the Powell optimization algorithm [21], which is in turn
based on repeated applications of the one-dimensional Brent
method [21].

As we know the upper bound on the number of times
the cost functions are called, we have an upper bound on
the entire process of O(N2 logD), which is the upper bound
for the DHC algorithm. The remainder of the autocalibra-
tion algorithm is simply the addition of constants affecting
the computation time, which are equal to the time required
to execute 1 instance of the cost function. To be precise,
given an image sequence ofM images, and computing N in-
trinsic parameters, bounded by a maximum range of D, the
running time on the autocalibration will be no more than
O(MN2 log(D)) computations of the cost function. As we
can see this is linear with respect to the number of images, as
opposed to the exponential number of equations generated
using the modulus-constraint-based methods.

ESTIMATE K ( )
For n times

StartPoint = SRDS ( )
Perform the DHC gradient descent from StartPoint.
IF cost function (equal eigenvalues or Kruppa)
is minimal, save this K .

ELSE
discard this K

Endfor
Return K

Algorithm 2

Figure 3: Two epipolar geometries that support a feature match set,
yet only one can be correct [32].

The basic pseudocode for estimating K is presented in
Algorithm 2.

4.4. Degeneracy

The method presented makes use of all the computed inter-
frame geometries; however no consideration is given for in-
correctly computed fundamental matrices. An incorrect fun-
damental matrix can occur and is known as a degeneracy
case. It is commonly known that there are degenerate situa-
tions where many epipolar geometries will support the same
feature match set [32].

As shown in Figure 3, we have 27 corresponding points
and two computed epipolar geometries that support them.
Clearly, there can be only one truly correct geometry; how-
ever, it simply takes a single outlier to potentially produce an
incorrect geometry. Clearly, an incorrect fundamental matrix
will result in an incorrect self-calibration when using only the
one incorrect fundamental matrix.

The potential for computation of a single degenerate fun-
damental matrix from a sequence of images when using a
RANSAC method is unavoidable and thus all computed ge-
ometries from an image sequence are to be considered. By
simply using the fundamental matrix with the highest sup-
port, we will achieve incorrect results when that computed
geometry is degenerate. By using all of the computed funda-
mental matrices, we have some knowledge of the effect each
fundamental matrix has on the cost function. If we assume
for demonstrations sake that we have equal confidence in
each and every fundamental matrix that has been computed
for an M + 1 image sequence, a single degenerate geometry
will weigh in at 1/M and therefore only affect the computa-
tion proportionally to the number of images in the sequence.
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Table 1: Results of autocalibration for focal length (pixels) versus other algorithms. Correspondences are computed automatically.

Name
Number of
images Stated focal

Computed focal length
(equal eigenvalues)

Error % versus
stated

Computed focal length
(Kruppa)

Error % versus
stated

Castle 27 1100 1156.50 5 1197.7 8

Valbone 9 682 605.5 11 685.71 0.5

Nekt 6 700 798.58 14 872.44 24.6

ETL-Eushiba 5 837 857.25 2.4 1233.85 47.4

Handling degeneracy

While methods exist that attempt to detect degenerate con-
figurations [33], we have chosen to use the number of sup-
porting matches for each fundamental matrix as a measure
of confidence. This metric, while not theoretically as reli-
able as a method that detects degeneracy, is suitable because
the automated methods for computing the fundamental ma-
trix [34] provide a relatively large number of matches with
the associated fundamental matrix. Our experiments are per-
formed under the assumption that the number of feature
matches used to compute the fundamental matrix reduces
the likelihood of computing a degenerate geometry. We rely
on the effectiveness of the software presented in [34] to pro-
duce many feature matches and compute fundamental ma-
trices with sufficient support that the probability of outlier
caused degeneracy is greatly reduced, yet any reliable com-
putation of the fundamental matrix will have the same re-
sult. Therefore, we use magnitude of the support feature set
that was used to compute the geometry as a measure of our
confidence.

Degeneracy can also be effectively handled in other ways
and we outline a couple of methods next. The first obvious
solution is to use the PLUNDER algorithm (pick least un-
degenerate randomly) outlined by Torr in [32], however it
is more complicated to implement than other solutions. The
benefit of handling degeneracy this way is that we can be sure
that all fundamental matrices we are using are not degen-
erate. Another alternative is to prune fundamental matrices
that produce calibrations parameters that are not consistent
with the entire set. Effectively we perform a single image pair
calibration for each fundamental matrix in the sequence and
then perform a statistical analysis of the individual results.
We can now prune any fundamental matrix whose individual
calibration results are outside an acceptable level of error. Us-
ing covariance analysis or Frobenius norm will provide rea-
sonable results.

5. EXPERIMENTAL RESULTS

There is no practical reason to autocalibrate all five intrinsic
parameters [16], however, by assuming the principal point
and the skew are fixed, results are encouraging. This problem
is not unique to ourmethod, and occurs in class B algorithms
as well [8]. In [8], the principal point could not be computed
accurately using class B algorithm, and for this reason it was
also assumed to be fixed.

For many autocalibration algorithms, the evaluation of
performance consists of a simple visual inspection of the re-
sulting 3D reconstruction. This is not an adequate metric be-
cause it has been shown that the quality of the final recon-
struction is visually acceptable for a wide variety of calibra-
tion parameters [16]. In order to test the capabilities of the
presented evolutionary method, we used test data for which
the ground truth was known; that is, the intrinsic parameters
are already known a priori. Some of these data sets are the
same ones used in the literature, in particular those for class
B algorithms. The conclusions are that the results of class A
algorithms using the evolutionary approach is comparable to
that of class B algorithms, yet the simplicity and efficiency of
the evolutionary method is significant. The experimental re-
sults also give an indication of what the autocalibration er-
rors are for a typical image sequence. We performed these
experiments a number of times to make sure that the results
of the SRDS algorithm are repeatable and unbiased.

The first set of experiments described in Table 1 show
how the autocalibration process works when we are calibrat-
ing only the focal length. Table 1 shows the results for a num-
ber of different test sequences that have been processed in
previous autocalibration papers [3, 5, 7, 35]. In particular,
the castle sequence [7] is used as a test case for comparison
with the class B approach that requires a projective recon-
struction. We see that our autocalibration results are compa-
rable to those of other class B self-calibration algorithms.

In Table 1 we list our autocalibration results compared to
the previously published results in the literature, which we
assume to be correct. In the last example from [35] shown
in Table 1, the error with the Kruppa autocalibration is quite
large. A possible explanation is that the motion is close to
being a pure translation, which is known to be a degenerate
motion for the Kruppa algorithm [14, 15]. It is also a good
indicator of how the equal eigenvalues method performs well
in spite of these degenerate motions. In these experiments we
take the image sequences as input and compute the matching
feature points automatically, using the software described in
[34]. In other words, we are not given matching 2D feature
points, but simply a set of images. Therefore the closeness of
our results to those published in the literature is significant
because we are actually using different software to compute
the fundamental matrices. We are also unable to verify inde-
pendently that the published ground truth focal lengths are
correct; it is possible that the stated focal lengths have some
level of error in them as well.
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Table 2: Results of autocalibration for focal length (mm) for photogrammetric sequences. Reprojection error is in pixels. Correspondences
are selected by hand.

Name
Number of
images

True focal
length

Eigen focal
length Error %

Kruppa focal
length Error %

Correct
reprojection

Eigen
reprojection

Kruppa
reprojection

Curve 4 6.97 4.71 32.4 7.49 1.13 7 2.23 1.44
Cylinder 3 28 26.35 5.9 31.70 13.21 0.96 2.07 2.60
Plant 6 24.20 22.55 6.8 24.39 0.78 0.80 1.49 1.04
Statue 7 5.11 3.67 28.2 5.29 3.5 3.93 9.61 1.95

Table 3: Results of autocalibration for focal length (mm) and aspect ratio for photogrammetric sequences using the equal eigenvalue
method.

Name True aspect Eigen aspect Variance Error % True focal Eigen focal Variance Error %

Curve 1.0 1.08 0.003 8 6.97 3.46 0.062 50
Cylinder 1.0 0.98 0.002 2 28 26.72 0.52 4.5
Plant 1.0 0.98 0.012 2 24.2 22.96 0.39 5.1
Dam 0.81 0.972 0.0001 20 30.75 38.52 0.089 9.8

Table 4: Results of autocalibration for focal length (mm) and aspect ratio for photogrammetric sequences using the Kruppa autocalibration
method.

Name True aspect Kruppa aspect Variance Error % True Focal Kruppa focal Variance Error %

Curve 1.0 0.997 0.011 1.3 6.97 7.56 0.21 8.4
Cylinder 1.0 1.03 0.0001 3 28 32.91 0.0001 17.5
Plant 1.0 0.92 0.003 8 24.2 26.33 0.12 8.8
Dam 0.81 0.997 0.0001 19.75 30.75 38.43 0.0001 24.9

In the next set of experiments outlined in Table 2, the
2D feature points were selected by hand as part of a pho-
togrammetric model building process. From these manually
selected correspondences we compute the fundamental ma-
trix between all image pairs in the sequence. In this experi-
ment we know the intrinsic parameters of the camera a priori
from the project parameters of the photogrammetric pack-
age [36]. We therefore assume that all the intrinsic parame-
ters are set a priori, except for the focal length which we au-
tocalibrate. Table 2 shows the autocalibrated focal length in
millimeters versus the true focal length, along with the error
percentage for both autocalibration methods. Since we have
the associated 3D reconstructions for the corresponding 2D
features, we can use more sophisticated performance mea-
sures, namely, reprojection error.

For a given autocalibrated focal length, we compute the
reprojection error for all the corresponding feature points.
The reprojection errors are the pixel differences between the
projection of the 3D feature points into 2D and the original
corresponding 2D features. We compute the median of the
reprojection errors using the correct focal length, the focal
length found by the eigenvalue method, and the focal length
found by Kruppa’s method. The median of the reprojection
errors is a good indicator of the quality of the reconstruction
for a given focal length. We see that the median reprojection
error increases for the autocalibrated focal lengths, but only
slightly. This implies that the error in the autocalibrated fo-
cal lengths would not have a significant impact in terms of
reconstruction quality; this independently verifies the work
of Bougnoux [16].

In the next experiment we attempt to autocalibrate both
aspect ratio and focal length using the two class A meth-
ods. We are again using as input a series of photogrammetric
projects for which we know the 2D feature correspondences
as well as the ground truth.

While the results as shown in Tables 3 and 4 are reason-
able, the errors when autocalibrating two camera parameters
are sometimes higher than autocalibrating just one param-
eter. The error again compounds when we attempt to auto
calibrate all parameters. In particular, the error percentage in
the focal length increases slightly.

One possible explanation is that the gradient descent al-
gorithm is stuck in a local minimum. To verify this, the re-
sults shown in these two tables were computed by averag-
ing over one hundred separate runs of the optimization al-
gorithm. The variance as shown in Tables 3 and 4 for the
autocalibrated aspect ratio and focal length is very small
over these runs. This indicates that it is highly likely that
the stochastic optimization algorithm is consistently find-
ing a local minimum that is hopefully also the global min-
imum.

The next set of experiments, shown in Tables 5, 6, and 7,
have as input image sequences that were taken with the same
camera with invariant intrinsic parameters. There are image
sequences that we have taken by hand, for which ground
truth is known, or from various other modeling projects
(ISPRS Working Group V/2 on scene Modeling and Virtual
Reality; http://www.vit.iit.nrc.ca/elhakim/WGV2-data.html).
In these experiments, we again compute the correspondences
automatically using the software described in [20].

http://www.vit.iit.nrc.ca/elhakim/WGV2-data.html
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Table 5: Results for autocalibration of focal length for three se-
quences taken from the same uncalibrated camera.

Name Number of images Eigen focal Kruppa focal

Chapel 12 27.82 31.31
Climber 13 27.91 33.88
Workshop 8 26.19 38.09

Table 6: Results for autocalibration of focal length for three se-
quences used by the ISPRS Working Group on Scene Modeling and
Virtual Reality.

Name Number of images Eigen focal Kruppa focal
Indoor 5 1663 1815
Waterways 3 1759 fail
Building 2 1609 fail

Test cases Chapel and Workshop are almost pure trans-
lation while the Climber sequence has a motion with signif-
icant translation and rotation. We autocalibrate only the fo-
cal lengths, which should be equal for all three sequences.
The variance of the computed focal length for the eigenvalue
method is 0.96mm and for Kruppa approach is 3.42mm. It
is not surprising that the autocalibration results differ, since
certain motions are degenerate with regards to the Kruppa-
based autocalibration [14]. What these results clearly show is
that for a given camera, and substantially different sequences,
the evolutionary algorithms (especially the equal eigenval-
ues method) are convergent. Furthermore, longer sequences
converge with a more accurate estimation of the intrinsic
camera parameters.

The final set of experiments, shown in Tables 6 and 7, has
as input image sequences that are used as test data for the IS-
PRSWorking Group V/2 on Scene Modeling and Virtual Re-
ality. These images are used to test different model building
software packages, and the ground truth is known. In Tables
6 and 7, we again compute the correspondences automati-
cally using the software described in [20], and autocalibrate
only the focal length. We see in Table 6 that the results are
reasonable given that the true focal length is 1737 pixels in all
cases, but that sometimes Kruppa’s approach does not con-
verge. The likely causes are sensitivity to motion degeneracy
and the difficulty of convergence with a small number of im-
ages associated with the Kruppa method.

Table 7 presents a variety of experiments also from the IS-
PRS workgroup. In certain examples that error is very large,
however the average error is only 17.25% with a standard de-
viation of 21.99. By removing the two grossly incorrect sam-
ples from the table, the error percent and standard deviation
dropped by almost half to 9.54 and 12.11, respectively.

In summary, Table 1 shows that the evolutionary ap-
proach is as good as the published results for class B algo-
rithms, particularly the castle sequence. However, class B al-
gorithms are not easily scalable from a computational point
of view, and thus cannot handle long image sequences. Class
A, fundamental matrix-based, approaches are computation-

ally very efficient because single evaluations of the cost func-
tions do not take long and accuracy increases as the sequence
length increases. The time taken for autocalibration is in the
order of seconds for all the image sequences on a 400MHz
Pentium II processor. It seems that the equal eigenvalues
method is superior to Kruppa’s method for degenerate mo-
tions and smaller sets of images. There are cases, however,
where Kruppa’s method clearly outperforms the equal eigen-
values method. Further investigation is necessary to deter-
mine whether or not a heuristic can be developed to choose
one algorithm over the other by predetermining the camera
motion using arbitrary intrinsic camera parameters in a first
step and using this knowledge to select an appropriate class
A or class C algorithm that uses an evolutionary approach.

6. CONCLUSIONS

This work presents an algorithm for self-calibration that has
four major advantages:

(1) simplicity (and ease of implementation),
(2) accuracy and reliability,
(3) scalability (handles very long sequences),
(4) speed of execution (known upper bound).

In theory, the autocalibration methods that use fundamen-
tal matrices should not perform as well as those that use
the camera projectionmatrices of a projective reconstruction
[14, 15, 23]. However, we show that for nondegenerate mo-
tions both methods perform equally well when we are cali-
brating only the focal length, or the focal length and aspect
ratio. The equal eigenvalues approach, combined with evo-
lutionary methods is very simple and performs as well as any
class B method we compared it against. While it is theoret-
ically equivalent to the Kruppa approach, it performs better
numerically in situations where we are closer to degenerate
motions, such as pure translation, and seems to converge bet-
ter for smaller sets of images. Experimentally we have shown
that evolutionary-based autocalibration using class A algo-
rithms produces similar results to their class B counterparts.

We have shown that in practice the statistically dis-
tributed random starting (SDRS) helps to reliably find a con-
sistent local minimum of the cost function that we expect to
be the global minimum.We have also shown that the error in
the autocalibration of the focal length is usually in the range
of 15%. This is adequate for applications in which the fi-
nal results are used for visualization purposes, such as model
building, but clearly not for applications that currently re-
quire exact depth information.

When dealing with long image sequences, class B algo-
rithms will produce a set of polynomial equations for each
image pair. This results in a large system of equations for
the entire image sequence. Continuation methods can solve
small systems of equations but are ill posed when the number
of equations becomes large. The methods proposed in this
work have advantages for long image sequences. The meth-
ods we have described are computationally efficient with a
known upper bound that is better than any published class
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Table 7: Results for autocalibration of focal length and comparison to ground truth.

Project Focal length (in pixels) Computed focal length (in pixels) Number of images Error %

Amsterdam 1736.7 1866.7 4 7.48
Benches 1736.7 612 7 64.76
Chapel-l 2105 1640 2 22.0
Chapel-S 2105 1473 7 30.0
Corfu 2923.4 2995 7 0.02
Fitting 1684 1681 2 0.001
Florence 1897.3 1787 6 0.058
Light 2348.3 3647 4 55
Nikh 2348.3 2348 2 0.001
Oldbuild 1649.5 1588 7 0.037
Reg-1 2095 1609 7 23.1
Reg-2 611 747 27 22.2
Sphinx 1754 1764 16 0.0057

B method on long image sequences and produces compara-
ble results. It is also the case that processing long image se-
quences is advantageous in that any error for an individual
fundamental matrix (e.g., because of a degenerate motion)
will have less of an impact on the final result. For example,
anM image sequence hasM − 1 adjacent pairs and therefore
M − 1 representative fundamental matrices. As M becomes
larger (i.e., the number of images in the sequence increases),
the individual error associated with a single image pair has
less effect. The accuracy of the estimation increases only with
the size of the image sequence. As the sequence length tends
to infinity, the error can be more closely associated to the er-
ror within the individual computation of the fundamental
matrix. Another advantage of long image sequences is that
the global optimum is better defined than when using short
image sequences. In other words, with long sequences the
global optimum tends to be sharper and better defined mak-
ing the results more stable.

Due to a lack of standardized data sets that can be used
to effectively benchmark different autocalibration routines,
the “look” of a resulting reconstruction is often used as a
benchmark, which is not appropriate for performance eval-
uation. For proper performance analysis of autocalibration
algorithms, it would be very useful to have a standardized
set of images for which the ground truth is known. A start
has been made by ISPRS Working Group, but more needs
to be done. At the very least, results of using such test data
should include the accuracy of the parameter values, consis-
tency of results (similar to Table 4), and an accuracy of image
sequence length ratio benchmark.

Evolutionary-based autocalibration with varying intrin-
sic parameters still remains an open problem, however it is
conceivable to adapt the cost functions to allow for varying
focal lengths between image pairs.
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