| hd |

NRC Publications Archive
Archives des publications du CNRC

Detecting Total Building Occupancy for More Efficient Operation
Newsham, G. R.; Birt, B.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de I'éditeur, utilisez le lien
DOl ci-dessous.

Publisher’s version / Version de I'éditeur:
https://doi.org/10.4224/20374236
Research Report (National Research Council of Canada. Institute for Research in

Construction), 2010-07-15

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=c28ecd5e-6b1e-475a-9324-4404f7263c64
https://publications-cnrc.canada.ca/fra/voir/objet/?id=c28ecd5e-6b1e-475a-9324-4404{7263c64

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’accés a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la
premiére page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

 Ld

National Research  Conseil national de
Council Canada recherches Canada Canada



Institute for " Institut de
Research in recherche en
Construction construction

http://www.nrc-cnrc.gc.calirc

Detecting Total Building Occupancy for More Efficient Operation

RR-304
Newsham, G.R.; Birt, B.

July 15, 2010

The material in this document is covered by the provisions of the Copyright Act, by Canadian laws, policies, regulations and international
agreements. Such provisions serve to identify the information source and, in specific instances, to prohibit reproduction of materials without
written permission. For more information visit _http://laws.justice.gc.ca/en/showtdm/cs/C-42

Les renseignements dans ce document sont protégés par la Loi sur le droit d'auteur, par les lois, les politiques et les reglements du Canada et
des accords internationaux. Ces dispositions permettent d'identifier la source de l'information et, dans certains cas, d'interdire la copie de
documents sans permission écrite. Pour obtenir de plus amples renseignements : http:/lois.justice.gc.ca/fr/showtdm/cs/C-42

National Research  Conseil national
Council Canada de recherches Canada



http://www.nrc-cnrc.gc.ca/irc
http://laws.justice.gc.ca/en/C-42/index.html
http://lois.justice.gc.ca/fr/showtdm/cs/C-42




Detecting Total Building Occupancy for More Efficient Operation

Guy R. Newsham, Benjamin J. Birt

National Research Council — Institute for Research in Construction
RR-304

July 15™, 2010

This research report was generated as part of the NRC-ICT Sector initiative
on Sensor Networks for Commercial Buildings

Page 1 of 47 IRC-RR-304



Detecting Total Building Occupancy for More Efficient Operation
Abstract

Wireless sensors were installed in a three-storey building in eastern Ontario comprising laboratories and
81 individual work spaces. Contact closure sensors were placed on exterior doors, internal doors, and
on the refrigerator door in the main break room, PIR motion sensors were placed in the main corridor
on each floor, and a carbon-dioxide sensor was positioned in a circulation area. In addition, we
collected data on the number of people who had logged in to the network on each day, network activity
(bit transfer rates), and electrical energy use (total building, and chilling plant only). Data were recorded
over the Summer, 2009. The data streams were clearly responsive to building occupancy at the whole
building level (e.g. evenings, weekends, public holidays) and locally (e.g. doors near heavily-occupied
meeting rooms). Further, we developed an ARIMAX model to forecast the power demand of the
building in which an explicit measure of building occupancy level was a significant independent variable
and increased the accuracy of the model. The results are promising, and suggest that further work on a
larger and more typical office building would be beneficial. If building operators have a tool that can
accurately forecast the energy use of their building several hours ahead they can better respond to
utility price signals, and play a fuller role in the coming Smart Grid.

1.0 Introduction

In 2007 commercial and institutional buildings accounted for approximately 13% of the end use of all
energy sources in Canada of which 25% was electricity [National Resources Canada, 2008]. Data from
Ontario suggests that on-peak electrical demands are growing even faster than overall demand
[Rowlands, 2008]. Concern is growing that additional electricity supply cannot be realised quickly
enough to meet growing demand, particularly at peak times. As a potential solution, it is proposed that
building power draw should be better tuned to the state of supply through more careful control and
timing of loads in response to utility signals and other inputs; this may be one element of the larger
concept of the Smart Grid [e.g. Gershenfeld et al., 2010].

A building’s ability to reduce overall energy use, and to reduce demand at specific times may be
substantial, depending on the systems in place and data available to inform decisions. Recent research
demonstrates that “demand responsive” heating, ventilating and air conditioning (HVAC) and lighting
system may reduce their power draw by 30%, or more, for periods of a few hours without major
hardship to occupants [Piette et al., 2005; Newsham & Birt, 2010] The flexibility in future building
energy use depends upon current operating conditions and projected future needs. Such forecasting
and resulting action is rare in current practice. Tools that do exist are based on: previous experience,
prior energy use, and weather conditions and forecasts; these are discussed in more detail in Section 3.4
below.
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A factor that is not typically considered explicitly in energy forecasting is building occupancy. Occupants
are a main driving factor behind commercial building energy use with their use of office equipment,
lighting, plug loads and a need for suitable ventilation rates, thermal conditioning etc., thus including
measures of occupancy in energy prediction models should improve them. Further to this, as people
move away from the office and move to remote working locations (at home, office hubs etc.) to reduce
daily travel time and improved work time flexibility, the efficient use of office space is critical [North,
2007]. For example, to assist in the efficient use of desk space, hotelling is becoming popular in some
large offices [Freiman, 1994; Shimo, A., 2008]. Again, more detailed information on total occupancy
would assist in more efficient space allocation. In certain buildings swipe card access can easily give
building occupancy information. However in other buildings where such technology is not available, is
there another economical way of determining how many people are in a building?

Information on occupancy may also lead to better and more energy-efficient indoor environment
control. Localization; i.e., knowing where individual occupants are, and perhaps their preferences and
needs, may lead to very fine-tuned delivery of lighting and HVAC [Zhen et al., 2008; Harle & Hopper,
2008; Wen et al., 2008; Tiller et al., 2009; Erickson et al., 2009]. The installation of sensors can be used
to view social dynamics/habits in buildings that could be used for improved modeling and safety. For
example, more than 200 motion sensors were installed in common areas across 2 floors and monitored
over a year creating a large data set [Wren et al., 2007b]. This data has been analysed several ways to
investigate relationships between soft drink consumption and motion [Wigdor et al., 2007], measuring
the hidden social life of a building [Wren et al., 2007a] and visualising the history of living spaces [lvanov
et al, 2007]. A low cost network of sensors can provide powerful contextual information to building
systems: improving efficiency of elevators, lighting, heating and cooling; enhancing safety and security
[Wren et al., 2006].

This project investigated the use of several data streams, including several relatively cheap, off-the-shelf
wireless sensors and receivers to measure various building occupant activities in order to develop
metrics related to total building occupancy'; we also recorded total building energy use. We correlated
occupancy information in a qualitative sense against various building events to demonstrate that
monitoring occupancy could be used to detect (and react to) such events. In particular, and in a
guantitative sense, we used metrics related to building occupancy as external inputs (independent
predictor variables) in forecast models of building power draw. The question we wished to explore was
whether including an occupancy metric as an explicit independent variable would provide additional
useful information, and would therefore improve the model accuracy. Loveday & Craggs [1993]
suggested that variance in their model of indoor temperature could be partially explained by variations
in occupancy, and that forecasting accuracy could be improved by adding it as a variable in the model,

! We are also conducting a complementary project on linking occupant localization data to local delivery
of lighting and HVAC, the results of this work will be reported separately.
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and Neto & Fiorelli [2008] lamented the lack of occupancy data for use in their model of building energy
use.

2.0 Methodology

A wireless sensor network monitoring several building characteristics was installed in a building located
in eastern Ontario. The building was a three-storey concrete structure, with metal studded dry walls
and comprised a mixture of offices and laboratories. The laboratories included numerous pieces of
industrial and electrical equipment, computer servers and metal cabinets. There were 81 individual
work spaces (primarily private offices with some cubicles) in the building at the end of the study (some
cubicles were added during the study). Various sensors and receivers were installed throughout the
study building to collect data on activities related to occupancy, and other relevant information.
Network logins, network activity, and the wireless sensor network data were recorded between June
12™ and September 30" 2009. Energy use data was also recorded during this period. The study period
was chosen as a time when there is often the greatest variation in building occupancy, with occupants
out of the office for summer holidays and conferences. Staffing levels typically start to return to normal
at the end of August, when school resumes. A complete description of each of the data sources is in
Section 2.1. The study protocol was approved by our organization’s Research Ethics Board.

2.1 Data sources
2.1.1 Network logins

Logging in to the local computer network is necessary for all employees wanting access to the network
and internet. Network logins were logged and maintained by the organization’s System Support Unit
(SSU) staff using Event Viewer in Microsoft Windows 2003 Server. For confidentiality, user identifiers
were removed by SSU staff and replaced with a unique non-identifying number. The network logins log
contained users from across the organization and was filtered to contain only those employees that
were based in the study building. During the study period there was a total of 88 unique building
occupants with network accounts, including full- and part-time staff, students and visiting staff. The vast
majority of building occupants were on-site when they logged in, and did login when they arrived for
work each morning. This data source does have errors associated with it. It did not include contractors
and guests that were not using the network while in the building. Further, some people only logged on
once per week (automatically re-authenticating when network was available again), while others logged
on from remote locations. Network logins from remote locations were included in the log with no
markers distinguishing these from on-site logins. However, it could be reasonably assumed that those
logging in to the network outside of 6:00 am and 6:00 pm were doing so remotely. The data file was
filtered to remove any logins repeated within 5 seconds. This cleansed data gave a daily cumulative
count of logins (multiple logins per user per day) and a daily cumulative count of unique users per day
with at least one login. Note that the login data is limited to unique login events, subsequent logoffs
were not recorded.
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2.1.2 Network activity

Network activity was monitored by SSU by measuring the rate of data transfer between a network
server and switch board. The average transfer rate over the preceding 30 minute interval was recorded
over the study period. Two values were recorded, incoming transfer rate (data being sent to the server
from a user’s PC) and an outgoing transfer rate (data being sent from the server to a user’s PC). The
volume of data being transferred hourly from midnight was calculated daily for each transfer direction.

2.1.3 Building energy use

Two measures of electricity use were available: total building, and chilling plant only. These were
recorded with separate PowerlLogic ION7650 Power Meters manufactured by Schneider Electric. The
power meters recorded several variables; we used the average power in preceding 15 minutes and
cumulative energy consumed in our analysis.

2.1.4 Wireless sensors

Off-the-shelf wireless sensors and receivers were purchased to measure various parameters associated
with in the building, including indicators of occupant activity. These were purchased from Echoflex
Solutions Inc. (http://www.echoflexsolutions.com/) that use EnOcean technology and are part of the

EnOcean Alliance (http://www.enocean-alliance.org/en/). Several sensors were available including

magnetic contact closure sensors, motion sensors, illuminance sensors and temperature sensors. A
carbon-dioxide sensor was connected to a transmitter via a prototyping board and included in the
network. The wireless sensor network system recorded activity related to everyone that used the
building, including full-time staff and visiting workers, and contractors and guests.

The sensors were wireless in terms of their method of communication, to transmit measured values
back to the base station, some required wires for power supply. The motion sensors and carbon-dioxide
(CO,) sensor had a 110V power source. The magnetic contact closure sensors, illuminance and
temperature sensors were all powered with a small solar cell and capacitor. Data was transmitted in a
small packet (telegram) upon activation using a 315 MHz signal. The 14-byte telegram was sent either
upon activation or at a set period of time from its last activation, as determined by the “heartbeat” rate
set on the transmitter. The heartbeat was essentially a telegram that simply indicated that the sensor
was still working normally. Each telegram included a unique sensor serial identification number (4
bytes), 4 data channels (1 byte each) as well as telegram verification, status and sensor type identifiers.
See the EnOcean Alliance website for a complete description of protocol used [EnOcean GmbH, 2008].
The transmitted signal strength was less than 10 mW and had a range of up to 30 m indoors (100 m free
range) before the power of the signal was substantially dissipated and not detected by a receiver. The
range depended upon the type of surrounding material, as observed by Jang & Healy [2010]. Metal
cabinets, server rooms, bookshelves, concrete walls and experimental equipment had the greatest
effect on signal propagation.
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The illuminance and temperature sensors were used to monitor external weather conditions. The
illuminance sensor was designed for internal daylight harvesting applications and had a maximum
measurable illuminance of 510 lux. For external measurements we placed neutral density filters in front
of the sensor raising the maximum illuminance to 130 klux. Both the illuminance and temperature
sensors were placed in a waterproof container and placed on top of the building. The photosensor had
an unobstructed view of the sky and the temperature sensor was shaded from direct sunlight (Figure 1).
A comparison to a calibrated illuminance meter and thermometer was performed over several days to
determine a correction factor for both sensors (Figure 2 and 3 respectively).

Figure 1. The llluminance sensor and temperature sensor as installed on the rooftop. The llluminance
sensor is in the water proof container on the left. The temperature sensor is shaded from direct sunlight
by the white covering on the right.
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Figure 2. Calibration curve for the wireless llluminance sensor (including correction factor) measuring
external llluminance for three days.
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Figure 3. Calibration curve for the wireless temperature sensor measuring external temperatures over
three days.

The CO, sensor (Figure 4) was a commercially available sensor (Vaisala GMW?21) that was connected to a
wireless transmitter. The output of the CO, sensor was 0 — 10V with the maximum corresponding to
2000 ppm, but the input of the transmitter was 0 — 2V only, with 256 increments. To ensure that we
maximized the sensitivity of the device to the concentrations expected, we capped the output of the
sensor at 4 V (800 ppm), and then stepped this down to 2V for transmission, meaning that the maximum
transmitted value of 255 (2V) corresponded to 800 ppm. We initially planned to measure building CO,
level in a common ventilation return duct, however this proved to be impractical. Large variations in the
measured CO, levels were observed and there were difficulties in transmitting a signal from the
confined spaces of the metal duct work. Another location that would measure general carbon-dioxide
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levels was chosen in a common circulation area on level three. The location was chosen such that it
would not be biased by any group or person. It also serviced several communal areas. Calibration of the
sensor took place in IRC’s calibration lab. Calibration involved comparing the output of the wireless CO,
sensor with that of 0 — 10 V output of the test sensor along with a reference sensor, both placed in a
metal chamber. The chamber was dosed with nitrogen and CO, gas with a CO, concentration of
1000 ppm until a steady reading was observed (20 min). The chamber was then flushed with a pure
nitrogen gas to achieve a zero point of CO, concentration. Since the final calibration point (1000 ppm)
was beyond the digital output range of the wireless transmitter, it was compared to the test sensor at
intermediate points during the flushing (see Figure 5). A linear line was fitted to this curve as seen in
Figure 5 and used to convert the digital output to a meaningful CO, concentration.

Figure 4. The carbon dioxide sensor as installed on the ceiling of the 3™ floor corridor. The wireless
transmitter component was hidden in the ceiling space.
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Figure 5. The calibration curve for the carbon dioxide sensor compared with a reference sensor. The
relative carbon dioxide level as used previous to calibration is on the top horizontal axis.

Magnetic contact closure sensors (Figure 6) were fixed to the entrance doors of the building, internal
doors along circulation routes, and a refrigerator. A telegram was sent upon each open and close of the
door. A heartbeat telegram rate was set at 10 000 seconds. The heartbeat telegram of all sensors was a
repeat of the last telegram sent. No identifying data bytes are used to differentiate a heartbeat

telegram from an ordinary signal.
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Figure 6. Magnetic contact closure sensor as installed in the study building on an internal door. The
orange wire is the transmitter’s antenna. The magnet is to the left of the sensor. The dark region on the
sensor casing is the solar panel used for energy harvesting.

Passive infrared radiation (PIR) motion sensors (Figure 7) were used to count the number of times a
person or a group of people moved through a certain region. The corridor locations were chosen not to
be outside the entrance to a specific room. A telegram was transmitted on activation. A deactivation
telegram was sent several seconds later. The time between the activation and deactivation telegram
was dependent upon the length of time that a body remained in the field of view of the sensor.
Heartbeat telegrams were transmitted every 80 seconds.
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Figure 7. The PIR motion sensor as installed. The power supply is in the ceiling space.
2.2 Sensor locations

The goal of each interior sensor was to gain a measure of activity that would correlate with general
building occupancy. For example, the number of times a door was used or the number of times people
walked through a particular region were expected to correlate with building occupancy.

Each of the sensors was installed several weeks before the study period and monitored for reliability.
Some sensor locations required the use of a repeater that re-transmitted the signal to the base station.
The commercial system used was designed for wireless communications for building control systems
(lighting, HVAC) within small areas/rooms. Setting the system up so that it provided reliable information
across an entire building proved to be a challenge. Due to the building being composed of laboratories
containing experimental equipment, metal cabinets/shelves and a server room, telegrams could not be
transmitted through certain regions [Jang & Healy, 2010]. We used a signal strength meter to help in
the placement of sensors. In addition, much time was spent on trial-and-error repositioning of
transmitters and receivers. Sensors were installed in their proposed locations and test activations
made, if the initial test activations were received then the location was monitored for several hours for
reliability. Test activations were made periodically during this testing phase. Even after the testing
phase, there were periods during the data collection period that the central receiver did not receive
data from certain sensors consistently, requiring us to remove certain days from the data analysis for
some variables. A building entrance door located on the north side of the building could not be
consistently logged and was not included in the final network.
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The locations of the sensors across the three floors are shown in Figures 8 to 10. The base station was
located on level 3 and connected to a computer logging all incoming telegrams. Repeater C on level 3
serviced the magnetic contact closure sensors on the level 3 internal doors, refrigerator and the front
internal and external doors. Repeater A on level 1 serviced the magnetic contact closure sensors fixed
to the south door and level 1 internal doors and the motion sensor on level 1. Repeater B was used to
attempt to get a signal from the north door, but was found to be unreliable due to the nature of
construction around this area (i.e. reinforced glass, elevator shaft, server room etc.). A complete list of
all sensors used with their location, identification number, sensor type and transmission path to the
base station is in Table 1.

Table 1. Brief details of each of the sensor for the wireless network in the study building. North door
was not included in final network due to unreliable signals.

Name Sensor type ID # (hex) Floor Transmission path
Motion sensor level 1 Motion 00010FAB Level 1 Repeater A
Motion sensor level 2 Motion 00010EDF Level 2 Direct
Motion sensor level 3 Motion 0000AD32 Level 3 Direct
Refrigerator door Contact closure 00010F8B Level 3 Repeater C
North door Contact closure 000105D0 Level 1 Repeater B
South door Contact closure 000105F4 Level 1 Repeater A
Front doors internal Contact closure 00010623 Level 2 Repeater C
Front doors external Contact closure 00010F62 Level 2 Repeater C
Level 1 doors Contact closure 00010E57 Level 1 Repeater A
Level 3 doors Contact closure 0001043E Level 3 Repeater C
Carbon dioxide Carbon dioxide 0000AD30 Level 3 Direct
Thermometer Temperature 000105AB Roof Direct
Photosensor [luminance 00010E18 Roof Direct
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2.3 Sensor data collection

Telegrams were logged at a base station on level 3. A program written in Agilent VEE was used to
monitor and log the incoming telegrams with a timestamp. Preliminary data analysis was performed at
this stage by converting the data bytes into meaningful units, or the sensors’ status (opened/closed,
active/inactive). Researchers inspected the data visually on a regular basis and any irregularities of
missing data by sensors or repeaters not working were recorded and used to cleanse the data at the end
of the collection period.

The telegram structure can be seen in the Echoflex documentation for each of the sensors
(http://www.echoflexsolutions.com/) with a summary of the structure in Table 2. Equations 1 to 3 were

used to convert the respective data byte transmitted by the carbon dioxide sensor, temperature and
illuminance sensors respectively. For motion sensors, DataByte_1 has two values according to whether
the sensor is active (2) or inactive (255). If the same value is received consecutively then it is considered
as a heartbeat signal. For magnetic contact closures, DataByte_0 has four values according to whether
the sensor is open (bit_ 0=1), closed (bit_ 0=0) or if a learn button is pressed in either situation
(bit_3 =0). If the same value is received consecutively then this is considered as a heartbeat signal.
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Table 2. Breakdown of the 14 bytes in a telegram of the Enocean protocol [EnOcean GmbH, 2008].

Byte Number Name Description
Byte 0 Sync_Byte 1 Constant (A5 hex)
Byte 1 Sync_Byte 2 Constant (5A hex)
Byte 2 Header Header identifier and number of octets following
Byte 3 Org Transmitter type
Byte 4 DataByte_3 Analogue data input 3 on transmitter
Byte 5 DataByte_2 Analogue data input 2 on transmitter
Byte 6 DataByte_1 Analogue data input 1 on transmitter
Byte 7 DataByte_0 Digital input on transmitter
Byte 8 ID_3
Bli(‘;:eelgo :B:i 32 bit sensor ID
Byte 11 ID_O
Byte 12 Status Direct or repeated signal
Byte 13 Checksum Last 8 least significant bits from addition of Bytes 2 to 12
Carbon Dioxide Concentration (ppm) = 3.287 X DataByte_2 - 22.63 (1)
Temperature (°C) = — % x DataByte_1 + 60 (2)

[luminance (lux) = k x % X DataByte_2, where k is the empirically-derived calibration

(filters transmission) constant, k = 255 (3)

2.4 Data cleansing

Over the study period it was noted that the reliability of some sensors varied daily. The variation in
reliability led to some periods of an unknown number of missing telegrams. An error log was kept at the
base station to record any potential problems and days to be removed from the final data set. A set of
criteria was used to determine which days were removed for analysis purposes.

Motion sensors were the most reliable, likely attributable to a consistent signal strength due to being
powered by a 110 V source. Due to the frequency of heartbeat telegrams, a minimum of 860 telegrams
were expected in a day even if there were no activations. Therefore days with a total number of
telegrams less than 860 were treated as erroneous and removed. For days that were close to this limit
the days were individually inspected for missing periods of data on a daily profile plot.

The magnetic contact closure sensors were the least reliable in the installation. Depending upon their
location telegrams often went astray. The transmitted signal strength and heartbeat rate was
influenced by the amount of energy stored on the capacitor charged by the solar cell. As a result, a
minimum number of daily telegrams could not be used for data cleansing. Individual days were visually
inspected and removed from further analysis if there were atypical periods of inactivity. For example,
the internal doors on level 3 were used regularly during business hours, therefore any inactivity during
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this time for more than one hour was uncharacteristic and the day was removed (unless an event was
known that could account for the irregularity).

Network logins and network activity were also cleansed for erroneous days. Recorded events of
network resets and logging faults eliminated days from network login data. The amount of network
activity was extremely high (an order of magnitude greater) on several days near the end of the study
period, these days were removed from the final analysis. The increased activity was due to a location
remote from the study building, but sharing the same network, backing up data during these periods.
Besides the obvious effect of greatly reduced activity on weekends there were other notable days or
events that had an effect on one or all of the sensors in the network, Table 3 lists these events.

Table 3. Major events that occurred during sensor logging of study building

Date Description

12" June 2009 Sensors and repeaters hardwired into building

24" June 2009 St Jean Baptiste Day (public holiday in Quebec)

30" June 2009 Computer Network was shut down for maintenance

1** July 2009 Canada Day (public holiday throughout Canada)

3" August 2009 |  Civic Holiday (public holiday in Ontario)

12" August 2009 Extra cubicles on level 1 are starting to be used

12" - 17" August 2009 | South car park closed

24™- 25" August 2009 | Large meeting on level 3

27" August 2009 On-site BBQ — south door propped open at times

7" September 2009 Labour day (public holiday throughout Canada)

22™. 24" September 2009 Large meeting on level 3

3.0 Results
3.1 Telegram reliability

It was known that some signals from the magnetic contact closure sensors were not received. Exactly
how many telegrams went missing is unknown, but an estimate can be made by interpreting the
incoming telegrams in a different way than the initial interpretation. |Initially a count was only made
when an open signal was followed by a consecutive close signal. Sometimes, a repeat of the previous
signal was received during business hours. Initially the repeated signal was considered as a heartbeat
(as described above), heartbeats should not occur during business hours, as doors were used more
frequently than the heartbeat rate (1 per 10 000 seconds). A more liberal approach to calculate the
number of times a door was used during business hours could be used. For example, if a closed signal
was not received following an open event, and a further open signal was received a short time later,
then originally this would have been considered as a heartbeat rather than as a new door opening
event. Similarly should an open signal go astray, then two closed signals would be received
consecutively, again, originally this would have been considered as a heartbeat and a new door opening
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event would have been missed. Assuming that repeated signals during business hours were actually the
result of a missing telegram, then an estimate of the number of telegrams going missing per day could
be made. Over the study period approximately 12.9% of the signals went missing (this is similar to the
90% packet delivery rate used as one benchmark by Jang & Healy [2010]. It is possible that both the
open and close signals for a specific event were not received. If we assume that the chance of this
happening is 12.9% x 12.9%, then this adds another 1.6% to the number of contact closure events not
recorded.

Another estimate of missing telegrams comes from looking at the two doors of the main entry vestibule.
It is assumed that the two doors (front door internal and external) are used within several seconds of
each other when people are either entering or exiting the building. There were other ways out of the
vestibule but they were very rarely used. An exact pairing of the internal and external door activations
of the vestibule was not always evident in the data due to missing telegrams. Manually matching the
internal and external door activations for the nearly 20 000 telegrams, we estimated that 12.0% and
15.8% of the total telegrams from the internal and external doors respectively were missing.

It is not clear if the pattern of missing telegrams was random or systematic. There were certainly dates
and times when there were blocks of missing telegrams, but this can occur in random sequences too.
We suspect that some missing telegrams were due to temporary physical obstructions or sources of
interference.

3.2 General trends

We initially inspected descriptive representations of the data to verify expected trends. A weekly profile
with weekends exhibiting much lower activity levels than weekdays was observed; activity levels in
public holidays were similar to weekends (Figure 11). There was also reduced activity on Fridays for
several measures with examples shown in Figure 12. Diurnal profiles of activity at regular times of the
day were observed as expected. For example, an increase in activity at the beginning and end of day
was seen on the external doors, and sensors that were located in paths leading to the lunch room
(Figure 10, room 350) increased at break times (Figure 13).
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Figure 11. The daily total activation counts on the motion sensor on level 3 for an example two-week
period showing weekends and public holidays (1** July) having a significantly lower number of activations
over the day.
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Figure 12. Examples of the sensors that showed a typically lower total number of daily activations on
Friday: (a) refrigerator door, (b) front internal doors and (c) the level 3 doors. Days that have a total
count of zero are either public holidays or were erroneous and removed from analysis. Data are shown
by day of week, with consecutive bars showing values for that day on consecutive weeks.
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Figure 13. Example of a daily profile of the use of the internal doors (cumulative counts) on level 3.
Increase in activity is seen at the start and end of the day, morning break and lunch times.

These general trends were also observed in the number of network logins (Figure 14). Figure 14(a)
shows the total unique daily network logins that occurred between 6:00 am and 6:00 pm. The reduced
Friday activity seen in the sensor network is also observable for network logins. Further to this, looking
at the data from Fridays, there appears to be a decrease during the middle of the study period as
expected for this time of year. Figure 14(b) shows that the majority of people are logged onto the
network for the day by 10:00 am on weekdays (red lines). Unfortunately a measure of when a person
logged out of the network was not obtained. The general trends were less obvious in network activity
and building energy use. Figure 15 shows the daily energy use of the building excluding chiller loads.
Due to the unique use of the building as a research facility, building energy use may not correlate with
occupancy as strongly as in more conventional office buildings. For example, weekday loads were only
approximately 25% more than weekend loads, suggesting the presence of high process loads.
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Figures 14(a) and 14(b). Figure 14(a) shows the total unique daily logins between 6:00 am and 6:00 pm.
Missing columns were erroneous data days. Extremely low values on Monday and Wednesday were
public holidays. Figure 14(b) shows the daily cumulative network login profile. Red lines are weekdays,
blue lines are weekend days and green lines are public holidays.
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Figure 15. Daily energy use of the building excluding any chiller loads. The increase in load of
approximately 80 occupants in the building on weekdays is around 25% of the weekend base load.

Several events (meetings, work activities) occurred during the study period that we expected to have an
influence on certain sensors. Were these events, in fact, detected? Reduced activity was observed for
public holidays in Ontario similar to weekends (Figure 11) and a slight reduction in activity for public
holidays in neighbouring provinces (Figure 16). Other expected trends were an increase in activity for
meetings and either an increase/decrease for other activities (Table 3) on some sensors. For example
the commonly used car park was closed for a period of the study, requiring people to park in alternate
lots and perhaps enter the building via a different door. This resulted in a reduction in use of the south
door over the day (Figure 17(a)) and an increase in front door use (Figure 17(b)). An increase was only
observed on one of these days, this could be due to people realising that there was another car park
located to the north of the building and using the north door to enter the building instead. If the sensor
on the north door had been working, one would have expected to see an increase in use of this door.
Potentially the sum of all three doors would have remained constant throughout this period. Later in
August we see a substantial increase in use of the front door (Figure 17(b)) coincident with a major
meeting with partners from outside the host organization held in the main meeting room on level 3;
external visitors would have used the front door to access the building. The same meeting room on
level 3 was booked for a three day meeting in September, again with many external visitors. In Figure
18 an increase in activity is seen on a doors leading to this meeting room on two of these days. It is not
known why door activity on the first day of the meeting was lower.
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Figure 16. Cumulative motion sensor activity, per day, on level 2 during an example period.
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Figure 18. Cumulative door activity, per day, on the level 3 internal door.
3.3 Additional non-occupancy related information

Besides giving a potential measure of building occupancy, the sensors gave an insight in to how the
doors operate and are used in the building. Five doors were monitored; two internal and three leading
to the exterior of the building (two of which were on the main entry vestibule). All doors were fitted
with an automatic door closer. The time it takes for the doors to close after being opened was
calculated, and Figure 19 shows the distribution of the times. The average time for the doors to close
was 5.6 (standard deviation 1.5) s for the level 3 door, 5.3 (s.d. 1.4) s for the level 1 door, 4.3 (s.d. 1.4) s
for the south door, 4.8 (s.d. 1.3) s for the front internal door and 5.5 (s.d. 1.3) s for the front external
door. Of the two doors at the main entry point to the building, the external door on average remained
open longer. Assuming that the door closing mechanism was the same for both doors, the extended
opening time was attributed to the negative pressurization of the building, which makes the external
door slightly harder to open, as well as potentially restricting the closing speed of the door slightly. The
level 1 door shows a distribution with two clear peaks, this might reflect a difference due to the
direction of travel through the door: pulling the door open so that the gap is wide enough to pass
through extends the total time the door is open compared to pushing the door open and passing
through it. However, a similar effect on the other doors is not obvious.
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Figure 19. Curves showing the range in times that the 5 doors take to close upon opening. The direction
of travel is unknown.

Of the double doors on the main exterior door vestibule, the sensor on the internal front door was more
reliable than the sensor on the external front door, resulting in more signals being received from this
sensor. Interpolating the results by removing heartbeats during office hours and matching each open
and close of the external front door to that of the internal front door (as described above), an estimate
of the time it takes for a person entering the building to open the external door first followed the
internal door (negative number) was made, and vice versa on exiting of the building (positive number).
Figure 20 shows a histogram of those entering and exiting the building. When entering the building (left
hand side of the chart in Figure 20), it takes an average of 4.4 (s.d. 1.1) s to open the external door pass
through the vestibule and open the internal door. On average there is 4.0 (s.d. 1.1) s between the two
doors closing. Exiting the building is slightly quicker (right hand side of chart in Figure 20) at
3.2 (s.d. 1.2) s to consecutively open the two doors, a shorter period than entering the building due to
the doors swinging in the direction of travel. Similarly to entering the building, the doors again close
4.1 (s.d. 0.8) s after each other. Time differences greater than 10 s were excluded from these analyses,
as these times were assumed to be incorrectly matched.
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Figure 20. Matching the internal and external door signals of the main entry to the building, the time it
takes from opening the first door to opening the second door of the vestibule was calculated (orange) as
well as the time between the first door closing and the second door closing (blue). A negative time
signifies that a person or group of people are entering the building. A positive time signifies that a
person or group of people are exiting the building.

3.4 Correlations Between Different Metrics of Occupancy

Figure 21 shows the mean hourly values of the various occupancy-related metrics for which we collected
data. The expected general patterns are apparent. All, except logins, show a general diurnal pattern,
with some measures showing a decline over lunchtime. As described above, because we only have data
on when people logged in, and not when they logged out, means that the login curve doesn’t display a
decline in the late afternoon.

Table 4 shows the simple correlations between the various metrics related to occupancy. Table 4(a)
shows correlations derived from all data. In this case motion sensor data (for example) correlates better
with the other metrics than logins does. However, this may be because of the invariability in login data
in the afternoon, because we do not have data on subsequent logoffs. Table 4(b) shows correlations for
data from midnight to noon (am period) only, when the login data is more likely to accurately represent
the number of people currently logged in (as opposed to the number who have logged in, but may since
have logged out). In this case we see the correlations between logins and the other metrics is much
higher, and slightly higher than the correlations between motion sensor activations and other metrics.
The intercorrelation between logins and motion sensor activations is very high.
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Figure 21. Mean hourly values of various occupancy-related metrics.
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Table 4. Simple correlations between various metrics of occupancy over all days in the dataset
(a) all hours; (b) For hours 1-12 only.

Total Total Total

(a) All hours motion external internal Total Carbon
At least sensor door door Fridge door | network dioxide
one login | activations | activations | activations | activations traffic concent.

At least one login

Total motion .506

sensor activations

Total external .521 .867

door activations _ _ _

Total internal door 478" .895 889"

activations

Fridge door 315 .699 .744 .801

activations

Total network .337 525 435 472 342

traffic

Carbon dioxide .263 .662 .669 .690 .488 .383

concentration

Total Total Total

(b) AM hours only motion external internal Total Carbon
At least sensor door door Fridge door | network dioxide
one login | activations | activations | activations | activations traffic concent.

At least one login

Total motion =

sensor activations 946

Total external * *

door activations 925 911

Total internal door - o o

activations 913 916 912

Fridge door - . o e

activations 742 .739 .790 .823

Total network - * = * *

traffic .533 .530 476 512 371

Carbon dioxide = = = = o *

concentration .638 .598 .668 .656 .462 .363

** Correlation is significant at the 0.01 level (2-tailed).

3.5 Energy Use Forecasts Using Time-Series Regression
3.5.1 Introduction

With the advent of the SmartGrid and utility tariffs that charge substantially more for electricity at times
of peak demand, it is becoming increasingly desirable for facility managers to be able to forecast their
facility’s electricity use some hours into the future, and to take operations decisions based on this
information. Such decisions might involve load shedding, pre-cooling, charging of ice storage, activation
of local generation, or a variety of other actions to advantageously vary the load profile [e.g. Zhou et al.,
2008; Neto & Fiorelli, 2008; Hoffman, 1998].
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To date, relatively crude methods for prediction have been adopted in buildings, such as assuming the
average load profile from previous days, or simple regression equations. In recent decades a new class
of models has been developed that promises better prediction accuracy, and that has been successfully
applied in other domains, particularly in the economic and business domains [Montgomery et al., 2008].
This class of models has the general name ARIMAX, which stands for Auto Regressive Integrated Moving
Average with eXternal (or eXogenous) input, which is part of a broader class of time series analysis
techniques®. The “integrated” part of the name refers to the fact that it is often required that one runs
the analysis on the change in the dependent variable of interest (known as “differencing”), rather than
the raw variable itself, to render the series stationary®. “Auto regressive” indicates that the forecasted
value of the dependent variable may be predicted from prior, known, values of the dependent variable.
“Moving average” indicates that the forecasted value of the dependent variable may be predicted from
prior values of the error term in the prediction. “External input” refers to the optional use of
independent predictor variables. The general notation for such a model is ARIMAX(p,d,q); if
independent predictor variables are not employed then the notation is ARIMA only. The “p” indicates
how far back in time one goes in using prior values of the variable of interest. For example, if the
current value of a variable measured every hour is predicted using values of that variable from one and
two hours ago (known as “lag 1” and “lag 2”), p=2. Similarly, g refers to how many lags in the error term
are used and “d” indicates how many times one takes the difference of the dependent variable®. It is
often the case that the variable of interest exhibits obvious periodic behaviour, generally referred to as

Ill

“seasonal” behaviour. For example, building power use often displays a clear diurnal pattern; if one
measures power hourly then there will be a seasonality of order 24. For modelling, one creates a new
seasonal variable to reflect this variation, which is the current value of the dependent variable minus the
value from one seasonal period ago. One can then apply differencing and lags to this variable and
include these terms in the model. Thus the final general notation is ARIMAX(p,d,q)(P,D,Q)s, where P, D,
and Q have the same meaning as above, but now refer to the seasonal variable, and s is the order of

seasonality with respect to the measurement interval®.
The most general mathematical form of the ARIMAX model equation is as follows [UC, 2010]:

(Eq. 1)

6(B)6,(B*)

(1= B (A = By = o+ Vi(B)Xye + s ey e

> Other advanced techniques that have also been applied to building-related applications include artificial neural
networks (ANN) [Kawashima et al., 1995; Karatasou et al., 2006; Neto & Fiorelli, 2008].

A “stationary” series is one in which the values vary around an unchanging mean, and the variance over time is
constant. Stationary series are a requirement for ARIMA models.

“1f no differencing is used, the model may be specified as ARMA(p,q) or ARIMAX(p,0,q), if there are no moving
average components the model may be specified as AR(p,d) or ARIMAX(p,d,0), if there are no auto-regressive
components the model may be specified as AM(d,q) or ARIMAX(0,d,q).

> A seasonal ARIMAX model is sometimes referred to as a SARIMAX model.
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where,

Y is the dependent time series
Xir is a set of j external predictor time series
ar is a white noise time series representing random error, the values of this series are not

known a priori, but are an outcome of the iterative parameter estimation methods used
to generate the best-fitting model

t indexes time
U is the mean of the series (=0 when series is differenced)
B is the backshift operator; i.e. BY;= Y1 B12Y, = Y,12, BB1?2Y, = B13Y;
P(B) is the autoregressive operator, a polynomial of order pin the backshift operator:
$(B) =1—¢;B — - — ¢,B”
@s(B) is, similarly, the seasonal autoregressive operator, a polynomial of order P:
¢s(B%) =1—¢s1B° — - — s pB*F
o(B) is the moving average operator, a polynomial of order g in the backshift operator:
6(B)=1-6,B—--—06,B7
0s(B) is, similarly, the seasonal moving average operator, a polynomial of order Q:
05(BS) =1 —05,B5 — -+ — 65 o B¢
Yi(B) is a transfer function for the effect of X;:on Y;:
w,(B) = %(1 — B)%(1 — BS)PiBk
0i(B) is the denominator polynomial in the backshift operator, for the ith predictor:
6;(B) =1—6;1B — - — 8;,,B?"
05i(B) is similarly, the denominator seasonal polynomial, for the ith predictor:
85i(B) =1—85;1B — = 8sp, B
wi(B) is the numerator polynomial in the backshift operator, for the ith predictor:
w;(B) = wjg — w;1B — - — w; q,BY
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wsi(B) is similarly, the numerator seasonal polynomial, for the jth predictor:
Ws,i(B) = Wg 0 = Wi 1B =+ — wg0,B5%

ki is the pure time delay for the effect of the ith predictor on the dependent variable (i.e. it
may be the case that the predictor cannot have an effect for a certain number of time
steps for basic physical reasons)

Note that the denominator polynomial plays a similar role for the predictor variable as the
autoregressive operator plays for the dependent variable, and the numerator polynomial plays a similar
role for the predictor variable as the moving average operator plays for the dependent variable.

There have been some attempts to apply ARIMAX models to building-related applications in the
literature. Loveday & Craggs [1993], provide a more thorough mathematical introduction to the
technique in the context of building issues (adding to the more general development found in
Montgomery et al. [2008]), and describe its application to the modelling and forecasting of room
temperature. Rios-Moreno et al. [2007] also modelled room temperature and included several external
input variables®. Lowry et al. [2007] provide several excellent examples for modelling of water and fuel
use in a variety of buildings. Hoffman [1998] uses such models to forecast and control the peak demand
for electricity at a government complex.

In this report we are particularly interested in the value of metrics related to building occupancy as
external inputs (independent predictor variables) in models of building power draw. Because ARIMA
models use prior values of the dependent variable, in this case power use, and because we know that
power use in a building is correlated with occupancy, the auto regressive and moving average
components will implicitly carry the effect of occupancy. The question we wished to explore was
whether including an occupancy metric as an explicit independent variable would provide additional
useful information, and would therefore improve the model accuracy. Loveday & Craggs [1993]
suggested that variance in their ARIMA model of indoor temperature could be partially explained by
variations in occupancy, and that forecasting accuracy could be improved by adding it as a variable in
the model. Neto & Fiorelli [2008] lament the lack of occupancy data for use in their ANN model of
building energy use. Further, they conducted parametric studies with a building simulation tool based
on physical principles (EnergyPlus) and observed that the sensitivity of energy use to changes in
occupancy and occupancy-related loads (lighting and electrical equipment) was of a similar order to the
sensitivity to external climate variables.

3.5.2 Method
3.5.2.1 Variables in the Model

In this study we apply ARIMAX to model and forecast total power draw of our study building, with
metrics of total building occupancy as external inputs. All variables used were hourly values (derived

6 Note, their model notation differs from the standard form
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from the measurements of the various variables at shorter time scales). The dataset employed was for
weekdays only (including three public holidays), because weekends were judged to be irrelevant for this
building where weekend occupancy was virtually nil and our long term interest was in peak demand
load control, which occurs exclusively on weekdays (Neto & Fiorelli [2008], found in applying ANN
models that separate models for weekdays and weekends produced more accurate results than a single
model with a day type variable).

As described above, we had data on total building electricity use, and also for the chiller separately.
Initial analysis showed that chiller power draw displayed only a very small correlation with cooling
degree days. This was very surprising, and caused us to question the simple relationship in this building
between climate, occupancy and chiller power. Therefore, we decided to subtract chiller power from
total building power, and to continue our analyses with power not associated with thermal load. Thus
the power variable included lighting, office equipment, lab equipment, and other plug loads that were
likely directly related to occupancy, and thus perhaps of more relevance to the goals of this study’
(Lowry et al. [2007] suggested that non-weather related energy use would benefit from a separate
analysis). Figure 22 shows the hourly time series for total building power minus chiller power, and
Figure 23 shows the average hourly values. An initial analysis suggested that of the variables we
collected that were indicative of total building occupancy; network logins and motion sensor counts
were likely to be the most useful, thus we proceeded with these as potential external inputs to the
models. Analysis showed that looking at the change of variables from hour-to-hour (one level of
differencing) was more appropriate for modelling purposes than using absolute values, and Figure 24
shows average hourly values for these variables.

7 An earlier, linear regression time series analysis suggested that using total building power including the chiller
yielded similar final results and conclusions.
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Figure 24. Average hourly values of the change in total building power minus chiller, unique network

logins, and motion sensor activation (sum from all three sensors).

Length of box is the interquartile

range (IQR); line in box is median; ‘o’ are outlier values more than 1.5 IQR from the end of the box; “*’
are outlier values more than 3 IQR from the end of the box; whiskers show min. to max. range excluding

outliers as defined above.
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Figure 23 shows that average power draw rise during the day compared to overnight was about 60-70
kW. Login data showed that there were typically 60-70 unique logins per day, suggesting a maximum
building occupancy of the same magnitude, consistent with the 81 available workstations in the
building. This also suggests that each occupant is responsible for about 1 kW of additional daytime load,
this seems to be about the correct order of magnitude given the office equipment and lighting
associated with each office and the laboratory loads that are initiated by the arrival of occupants. Figure
24 shows the expected rise (and fall) of building power draw coincident with the rise (and fall of
indicators of occupancy). Recall that the login data is limited to unique login events, subsequent logoffs
were not recorded. This means we have data related to occupancy as the building fills up, but not as it
empties. This suggests that our login data might be only partially useful in predicting building power
draw. This same limitation does not apply to the motion sensor data. On the other hand, we expect
that login data, if coupled with logout data, would be a better measure of “ground truth” occupancy
than motion sensor data.

3.5.2.2 Modelling Process

In general, we followed the model estimation and fitting procedure outlined in Montgomery et al.
[2008]. All analyses were conducted using the Forecasting module in SPSS version 18. Some SPSS
routines require complete data sets, whereas we had some gaps in our data for some variables due to
imperfect data collection systems and subsequent data cleaning (as described above). In such cases we
imputed the missing values with the mean of the non-missing values for that hour and day of the week.
We had 79 days (with 24 hourly values each) of complete and continuous data for building power draw;
of these 79 days, 5 complete days of network login data and 17 complete days of motion sensor data
were missing and were imputed.

Data were available for some or all variables from 1 am on June 12", 2009 (Week 1 Day 1 Hour 1) to
midnight on September 30", 2009 (Week 17 Day 3 Hour 24). Initial model exploration was conducted
on the majority of the dataset (Week 2 Day 1 Hour 1 to Week 16 Day 1 Hour 7) to suggest the form of
the best-fitting, parsimonious model. The dataset was then split into three for final model testing. The
best-fitting model form from the prior step was applied to data from Week 2 Day 1 Hour 1 to Week 10
Day 5 Hour 24, to check that it still fit well, and was then applied to Week 11 Day 1 Hour 1 to Week 16
Day 5 Hour 24 to make sure it was robust. Finally, the model as derived from the majority of the sample
was then used to forecast power draw for the immediate future hours (Week 16 Day 1 Hour 8 onwards)
and compared to the actual power draw data for this same period; i.e., data that were not used in the
derivation of the model.

Public holidays are not “events” in this model. Events in the terminology of such models are
occurrences expected to have substantial, “hangover” effects on the next few days, or permanent
effects. Inspection of the data showed that building power and occupancy returned to normal quickly
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on the days following public holidays®. Nevertheless, there were individual hours, or small sets of
adjacent hours, that had unusual values, for reasons that we could not explain. Therefore, we did
choose to model outliers in the analysis using SPSS routines (using Additive, Levelshift, Seasonaladditive
and Localtrend options); this improved model fit markedly, even though this required substantially more
degrees of freedom.

We included no delay factor in our models. We expected changes in occupancy metrics could show up
in power draw within the one hour period of the data, occupants are likely to switch on office
equipment and interior lights within the same hour they login and begin to trigger motion sensors.

3.5.3 Results

Inspection of the time series building power data suggested an obvious diurnal seasonality (order 24),
and that the data should be differenced once. We then plotted the autocorrelation and partial
autocorrelation functions (ACF and PACF) for the differenced and seasonally differenced data; the
results are shown in Figure 25. The format of these plots suggests a moving average model of lag 2, with
a seasonal lag, will be a good fit to the data. There are a few other significant lag terms indicated, but
these are irregularly spaced and have no obvious theoretical basis. There are no higher-order seasonal
lags that show strong significance. For example, if there was a strong weekly seasonality; i.e. all
Mondays are like previous Mondays and different from Tuesdays, for example, then a significant and
large peak at lag 120 would show up in the ACF (in this dataset we have 5-day (work) weeks, and 5 x 24
hrs = 120). Therefore, the following analyses adopted a single, diurnal seasonality.

Building power, excluding chiller, average for given hour, kW Building power, excluding chiller, average for given hour, kW
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Figure 25. ACF and PACF for the differenced and seasonally differenced building power data.

® An event in the context of a building could include a permanent upgrade to a major building component, a
change in tenant, or a change in utility tariffs, for example.
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Initially we derived a model for building power on the majority of the dataset (Week 2 Day 1 Hour 1 to
Week 16 Day 1 Hour 7) without occupancy-related or other predictors (i.e., an ARIMA model), with the
goal of seeing if subsequently adding occupancy information improved the model. We did try cooling
degree hours (base 18 °C, CDH18) for each hour (differenced) as a predictor in an ARIMAX model to
check for any residual climate dependence; for example, there were several refrigerators in lunch areas
and laboratories that might have been affected by external climate. CDH18 was significant in the model
but actually worsened the model fit (defined by several parameters). We therefore decided on the pure
ARIMA model as the base model for comparison to later models. The automatically-generated, best fit,
model from SPSS Forecasting did not yield a lag 2 term, but did include a lag 7 term. However, this did
not have any obvious physical explanation, and therefore to keep the model compact, simple, and
parsimonious we chose to drop this term from the final base model; this choice had only a tiny effect on
the overall model fit. Therefore, the final base model was ARIMA(0,1,1)(0,1,1),4, and the general model
of Eq. 1 thus simplifies to:

(Eq. 2)
a-B@1- 824)Yt =(1-6,B)1- 95,1324) Qg

The model parameters and fit statistics are shown in Table 5. Note that the model parameters included
only moving average (MA) terms, and not autoregressive (AR) terms. Also note, that the procedure
identified only 37 outliers from a total of 1687 hours, or 2.2% of values. Eq. 2 further expands as
follows:

Yi =Y+ Y24 —Yios — 01001 — 0510124 + 01051025 + a;

This illustrates that the present value of building power depends on the value from 1, 24 and 25 hours in
the past (due to differencing), and fractional values of the estimation error 1, 24 and 25 hours in the
past (due to differencing in the moving average calculation), leaving the present value of the error, a., as
the residual.

The fit statistics will serve as a guide to whether including explicit measures of occupancy as predictors
improve the models. Note that the Stationary R-squared is a better measure of variance explained by
the model than the simple R-squared when dealing with time-series data, and higher values indicate a
better fit. RMSE (Root Mean Square Error), MAPE (Mean Absolute Percentage Error), MAE (Mean
Absolute Error), MaxAPE (Maximum Absolute Percentage Error), MaxAE (Maximum Absolute Error) are
all measures where lower values indicate better performance. Normalized BIC (Bayesian Information)
accounts for the number of parameters used in the model, and may penalize non-parsimonious models;
lower values indicate better model performance. This basic model seems to be a good fit to the data
from which it was derived; the RMSE is 4.3 kW in values that vary in the 150-300 kW range, which
translates into a mean absolute percentage error (MAPE) of 1.2%, and a maximum absolute percentage
error (MaxAPE) of 8.8%.
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Table 5. Model with no external predictors, Week 2 Day 1 Hour 1 to Week 16 Day 1 Hour 7. (a) shows
model parameters, and (b) shows fit statistics.

(a) ARIMA Model Parameters
Estimate SE t Sig.
MA (Power), 8; Lag 1 -.150 .025 -5.908 .000
MA (Power), Seasonal, &s; Lag 1 .753 .017 43.377 .000
(b) Model Fit

Fit Statistic

Stationary R-squared .679

R-squared .984

RMSE 4.268

MAPE 1.244

MaxAPE 8.807

MAE 2.958

MaxAE 20.535

Normalized BIC 3.076

In the next step we added login data, again differenced and seasonally differenced, as a predictor in the
model; this was done using the Transfer Function option in SPSS Forecasting. Logins were significant in
the model. The final base model was ARIMAX(0,1,1)(0,1,1),4, and the general model of Eg. 1 thus
simplifies to:

(Eq. 3)
(1-B)(1 - B*)Y, = wy(1 — B)(1 = B>)X, + (1 — 6;B)(1 — 65,B°) a,

The model parameters and fit statistics shown are shown in Table 6; fit statistics were generally
improved, albeit by relatively small amounts.

Table 6. Model with logins as predictor, Week 2 Day 1 Hour 1 to Week 16 Day 1 Hour 7. (a) shows
model parameters, and (b) shows fit statistics.

(a) ARIMA Model Parameters
Estimate SE t Sig.
MA (Power) , &; Lag 1 -.150 .026 -5.856 .000
MA (Power), Seasonal, €57 Lag 1 757 .017 43.566 .000
Numerator (Logins), Wo Lag 0 .100 .034 2.968 .003
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(b) Model Fit

Fit Statistic

Stationary R-squared .702
R-squared .985
RMSE 4127
MAPE 1.217
MaxAPE 9.307
MAE 2.889
MaxAE 17.821
Normalized BIC 3.040

We tried adding motion sensor data as a predictor to the base model from Table 5, but this predictor
was not statistically significant and did not improve the model.

Next, we explored model robustness by specifying the same model form in Table 5 to a split sample
drawn from the same sample. Tables 7-8 demonstrate that the all three model parameters were
maintained as significant in both split samples, and furthermore, the parameter estimates are similar.

Table 7. Model parameters with logins as predictor, Week 2 Day 1 Hour 1 to Week 10 Day 5 Hour 24.

ARIMA Model Parameters
Estimate SE t Sig.
MA (Power) , 61 Lag 1 -.146 .032 -4.562 .000
MA (Power), Seasonal, €57 Lag 1 .831 .020 41.326 .000
Numerator (Logins), Wo Lag 0 133 .044 3.019 .003

Table 8. Model parameters with logins as predictor, Week 11 Day 1 Hour 1 to Week 16 Day 5 Hour 24.

ARIMA Model Parameters
Estimate SE t Sig.
MA (Power) , &; Lag 1 -.193 .039 -4.981 .000
MA (Power), Seasonal, fs; Lag 1 .650 .033 19.973 .000
Numerator (Logins), Wo Lag 0 119 .047 2.510 .012

We now have confidence that the model is robust, and so returned to the model derived from the
majority of data (Table 5) to conduct the final step, which was to use the model to forecast data into the
future; i.e. to compare its forecasts to data from which the model was not derived. Forecasting was
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done using the methods in the SPSS Forecasting module, which takes the model equation and predicts
future values. Note, that using our final model equation, which took the form shown in Eq. 3, to
forecast the value of Y:+; requires X:+z. In this case, X:+;is unknown a priori, and therefore it too must
be forecast in some manner. This may be done with a separate ARIMA model for Xalone [Montgomery
et al., 2008].

We used the model in Table 5, calculated from data up to Week 16 Day 1 Hour 7 to forecast hourly
values for building power for the remainder of the dataset, thus allowing us to compare the forecast to
the actual recorded building power. Here we present the forecast for the remainder of Week 16 Day 1
(a Monday). Figure 26 shows the forecast made at Hour 7 for the remainder of the day, and the actual
building power. For comparison we chose two simple forecasts that might commonly be invoked: the
average for all weekdays in the sample up to Week 15 Day 5; and the values from Week 15 Day 1 (the
previous Monday). Week 16 Day 1 was obviously unusual in some ways compared to the average of all
previous weekdays, in that although the peak value was similar to the average day, the early morning
and late evening values were much lower, resulting in a load shape of much greater amplitude than the
average day. The previous Monday shares the same low values in the early morning (indicative,
perhaps, of more loads being switched off over the previous weekend), but does not share the same low
values at the end of the day. The ARIMAX model shows excellent fit to the data up to Hour 7, but
remember that these data were used to create the model. After that, the model tends to under-predict
the building power draw, predicting a peak load around 20 kW lower than the actual peak; the previous
Monday is a similar amount over the actual peak value, whereas the average of all days is close to the
actual peak. However, the model’s under prediction provides a better fit to the actual data in the late
evening than either of the two simple forecasts. As a metric for accuracy of forecast, we calculated the
RMSE for Hours 8 to 24 for this day, these values are shown in Table 9. The ARIMAX model performs
better than simply assuming the values from the previous Monday, but slightly worse that assuming the
average values from all weekdays.
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However, it is common practice to update ARIMAX models as the new, real data become available. We
recalculated the model at every hour [Kawashima et al., 1995] after Hour 7, and restricted ourselves to
one-hour ahead forecasts; Figure 27 shows the aggregate one-hour ahead forecasts up to Hour 13, and
the forecast out to Hour 24 with the model now updated with real data to that point. In this mode the
model performs very well, with very accurate one-hour ahead forecasts through the morning to the
peak in the early afternoon. Once “seeded” with real data to this peak, the forecast up to 11 hours
ahead (at Hour 13 up to Hour 24) is also very good. The RMSE is now 73% lower than that from
assuming the average of all previous weekdays.

Table 9. Accuracy of forecasts for Hours 8 — 24 on Week 16 Day 1, for various methods

RMSE (Hours 8 — 24)
ARIMAX model (at 16.1.7) 17.4
ARIMAX model (aggr. to 16.1.13) 4.4
Average of all weekdays 16.3
Previous Monday 235

4.0 Discussion

The modelling and forecasting analysis with a measure of occupancy as an input is encouraging. Logins
as an indicator of building occupancy was a significant external predictor in an ARIMAX model, and did
improve the model fit. The improvement was small, but there are several reasons why this might be the
case in this building, and why we could expect a larger effect in a more typical office building. First, the
study building hosted a research organization, with substantial attached laboratories. This implies a
high fraction of process loads for laboratory equipment, and thus a relatively lower fraction of loads
related to the arrival and departure of occupants. This building was unusual in this regard, Hay & Rice
[2009] provide building power and occupancy profiles for a university computer science building in a
non-air conditioned week, which are remarkably similar to those in our study building. The amplitude in
power draw between daytime and night-time, or weekday and weekend in this computer science
building was similarly, relatively small. In a conventional office building one could expect a much greater
fraction of loads tied to occupancy (e.g. office equipment, lighting), and therefore a greater sensitivity of
building power to an occupancy-related independent variable. For example, Neto & Fiorelli [2008]
provide a building power profile for a typical day for a university administration building in Brazil in
summer, the peak power draw was similar to our study building, but the overnight power draw was only
20% of this peak. Second, logins was our most effective measure of occupancy in model development.
However, we did not have logout data in this dataset. We expect that if logouts were also known, the
effectiveness of this variable in the model would be improved.

Interestingly, motion sensor data did reflect the reduction in occupancy at the end of the day, but this
variable did not improve our model. This was surprising, given the shape of the activity curve in Figure
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21, and the fact that it reflected the later afternoon decline in occupancy, unlike login data. Perhaps this
was because there was more variability in this parameter, or that it had less of a direct connection to
occupancy than logins. It might also simply be an artefact of the modelling process. Also, recall that a
relatively large number of days of data were missing for this variable and had to be imputed, this
necessarily reduced the explanatory power of this variable. We expect that a more complete data set
for this variable would have improved its contribution to the model, given the high correlation with login
data in the morning, as shown in Table 5(b). None of the other occupancy measures (door events, CO,
level) were effective in the model. Again, it would be interesting to explore whether such data streams
were more effective in building power forecasting in a more conventional office building.

Separate from energy forecasting, the wireless sensor network we installed provided data that might be
valuable to building operators (e.g. event detection), or those developing systems for buildings (e.g.
door traverse time). This study has given us valuable experience in the issues associated with installing
and commissioning sensor networks, and an understanding of the nature of the data that can be
recovered. We recommend that a similar exercise be undertaken at a larger scale in a building more
representative of a typical office building, with the expectation that potential uses for the data will be
even more apparent.
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