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• Ecobiomics Project applies
metagenomics to assess soil health and
water quality.

• Integrates metagenomic analysis of mi-
crobial and invertebrate communities

• Centralized sequencing and bioinfor-
matics across seven departments and
agencies

• Soil and aquatic microbiome, invert
zoobiome projects and genomic obser-
vatories.

• Government-wide platform established
to harmonize metagenomics of soil and
water.
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Transformative advances inmetagenomics are providing an unprecedented ability to characterize the enormous di-
versity of microorganisms and invertebrates sustaining soil health andwater quality. These advances are enabling a
better recognition of the ecological linkages between soil and water, and the biodiversity exchanges between these
two reservoirs. They are also providing new perspectives for understanding microorganisms and invertebrates as
part of interacting communities (i.e. microbiomes and zoobiomes), and considering plants, animals, and humans
as holobionts comprised of their own cells as well as diverse microorganisms and invertebrates often acquired
from soil and water. The Government of Canada's Genomics Research and Development Initiative (GRDI) launched
the Ecobiomics Project to coordinate metagenomics capacity building across federal departments, and to apply
metagenomics to better characterize microbial and invertebrate biodiversity for advancing environmental assess-
ment, monitoring, and remediation activities. The Project has adopted standard methods for soil, water, and inver-
tebrate sampling, collection and provenance of metadata, and nucleic acid extraction. High-throughput sequencing
is located at a centralized sequencing facility. A centralizedBioinformatics Platformwas established to enable a novel
government-wide approach to harmonize metagenomics data collection, storage and bioinformatics analyses. Six-
teen research projects were initiated under Soil Microbiome, Aquatic Microbiome, and Invertebrate Zoobiome
Themes. Genomic observatories were established at long-term environmental monitoring sites for providing
more comprehensive biodiversity reference points to assess environmental change.
Crown Copyright © 2018 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Unprecedented environmental changes and impacts on biodiversity
are occurring within natural and managed ecosystems around the
world. These impacts are most visible for larger vertebrate species,
whose ongoing loss has been described as a mass extinction event
(Ceballos et al., 2017). However, much less is understood about the
changes and impacts occurring at lower trophic levels such as the less
visible level of microorganisms and invertebrates.

Microbial and invertebrate biodiversity support the maintenance of
ecosystem functions which underpin soil health and water quality. This
in turn supports the sustainable management of terrestrial and aquatic
ecosystems, and thus important economic sectors ranging from agricul-
ture to forestry and fisheries. Recent technological advances have made
it possible tomore comprehensively assess changes to the enormous bio-
diversity at lower trophic levels. Advances in genomics are nowproviding
opportunities to better characterize the extent of biodiversity in soil and
water, and detect changes based on a more comprehensive assessment
of entire communities of microorganisms and invertebrates. It is impor-
tant to understand the significance of changes and adverse impacts on
these communities as they can have important implications for ecosys-
tem services that sustain plant, animal, and human health, the health of
ecosystems, and the local economies dependent on soil and water.

The Ecobiomics Project outlined here summarizes the model for
how the Government of Canada has begun coordinatingmetagenomics
research across departments and agencies to advance the integrated as-
sessment, monitoring and remediation of soil and water resources. The
Project was established in 2016 and is comprised of 64 scientists work-
ing across a range of government departments and agencies. We will
use the term metagenomics as a composite term to include taxonomic
applications of DNAmetabarcoding, taxonomic and functional gene ap-
plications of shotgun metagenomics, and gene-expression applications
ofmetatranscriptomics.We describe the Ecobiomics Project and outline
our roadmap for incorporatingmetagenomics into soil health andwater
quality programs.

1.1. Soil health and water quality

Soil plays an essential role in sustaining diverse ecosystems from bo-
real forests to prairie grasslands, and diverse economic sectors from ag-
riculture to forestry. However, current land management practices
often result in an unsustainable loss of soil over time: one centimeter
of soil can take many years to form, yet be eroded in days (Anon,
2017). Human pressures on soil resources are reaching critical limits,

resulting in ongoing environmental land-use conflicts and impacts on
aquatic ecosystems (Valle Junior et al., 2015). Current estimates suggest
that as much as a third of global soils are degraded and 24 billion tons of
soil is lost each year (FAO, 2015; UNCCD, 2017). In Canada, it has been es-
timated that 68% of cropland in Ontario has a risk of erosion above the
annual rate of soil regeneration, and that 82% of farmland in Ontario is
losing organic matter important for soil health (Canada-Ontario, 2018).

Communities of microorganisms and invertebrates are an integral
part of soil formation and retention, and they are a key determinant of
soil health (Kvas et al., 2017). In fact, the enormous diversity of bacteria,
fungi, protozoa, viruses, as well as invertebrates such as nematodes,
collembolla, springtails, mites, insects, and earthworms in soil consti-
tute a large portion of the world's biodiversity (Bardgett and van der
Putten, 2014). This biodiversity contributes to soil health by physical
structuring of soils through aggregation and aeration activities, nutrient
cycling, carbon storage and transformations, aswell as improvingwater
retention and preventing soil erosion. Bacteria and fungi secrete poly-
meric substances that serve as binding agents for agglomerating soil
particles, fungal hyphae contribute to holding aggregates together,
and invertebrates such as earthworms can grind and remold ingested
particles into new aggregates and create soil pores to enhance aeration
and water infiltration (Tecon and Or, 2017; Lehmann et al., 2017). The
microorganisms in soil are major drivers of soil fertility and plant nutri-
tion, while also having the potential to provide disease suppressive
properties that are important for protecting plant health and preventing
productivity losses (Schlatter et al., 2017). They also contribute to ele-
mental cycling, delivery of diverse ecosystem services, and soil security
(McBratney et al., 2014).

Healthy aquatic ecosystems provide clean drinking water, sustain
aquatic and terrestrial biodiversity and provide ecosystem services
that support the fisheries and aquaculture sectors. Freshwater ecosys-
tems have been considered more degraded than many other ecosys-
tems, and in a state of crisis (Vörösmarty et al., 2010; UNWater, 2011;
Garcia-Moreno et al., 2014). Changes to microbial communities in
water can affect carbon, nutrient and contaminant cycling, lead to boil
water advisories, drinking water outbreaks, closure of beaches and
shellfish harvesting areas, harmful algal blooms, and adverse impacts
on aquatic plant and animal health, fisheries and aquatic ecosystems.
Changes to invertebrate communities can lead to adverse impacts on
the food webs that sustain fish habitat and aquatic ecosystems. In
Canada, a Threats Assessment conducted in 2001 identified 13 threats
to sources of drinking water and aquatic ecosystem health
(Environment Canada, 2001). Many of these threats to water quality
such as algal blooms are still prominent today. For instance, it was
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recently estimated that future harmful and nuisance algal blooms could
cost the Canadian Lake Erie basin economy $272 million annually
(Canada-Ontario, 2018).

1.2. Limitations of current assessment methods

Much of the current assessment and monitoring of aquatic and soil
ecosystemhealth is based onmeasuring standard physical and chemical
parameters such as temperature, pH and concentrations of carbon, ni-
trogen and phosphorus. While these parameters are important, they
do not allow for characterization of the living properties of soil and
water, nor do they support a comprehensive integrated approach to
land & water management. Biological parameters such as culture-
based enumeration of fecal indicator bacteria, as well as microscope-
based identification of algae and invertebrates have been important ad-
vances in characterizing the living properties of soil and water. How-
ever, many of these methods are decades-old, and they can have
significant limitations for characterizing the complex biodiversity
found in communities of microorganisms and invertebrates.

The limitations of culture-based methods have been recognized for
many decades in microbiology, where standard laboratory culture con-
ditions have been estimated to permit detection of less than 1% of mi-
crobes found in the environment (Hugenholtz, 2002). Dormancy in
microbial communities is thought to be particularly common in soil en-
vironments, with estimates suggesting 80% of soil bacteria could be dor-
mant, yet important as resilient microbial “seed banks” for sustaining
soil functions (Tecon and Or, 2017). Commonly used culture-based as-
says for fecal indicator bacteria like E. coli are also recognized as often
only weakly correlated to occurrence of other microorganisms such as
waterborne protozoan and virus pathogenswith different survival char-
acteristics (Wu et al., 2011a; Edge et al., 2013). There have been numer-
ous drinking water outbreaks where culture-based assays for fecal
indicator bacteria did not adequately indicate human health risks
(Rizak and Hrudey, 2007). As well, existing microscope-based methods
are laborious, difficult to reproduce at scale, and place limits on large-
scale assessments of, for example, diatom diversity (Rimet et al.,
2018) and harmful algal/cyanobacterial blooms (Steffen et al., 2014).

The limitations of existing methods are also apparent for assessing
invertebrate biodiversity (Baird and Hajibabaei, 2012; Oliverio et al.,
2018; Pawlowski et al., 2018). Important advances have been made to
incorporate microscope-based characterizations of invertebrate assem-
blages in some areas such as stream biomonitoring programs using
standardized kicknet sampling approaches (CABIN, 2018). However,
microscope-basedmethods still have significant limitations asmorpho-
logical identification of invertebrates can be hampered by the availabil-
ity of taxonomic expertise, the variability between experts in taxonomic
assignments, and taxonomic assignments that are typically focused on a
relatively restricted set of better-known groups of invertebrates.
Microscope-basedmethodsmay also not provide the taxonomic resolu-
tion needed for some invertebrate groups, and theymay be incapable of
identifying early life history stages or partially fragmented specimens in
complex samples. The relatively high labour costs, and long delays for
results, particularly for large-scale sampling efforts, are also limitations.

The limitations ofmany currentmethods for assessingmicrobial and
invertebrate biodiversitymean that only the tip of the biodiversity “ice-
berg”may be seen in soil and water samples. This has important impli-
cations for environmental assessment, monitoring, and remediation
programs. Are there significant differences between what is seen to be
happening or changing at the tip of the biodiversity iceberg compared
to the whole iceberg of microorganisms and invertebrates? How reli-
able are environmental impact assessments, soil health andwater qual-
ity monitoring trends, and evaluations of soil and water remediation
practices based on existingmethods for microbial and invertebrate bio-
diversity assessment? It will be important to apply the best available
tools for comprehensive assessment of changes occurring within com-
plex microbial and invertebrate communities in soil and water.

2. A new metagenomics perspective

2.1. Advances in DNA sequencing and bioinformatics

The advent of second generation ‘massively parallel’ sequencing
around 2005 opened the door to more widespread and cost-effective
applications of genomics tools for assessing microbial and invertebrate
biodiversity. Second generation sequencers such as the Illumina MiSeq
and HiSeq platforms are capable of massively parallel sequencing of
short DNA fragments with high sequencing accuracy. In addition,
emerging third generation sequencing such asOxfordNanopore and Pa-
cific Biosciences sequencing platforms are providing new opportunities
to generate much longer sequence lengths. These sequencing advances
are placing genomics in the realm of “Big data” science, with future
needs for data management likely to be as large as, or greater than for
sectors such as astronomy, YouTube, and Twitter (Stephens et al.,
2015). In parallel with improvements in sequencing, synergistic ad-
vances in high performance computing, software tools, and Internet re-
sources have been needed for bioinformatics capabilities to meet data
challenges. Continued advances in bioinformatics, including data stor-
age, analysis and visualization, will be needed in the future as the ability
to extract meaningful information from growing DNA sequence
datasets is recognized as a bottleneck for advancing metagenomics ap-
plications (Thompson et al., 2017).

Metagenomics technologies offer a potential solution to the chal-
lenge of comprehensive characterization of the complex microbial and
invertebrate biodiversity found in soil andwater. It is now feasible to ex-
tract nucleic acids from an entiremicrobial community in a soil orwater
sample and sequence the DNA or RNA as part of metabarcoding,
metagenomics or metatranscriptomics characterization of the sample.
Similarly, nucleic acids can be extracted from complex invertebrate
communities once the organisms are separated from soil or water sam-
ples. More broadly, profiling of environmental DNA (eDNA) from soil or
water samples through metabarcoding applications can be applied to
detect the DNA of invertebrate and vertebrate species directly from
soil or water DNA extracts without having to first separate organisms
or tissues from their environmental matrix (Taberlet et al., 2012;
Deiner et al., 2017).

While there have been significant advances in sequencing and bioin-
formatics in recent years, there are still challenges to address. For exam-
ple, metagenomics techniques are still unable to provide complete
characterization of all microbial and invertebrate biodiversity in soil and
water samples (Elbrecht and Leese, 2015; Nesme et al., 2016; Rodriguez
et al., 2018; Oliverio et al., 2018; Pawlowski et al., 2018). There are chal-
lenges for how to address relic DNA in soil (Lennon et al., 2018), and to
ensure low numbers of microbes in the rare biosphere are not the result
of sequencing errors (Lynch and Neufeld, 2015). In addition, many DNA
sequences from environmental samples still cannot be taxonomically
identified. Thompson et al. (2017) found less than 50% of 16S rRNA
gene sequences from soil, water and other environmental samples from
the Earth Microbiome Project were a good match to known bacterial
taxa in the Greengenes or SILVA reference 16S rRNA gene databases.

Despite challenges such as these, advances inmetagenomics havepro-
vided a significant leap forward in providing new knowledge and per-
spectives for more scientifically-defensible assessments of biodiversity
to protect soil health and water quality. Metagenomics analyses will
also benefit in the future from parallel barcoding initiatives like the Inter-
national Barcode of Life Project (http://ibol.org/) and whole genome se-
quencing initiatives to expand reference databases for microorganisms
(e.g., Kyprides et al., 2014) and invertebrates (e.g., GIGA, 2014). The
Earth BioGenome Project, launched in 2017, has estimated that sequenc-
ing the genomes of ~1.5 million known eukaryote species (including
fungi, protists and invertebrates), in addition to 100,000 new eukaryote
species, could cost less than the costs (in today's dollars) for creating
the first draft human genome sequence (Lewin et al., 2018). Lewin et al.
suggested that investments in the Human Genome Project alone have
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created an entire industry, with an estimated workforce of more than
47,000 people generating $1 trillion in economic activity. It is still uncer-
tain what additional benefits might arise from further investments in
metagenomics to advance soil health and water quality decision-making.

2.2. Emerging perspectives for soil health and water quality

One of the first new perspectives frommetagenomics has been a bet-
ter understanding of the entirety of microbial communities, and the ex-
tent of microbial biodiversity in soil and water. For example, early
shotgun metagenomics research led to the discovery of an enormous di-
versity of microbial species and genes within seemingly barren areas
like the mid-ocean surface waters of the Sargasso Sea (Venter et al.,
2004). Metabarcoding studies have more clearly shown the significance
of soil as a reservoir and source for seeding microorganisms into stream,
river, and lake ecosystems (Crump et al., 2012; Ruiz-Gonzales et al.,
2015). This soil microorganism reservoir perspective raises the need to
better understand how different land use and soil management practices
change the soil microorganisms running off the land to impact aquatic
ecosystems. Advances in metagenomics have also contributed to a grow-
ing recognition of the importance of microbial communities in the area
immediately surrounding larger phytoplankton cells called the
phycosphere, and which can be considered the aquatic analogue to the
rhizosphere for a terrestrial plant (Seymour et al., 2017). Some of the
phytoplankton-bacteria community interactions in the phycosphere can
be considered as symbioses, with important implications for better un-
derstanding and predicting aspects such as primary production, biogeo-
chemical cycling, and cyanobacterial toxin production. These advances
fromapplications ofmetagenomicsmethods have enabled a better recog-
nition that microorganisms occur in interacting communities, now in-
creasingly referred to as microbiomes.

Microbiomes can be considered as the entire microbial community of
bacteria, archaea, fungi, algae, protozoans, and viruses, including their
genes and habitat, in a particular place. This perspective has been most
advanced through the Human Microbiome Project (HMPC, 2012),
where investigations of bacterial communities living on, and in, the
human body are leading to transformations in the practice of medicine
(Gilbert et al., 2018). However, a microbiome perspective also provides
a new lens to look at the health of animals (Barhndorff et al., 2016) and
plants (Vandenkoornhuyse et al., 2015), as well as how we manage
built environments (Gilbert and Stephens, 2018) and look more broadly
at the ecology of health (Trinh et al., 2018). The ability to better character-
ize microbiomes in soil and water means we can now better recognize
their importance in soil capital andwater resource evaluations, and in as-
sessments of soil health andwater quality. It alsomeanswe can better in-
vestigate the significance of the acquisition of microorganisms from soil
and water for plant, animal, or human health in a new perspective that
sees plants, animals, and humans as holobionts, comprised of the host
and its associatedmicroorganisms. From this perspective, a plant, animal,
or human is no longer seen as an autonomous entity, with an extrinsic
microbiome. Instead, the host and its associated microorganisms can be
seen as a unit of biological organization upon which ecology and evolu-
tion can act (Bordenstein and Theis, 2015). The implications of this per-
spective for medicine, the plant, animal, and environmental sciences,
and our understanding of evolution is only starting to emerge.

Advances in metabarcoding have also enabled a new perspective for
understanding the significance of the enormous biodiversity of inverte-
brate assemblages found in soil and water (Hajibabaei et al., 2011; Wu
et al., 2011b). Next generation sequencing methods can now provide a
more comprehensive assessment of invertebrate biodiversity, with po-
tential for greater taxonomic breadth beyond coverage of well-studied
groups, and greater taxonomic resolution down to the population level
at times. The increased biodiversity information from metagenomics
characterization of invertebrate samples has been described as a step
change in capabilities from traditional biomonitoring methods, leading
to a new paradigm of Biomonitoring 2.0 for ecosystem assessment

(Baird and Hajibabaei, 2012), which anticipates the availability of
consistently-observed high-resolution biodiversity information to match
with new earth observationmethods, supportingmore nuanced environ-
mental diagnostics for complex global change situations. Dafforn et al.
(2014), Gibson et al. (2015) and most recently, Bush et al. (2019) have
provided strong evidence that biodiversity information generated
through metabarcoding not only provides a step-change in the numbers
of taxa observed, but also permits improved diagnosis of environmental
degradation with enhanced statistical power (Bush et al., 2019
PREPRINT). In addition to providing a better understanding of the diver-
sity and changes in invertebrate communities, advances inmetagenomics
provide an opportunity to scale-up and expand existing biomonitoring
programs (Porter and Hajibabaei, 2018). In the Ecobiomics Project, we
have used the term “zoobiome” to refer to all the individual invertebrates,
including their genes and habitat, occurring in a particular place such as
the benthos from a particular stream area.

2.3. The Canadian Genomics Research and Development Initiative

The Government of Canada's Genomics Research and Development
Initiative (GRDI) coordinates genomics research and development activi-
ties across federal government departments and agencies in order to
build genomics capacity and apply genomics research to support public
policy objectives (GRDI, 2018). It does this in collaborationwith other na-
tional and international genomics research providers, in particular with
Genome Canada, a not-for-profit organization also funded by the Govern-
ment of Canada. Each year since 2011, GRDI funds have been allocated to
support two large and highly integrated shared priority projects that ex-
tend over five years. A governing interdepartmental Assistant Deputy
Minister (ADM) Coordinating Committee selects these shared priority
projects through a consultation processwith an interdepartmentalWork-
ing Group of policy advisors, and scientists nominated from departments
and agencies. In 2015, the governing ADM Committee selected
“Preventing the Spread of Antimicrobial Resistance” and “Protecting and
Conserving Canada's Biodiversity and Ecosystems” as shared priority pro-
ject directions to elaborate. Project Leads were identified, and scientists
were nominated from departments and agencies to attend workshops
and work towards elaborating each shared priority project. To focus the
biodiversity and ecosystems priority project, scientists prepared short ex-
pressions of interest reflecting existing research interests and capacity.
The Project Leads and scientists then proceeded to negotiate and elabo-
rate a cohesive interdepartmental project that focused on applications
of metagenomics to better characterize microbial and invertebrate com-
munities for advancing the assessment of soil health and water quality:
the Ecobiomics Project (short for ecosystem biomonitoring using
metagenomics). For practical reasons, the Project had to limit its focus
to water quality research on freshwater rather than marine ecosystems,
and surface water rather than groundwater ecosystems.

3. The ecobiomics project

The Ecobiomics Project is a 5-year metagenomics project launched in
April 2016. It is comprised of 64 scientists, biologists, postdoctoral fellows,
technologists, and bioinformatics specialists, from seven federal depart-
ments and agencies ((Agriculture and Agri-Food Canada (AAFC), Cana-
dian Food Inspection Agency (CFIA), Environment and Climate Change
Canada (ECCC), Fisheries and Oceans Canada (DFO), National Research
Council Canada (NRC), Natural Resources Canada (NRCan), and the Public
Health Agency of Canada (PHAC)). The Project established an organiza-
tional structure andwork Themes that are outlined in Fig. 1. A centralized
DNA sequencing facilitywas used at theNational Research Council in Sas-
katoon, Saskatchewan, and a centralized Bioinformatics Platform was
established in ahigh-performance computing environment of Shared Ser-
vices Canada inDorval, Quebec. This established the ground floor of a har-
monized approach to metagenomics data sharing and data analyses
across the federal government. There are significant benefits of such
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collaboration, where departments and agencies avoid the cost and com-
plications of establishing separate bioinformatics platform silos. The Pro-
ject has facilitated interdepartmental discussions about balancing the
need for standardization with the need to avoid being too prescriptive
for the evolving state of the science ofmetagenomics. It has also provided
opportunities for multidisciplinary collaboration between soil and water
scientists, and betweenmicrobiologists and invertebrate zoologistswork-
ing at the soil-water interface. A Scientific Advisory Board (SAB) com-
prised of five members from Canada, the United States and the
European Union is providing scientific advice.

3.1. Objectives

The Ecobiomics Project has three overarching objectives:

a) Develop standard approaches and methods for collection of soil,
water, and invertebrate samples, nucleic acid extraction, high-
throughput DNA sequencing, bioinformatics analyses, and a Bioin-
formatics Platform for harmonizing metagenomics studies across
federal departments and agencies;

b) Pilot genomic observatories for establishing comprehensive
metagenomics baselines to assess future changes towater and soil bio-
diversity at long-term environmental monitoring sites in Canada; and

c) Generate newknowledge by applying high-throughput DNA sequenc-
ing to better characterize aquatic microbiomes, soil microbiomes, and
invertebrate zoobiomes, and test hypotheses for improving environ-
mental monitoring, assessment and remediation activities for water
quality and soil health.

3.2. Sampling to sequencing

Meetings at the outset of the Project were important for reviewing
sampling approaches for soil microbiomes, aquatic microbiomes, and
invertebrate zoobiomes. These discussions led to early decisions on
standardizing aspects like using 0.2 μmfilters forfilteringwater samples
for bacteria, archaea, and eukaryotes in aquaticmicrobiome studies, and
collecting streambed invertebrate zoobiome samples using kicknet pro-
tocols already established by the Canada-wide CABIN network (CABIN,
2018). DNA extraction methods for soil and aquatic microbiomes were
based on using the Qiagen DNAEasy PowerSoil DNA isolation kits (for-
merly MoBio PowerSoil), consistent with the Earth Microbiome
Project (2018). DNA extraction for invertebrate zoobiomes requires
preliminary steps (i.e. homogenisation of a maximum of ~500 mL of
semi-solid material, aliquoting, ethanol removal and extraction with
the Qiagen DNAEasy PowerSoil DNA kit). Additional research was initi-
ated in parallel to: investigate a microfluidics approach for extracting
DNA from larger soil samples; apply mock microbial communities and

invertebrate spiking to evaluate DNA extractionmethods; and compare
other DNA extraction methods for assessing biodiversity representa-
tiveness and potential method biases.

An Ecobiomics Project workflow was established (Fig. 2), and each
Principal Investigator (PI) was responsible for sample collection and
DNA extraction according to their project's experimental design. PIs
forwarded DNA extracts to Theme Lead labs who were responsible for
library preparation. This provided an additional level of workflow stan-
dardization across departments and agencies, and enabled the Theme
Leads to coordinate cost-effective batching of samples to send for se-
quencing. For ampliconmetabarcoding library preparation, PCRprimers
were selected for bacteria and archaea (16S v4–5 region with 515F\\Y
and 926R primers) consistent with the Earth Microbiome Project
(http://www.earthmicrobiome.org/protocols-and-standards/16s/).
Primers for fungi (ITS2 region with ITS9F and ITS4R primers) and other
eukaryotes like algae (18S V4 regionwith primers 565F and 948R)were
consistentwith those used by the Joint Genome Institute (JGI, 2016). For
invertebrate library preparation, a pooled primer approachwas selected
using primers F230 and F230R_modN, and Befrag-B-F and Befrag-R5-R,
consistent with Folmer et al. (1994) and Gibson et al. (2014), and
Hajibabaei et al. (2011) respectively. Amplicon and shotgun
metagenomics library preparations were based on protocols following
Illumina manufacturer's instructions for MiSeq and HiSeq.

The centralized approach to sequencing was established by using a
dedicated sequencing centre at NRC-Saskatoon to perform Ecobiomics
Project sequencing. Amplicon metabarcoding sequencing is being con-
ducted on the Illumina MiSeq platform. Shotgun metagenomics se-
quencing is being conducted on the Illumina HiSeq platform. We have
focused on using the Illumina MiSeq and HiSeq sequencing platforms
as they have emerged as the most widely used platforms to support
metagenomics analyses (Caporaso et al., 2012; Tan et al., 2015;
Ionescu et al., 2016) and they have served as the basis for large interna-
tional initiatives such as the Earth Microbiome Project (2018). DNA se-
quence data from the sequencing centre are transferred to our
Bioinformatics Platform where PIs are responsible for logging on to ac-
cess their data, assessing needs for sequencing reruns, and conducting
the analyses needed to interpret and visualize results.

3.3. Bioinformatics platform

The Bioinformatics Platform was established in the first year of the
Ecobiomics Project to serve as a government-wide platform to harmonize
collection, storage, and analysis of metagenomics data. It was developed
at the General Purpose Science Cluster (GPSC) supercomputing facility
in Dorval, Quebec, with installation of 1500 cores, 35 TB of RAM, and
over 500 TB of data storage. The need for network upgrades to access
and use the resources on the GPSC was assessed for all Project

Fig. 1. The organizational structure of the Ecobiomics Project.
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participants, and upgrades (e.g. increased internet bandwidth) were
made for some participating locations. The resulting Platform has pro-
vided for a standardized Project-wide workflow from sampling, to se-
quencing, to raw and analyzed data management, while adhering to
information management and information technology standards and se-
curity requirements on systems architecture. This standardization and
centralization of data management within the Bioinformatics Platform
enabled cost-savings, and unprecedented collaboration, accessibility and
harmonization of data sharing across federal departments and agencies.

The centralized SeqDB data repository was deployed to house envi-
ronmental samplingmetadata, high-throughput sequencing data, refer-
ence data, and results of analyses. Ecobiomics participants are able to
login to an access-controlled web interface that facilitates data capture,
retrieval, and exploration. The repository'sweb interface enables the es-
tablishment of relationships between environmental samples, sequence
extraction methods, raw sequence data, and a subset of analysis results
such as operational taxonomic unit tables, taxonomic abundance tables,
and functional profiles. Through this integrated data management ap-
proach, participants can follow the provenance chain from sample to se-
quence to taxonomic or functional information.

At the outset of the Project, Ecobiomics participants discussed simi-
larities in sampling workflows, required database fields, and develop-
ment of a controlled vocabulary to be used across the Project.
Minimum metadata requirements prior to sequencing were
established, and metadata needs from across all Project Themes were
evaluated to ensure consistency with existing standards such as the
Darwin Core (Wieczorek et al., 2012) andMinimal Information for X Se-
quence (Yilmaz et al., 2011). An assessment identified 170

bioinformatics tools (e.g. QIIME,Mothur), various interpreters and com-
pilers that are standard within the community, and 230 libraries that
were required by the bioinformatics tools or are widely used in the ge-
nomics community that needed to bemigrated to the Platform. Selected
reference databases were also transferred to the Platform and were
scheduled to execute recurrently using the HCron system. These data-
bases included locally available copies of NCBI's non-redundant data-
base, NCBI's nucleotide databases, various taxonomic subsets of these
databases, NCBI's Taxonomy database, and the Unite fungal database.
The central SeqDB repositorywill continue to evolve to comply and con-
tribute to the community accepted standards for biodiversity (www.
tdwg.org) and genomics data (www.gensc.org), as well as Government
of Canada initiatives such as OpenData and OpenScience. As the
Ecobiomics Project progressed, a bioinformatics working group was
formed to discuss data analyses, share bioinformatics pipelines, and
look for opportunities to standardize bioinformatics analyses.

3.4. Microbiome and zoobiome projects

The Ecobiomics Project has sixteen soil microbiome, aquatic
microbiome and invertebrate zoobiome research projects across
Canada. These are exploratory and hypothesis-driven projects address-
ing specific departmental/agency policy objectives, with a number of
projects co-located to enable interdepartmental collaboration and inter-
disciplinary research at the soil-water interface. The projects are estab-
lishing biodiversity baselines for monitoring soil health, water quality
and environmental changes in the Great Lakes, Oil Sands region, and
other areas across Canada. They are also enhancing an inventory of

Fig. 2. The Ecobiomics Project workflow centered around the SeqDB information management system.
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the microbial and invertebrate biodiversity wealth across Canada, per-
haps with similarities to the Geological Survey of Canada that began in-
vestigating Canada's mineral wealth in the 1800s and provided a
foundation for subsequent development of mineral and energy re-
sources. To date, the Ecobiomics Project has collected 7263 soil, water,
and invertebrate samples from across Canada.

Soil microbiome projects are usingmetabarcoding andmetagenomics
tools to investigate the impacts of anthropogenic disturbances on soil mi-
crobial communities. This is to understand optimal soil microbial succes-
sion trajectories for remediation of disturbed and managed soils, and to
provide stable baselines for long-term ecosystem monitoring of soil
health. Soil microbiome projects are characterizing microbial communi-
ties following the remediation and re-forestation of disturbed soils in
the Athabasca oil sands region (Stefani et al., 2018), and the recovery of
boreal forest soils affected by disturbances such as wildfire, pest infesta-
tion, and biomass removal practices. Studies of agricultural soils in On-
tario are investigating the impact of agricultural management practices
(e.g. tillage, crop rotation, drainage management) on soil microbial com-
munities and the need to considermicrobial community changes inman-
aging soil carbon, nitrogen and phosphorus. Another soil microbiome
project is applying metagenomics tools to assess changes to microbial
communities and soil health from disturbances such as nano‑silver con-
taminants in order to improve environmental risk assessment and regula-
tory decision-making for toxic chemicals.

Aquatic microbiome projects are using metabarcoding and
metagenomics tools to investigate the temporal and spatial impacts of
land use disturbances and nutrient inputs (agriculture, forestry, mining,
urban sprawl) on the structure and function of aquatic microbiomes.
Studies on harmful algal blooms (HABs) in Lake Champlain, Quebec
for example, are applyingmetabarcoding andmetagenomics to investi-
gate bacterial and algal community dynamics in the lake in order to bet-
ter predict cyanobacterial blooms and reduce environmental and health
risks associated with cyanobacterial toxins (Fortin et al., 2015; Tromas
et al., 2017). Aquaticmicrobiomeprojects are also investigating harmful
algal and cyanobacterial blooms in Lake Winnipeg, Lake Erie, Lake St.
Clair (and its tributary the Thames River). These projects are collaborat-
ing with federal and provincial water quality monitoring programs to
add a microbiome perspective onto conventional water quality moni-
toringprograms for physical and chemical parameters such as phospho-
rus concentrations. The studies are also investigating the significance of
soil microbial reservoirs for seeding microorganisms into tributaries
draining into the lakes, aswell as new fecal pollution source tracking ap-
proaches to identify non-point sources of nutrients. In addition, studies
are also integrating metabarcoding and metagenomics tools to investi-
gate aquatic biofilms in headwater streams of managed forests, where
biofilm communities play important roles in regulating ecosystem func-
tions along the river continuum. Other aquatic microbiome studies are
investigating river microbial community responses to changes in agri-
cultural land use practices such as stream/ditch management and tree
cover loss in agroecosystems (Chen et al., 2018), and changes from oil
sands activities and associated soil remediation activities.

Invertebrate zoobiome projects are using metabarcoding tools to bet-
ter characterize communities of invertebrates in aquatic ecosystems.
These communities have traditionally had a prominent role inmonitoring
environmental health, particularly of rivers and lakes. They are relatively
simple to collect and identify, and their diversity is in part driven by their
sensitivity to environmental factors. Perhapsmost importantly, the spatial
and temporal scale of invertebrate ecology is appropriate to guiding local
land-use decisions and providing feedback to management authorities.
Invertebrates are also a crucial link in the food chain of economically im-
portant species like fish. Invertebrate zoobiome projects are being con-
ducted in collaboration with the Canadian Aquatic Biomonitoring
Network (CABIN), a national program that provides a standardizedmeth-
odology to evaluate the condition of rivers and streams across Canada rel-
ative to reference conditions (CABIN, 2018). One Ecobiomics project in
Atlantic Canada is evaluating whether DNA metabarcoding is a more

sensitive method to determine the effects of anthropogenic disturbance,
and whether this data can be produced more efficiently (i.e. faster and
more cheaply) than traditional morphological-based invertebrate detec-
tion methods. This project is also comparing invertebrate communities
in streams with those in Atlantic salmon guts as a newway to assess sal-
monid habitat suitability. Another project is building upon previous Joint
Oil Sands Monitoring Program work to test whether metabarcoding
would be more sensitive for detecting invertebrate community changes
in wetlands in the Peace-Athabasca Delta (PAD) due to potential down-
stream contamination from Alberta Oil Sands activities (Gibson et al.,
2015). One other project is applying amultidisciplinary approach to inte-
grate invertebrate zoobiome, soil microbiome, and aquatic microbiome
research in the South Nation watershed near Ottawa, Ontario. The exper-
imental disturbance of agricultural streams in thiswatershed through cat-
astrophic removal of riparian habitats has provided an opportunity to test
responses to a controlled, yet realistic disturbance event. Invertebrate
community responses are being measured through composition, but
also on the basis of proxies for ecological function such as litter decompo-
sition and the flux of energy from emerging insects to riparian wildlife.
Metabarcoding applications are also investigating disturbance impacts
on soil and aquatic microbiomes in this watershed, as well as impacts
on mosquito communities as part of West Nile virus public health
research.

4. Future directions

The Ecobiomics Project has provided a turning point for applying new
metagenomics approaches in environmental assessment, monitoring,
and remediation programs for soil health andwater quality across the Ca-
nadian federal government.We anticipate thatmetagenomic toolswill be
able to providemore comprehensive approaches for biomonitoring of soil
and aquatic ecosystems, and for discovering more robust and reliable
multi-species indicators and early warning tools for soil health and
water quality. We also anticipate that in the future, the Project's Bioinfor-
matics Platform will be able to support a wide range of new
metagenomics research opportunities across federal government pro-
gramsbeyond the Ecobiomics Project. These include support for including
microbiome perspectives for risk assessment of toxic chemicals
(Adamovsky et al., 2018); improvement of the productivity of agricultural
crops (Gopal and Gupta, 2016; Busby et al., 2017), trees (Mercado-Blanco
et al., 2018), livestock (Mizrahi and Jami, 2018), and aquaculture species
(Limborg et al., 2018), as well as to enhance food quality and safety (De
Filippis et al., 2018), and advance public health surveillance (Miller
et al., 2013). These also include applications of eDNA metabarcoding to
scale-up and expand biomonitoring programs (Porter and Hajibabaei,
2018); improve freshwater fisheries assessment (Evans and Lamberti,
2018), advance wildlife conservation (Bohmann et al., 2014), protect en-
dangered species (Balasingham et al., 2018; Doi et al., 2018; West et al.,
2019), and address invasive pests (Valentin et al., 2018) and alien species
(Kowalski et al., 2015; Klymus et al., 2017).

The Ecobiomics Project has selected some of its sampling sites as ge-
nomic observatories to coincidewith sites that are part of long-term en-
vironmental monitoring programs. These include water sampling
stations in the middle of the west, central, and east basins of Lake Erie
that are part of Environment and Climate Change Canada's long-term
water qualitymonitoringprogram for the Great Lakes. The characteriza-
tion of bacterial, archaeal, algae, and fungal communities at these sta-
tions will provide added value to the conventional physical and
chemical water quality parameters that are currently used to monitor
and predict algal blooms and other environmental changes occurring
in this lake. Similarly, genomic observatories have been established for
soil microbiome studies in the Montmorency Forest in Quebec that are
part of long term monitoring programs for this boreal forest (http://
www.foretmontmorency.ca/en/). Genomic observatories have also
been established for microbiome and invertebrate zoobiome sites in
the South Nation watershed, Ontario as part of studies of agro-

7T.A. Edge et al. / Science of the Total Environment 710 (2020) 135906

http://www.foretmontmorency.ca/en/
http://www.foretmontmorency.ca/en/


ecosystem changes, and at Peace-Athabasca Delta sites downstream of
Alberta oil sands activities. It is anticipated that Ecobiomics observato-
ries will provide legacy DNA sequence datasets to be mined into the fu-
ture as part of temporal analyses of biodiversity trends at long term
monitoring sites, and spatial analyses as part of global efforts to inte-
grate DNA sequence data into broader Earth Observing systems
(Davies et al., 2012).

While applications of metagenomics have been pervasive in many
fields of science, there remain challenges for advancing metagenomic
approaches beyond the research stage into environmental assessment,
monitoring, and remediation programs for soil health andwater quality.
These include the need to better understand the biases from DNA ex-
traction methods, PCR amplicon strategies, bioinformatics pipelines,
and reference databases that can affect the representativeness of micro-
bial and invertebrate biodiversity detected in soil and aquatic samples
(Elbrecht and Leese, 2015; Tan et al., 2015; Nesme et al., 2016;
Oliverio et al., 2018; Pawlowski et al., 2018; Hering et al., 2018). They in-
clude the need to evaluate new metrics, thresholds, and metagenomics
endpoints for environmental decision-making. They also include gov-
ernment policy and regulatory constraints thatmay influence readiness
for uptake regardless of the benefits of new metagenomics approaches
(Henrich et al., 2016). In addition, while there have been notable ad-
vances from initiatives like the Earth Microbiome Project (Gilbert
et al., 2014), the science of metagenomics is still evolving, which pre-
sents a challenge for developing widely recognized standards to enable
comparison of results between studies.

The Ecobiomics Project has focused much of its initial end-user en-
gagement efforts on invertebrate zoobiome collaborations, particularly
with Canada's CABIN network. There is less of an existing framework
for soil and water microbial community biomonitoring (other than for
diatoms) to guide comparative evaluation and incorporation of
metagenomics approaches. On the other hand, CABIN provides an

existing framework for assessing the health of aquatic ecosystems
based on a national standardized approach for enumerating benthic
macroinvertebrates, generally visible to the naked eye (CABIN, 2018).
Ecobiomics researchers are comparing invertebrate zoobiome
metabarcoding datasets with conventional macroinvertebrate taxo-
nomic identifications obtained using microscopes to demonstrate ad-
vantages for incorporating metagenomics data into the CABIN
biomonitoring programs. These collaborations are leading towards ca-
pabilities for CABIN to provide faster, less expensive, andmore compre-
hensive characterizations of benthic macroinvertebrate communities
responding to environmental stressors at sites across Canada (Fig. 3).

While we are not aware of another government-wide
metagenomics initiative for microorganisms and invertebrates compa-
rable to the Ecobiomics Project, there are a growing number of initia-
tives around the world that are advancing metagenomics applications
to better characterize microbial and invertebrate communities for soil
and freshwater management programs. These include environmental
microbiome initiatives in Australia (Bissett et al., 2016), Brazil (Pylro
et al., 2014), China (CSMI, 2014), France (Terrat et al., 2017), the
United States (Stulberg et al., 2016), and Africa (Wild, 2016). There
are also large international microbiome collaborations such as the
Earth Microbiome Project (Gilbert et al., 2014) and the TerraGenome
Project (Vogel et al., 2009), aswell as calls for amore globally integrated
initiative for the study and sharing of data on microbiomes (Alivisatos
et al., 2015; Dubilier et al., 2015; Blaser et al., 2016). Similarly, there
are metabarcoding initiatives for better characterizing invertebrate
communities such as DNAqua-Net in Europe (Leese et al., 2016). With
the pervasive expansion of metagenomics in the soil and aquatic sci-
ences, there are also companies establishing metabarcoding services
for analyzing soil and water samples. In order to continue to advance
metagenomics applications, it will be important to continue progress
on developing best practices and standards for microbiome and

Fig. 3.Map of Canada showing Canadian Aquatic Biomonitoring Network (CABIN) monitoring sites.
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invertebrate zoobiome studies around the world (e.g., Yilmaz et al.,
2011; Knight et al., 2012; Ionescu et al., 2016; Lear et al., 2018; Knight
et al., 2018). This will be essential to ensuremetagenomics data are col-
lected, analyzed, and interpreted based upon the best available science,
and that results are comparable as widely as possible. In addition, agen-
cies involved in assessment, monitoring, and remediation of soil health
and water quality will increasingly need to consider capacity building
and education/training requirements for gaining familiarity with
metagenomics in their soil and water research, policy, and program
management environments.

5. Conclusions

The Ecobiomics Project has provided amodel for beginning to incor-
porate metagenomics into environmental assessment, monitoring and
remediation programs for soil health and water quality. The Project
has been able to highlight a number of conclusions and advances to
date:

• Advances inmetagenomics are enablingmore comprehensive charac-
terization of the biodiversity found inmicrobial and invertebrate com-
munities at lower trophic levels in soil and water ecosystems.

• The results from metagenomics studies are providing new perspec-
tives on the importance of microbiome and invertebrate zoobiome
communities for soil health and water quality, and for providing
early warning indicators of environmental changes.

• The Government of Canada has advanced the Ecobiomics Project to
applymetagenomics to improve environmental assessment, monitor-
ing, and remediation of soil health and water quality.

• A centralized sequencing facility and Bioinformatics Platform were
established across seven departments and agencies for collection,
storage and analysis of metagenomics data.

• Sixteen research projects were initiated, and genomics observatories
were established with environmental assessment and monitoring
end user communities under Soil Microbiome, Aquatic Microbiome,
and Invertebrate Zoobiome Themes.

• The ground floor of a novel government-wide platform was
established for harmonizing metagenomics characterization of biodi-
versity in terrestrial and aquatic ecosystems.
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