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ABSTRACT 

A detailed account of the cross-correlation method involving the use of a 
periodic pseudorandom sequence for impulse-response and reverberation- 

decay measurements is presented. Experimental results are also provided to 

demonstrate the potential of this method for making measurements in a very 

noisy environment. 

INTRODUCTION 

The most fundamental physical descriptor in room acoustics is the impulse 

response between a source and a receiver position in the room. All the 

acoustical measures for subjective evaluations of rooms, including 

reverberation time, can be derived from the impulse response. With the 

advent of microcomputers and digital-signal processing, more efficient and 
accurate techniques for measuring impulse responses become feasible. A 

general review of both the conventional and the modern techniques has 
been given by Otshudi, Guilhot, and Charles.' 

Among the modern techniques, the one originated by Schroeder and his 

colleages at G ~ t t i n g e n ~ , ~  has gained widest acceptance by  acoustician^^-^ 
and, in this author's opinion, is the most powerful method available. The 
technique uses a periodic pseudorandom sequence (also known as a 

maximum-length sequence or m-sequence) as the source signal, and the 

impulse response is determined by a cross-correlation method based on 
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techniques developed in Hadamard spectroscopy. Since this technique 
effectively uses a very large number of pulses limited only by the length of the 

sequence chosen, it offers a significant improvement of the signal-to-noise 
ratio. In addition, the cross-correlation process minimizes the influence of 

background noise. With adequate averaging, it is possible to use signal levels 
that are significantly below background-noise level, making this technique 

very useful for acoustical measurements in auditoria, offices, factories, or 

construction sites. Computer plug-in boards and software for implementing 
this measuring technique are now commercially available. 

An understanding of the method, including the special signal processing 

involved, is essential for proper utilization (or to design one's own system). 

However, a simple and coherent treatment of the subject is lacking in the 
acoustical literature. In this paper, a review of the basics will be given, 

together with examples of measurements in a simulated noisy environment. 

Problems related to characteristics of the source driver, the receiver, and 
any intervening electronics on the 'fidelity' of the measured impulse response 

will not be addressed here. As suggested by K~t t ru f f ,~  this should not be an 

important issue for reverberation-decay measurements in rooms of simple 
shapes if an omni-directional receiver is used. This is certainly the case for 

most residential and industrial noise-control applications. 

IMPULSE RESPONSE BY CROSS-CORRELATION 

According to random-noise theory,'' the input-output cross-correlation, 

R,,, of a linear time-invariant system under white-noise excitation is 

proportional to the system impulse response, h(t) (Fig. 1). The technique 
proposed by Schroeder and his colleages involves replacing the random 

noise with an m-sequence. An m-sequence is a periodic binary sequence that 

has an approximately flat spectrum, and it can be generated fairly simply by 
a feedback arrangement of shift registers. Its periodic length, n, is equal to 

2"- 1, where m is the number of stages used in the shift-register 

arrangement. A detailed discussion about its generation and properties has 
been given elsewhere by the present a ~ t h o r . ~  

WHITE NOWE 

SIN) Rio(t) 

h ( ~ ) = R i ~ ( ~ ) = l l T  Si(t-z)So(t)dt j 
Fig. 1. Cross-correlation method for measuring impulse response. 
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Sl(t) : M-Sequence Input 

I I 

I I 

So(t) : Output Signal I I 
I 

I I 

C 
t 

57 

[h] =I17 [Mi'] [SO] 

Fig. 2. Example of a matrix representation of the cross-correlation method with an m- 

sequence used as the input signal. 

Figure 2 shows an example of an m-sequence of length 7 as the input 

signal Si and a hypothetical output signal So. Since the m-sequence is 
periodic, the output is also periodic. For signal processing, the binary states 

of 0 and 1 of the sequence have to be mapped into f 1 by changing 1 to - 1 
and 0 to + 1. Only the signs + and - are used for f 1 in the figure and 
subsequent discussions. 

If So is sampled at the clock frequency of the sequence, one has in matrix 

form the following relationship for the cross-correlation: 

Chl = 7 - 'CM71 [Sol (1) 

where [ M 7 ]  is a 7 x 7 matrix containing the right circularly delayed version 

of the sequence M ( - )  with a period equal to seven times the clock period. For 
this special case, the number of stages, m, used in the shift-register 

arrangement is 3. Since the elements of [ M , ]  are all f 1, only additions and 

subtractions are required to perform the matrix multiplication [ M , ]  [So].  

MATRIX MULTIPLICATION VIA FAST HADAMARD 
TRANSFORM 

The computation of [M, [ [S , ]  can be performed efficiently by using special 

techniques developed in Hadamard spectroscopy. These techniques involve 
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finding the permutation equivalence [MI = [PI [HI [ Q ]  between the m- 

sequence matrix M and the Sylvester-type Hadamard matrix H such that the 
fast Hadamard transform can be applied to obtain [ M 7 ] [ S 0 ] .  Specific 

procedures for constructing the permutation matrices P and Q can be found 
in earlier ~ o r k , ~ , " , ' ~  but the one presented by Cohn and Lempel13 is the 

easiest to follow and will be discussed in the following sections by using the 
example of Fig. 2. 

Fast Hadamard transform 1 

Analogous to the fast Fourier transform, the fast Hadamard transform is an 

efficient algorithm for performing a Sylvester-type Hadamard-matrix 

multiplication. The elements of a Hadamard matrix are all f 1. An account 
on the construction of these matrices of orders 1, 2, 4, 8, 16, . . . , 2" can be 

found in a book by Harwit and Sloane.12 For example, a Sylvester-type 
Hadamard matrix of order 8 has the following form: 

and a direct evaluation of the following matrix multiplication 

will require 56 operations. The fast Hadamard transform does this in three 

steps, since m equals three for the above Hadamard matrix of order 8. The 

procedure can simply be expressed by the flow graph shown in Fig. 3 
adapted from the work of Borish and Angell." The total number of 
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y 43' cx-y, 

Basic Butterfly Element 

[(a-b)-(c-d)l+[(e-f )-(g-h)l 

[(a-b)+(c-d)l-[(e-f )+(g-h)l 

[(a+b)-(c+d)l-[(e+f )-(g+h)l 

[(a-b)-(c-d)l-[(e-f )-(g-h)l 

Fig. 3. Flow graph for an eight-point fast Hadamard transform. 

operations for this case is only 24. In general, the fast Hadamard transform 

requires L(log,L) instead of L(L - 1) operations.12 A Fortran code for this 
transform is given by  and^.^ 

Permutations 

Except for the extra first row and first column, the matrix H ,  of eqn (2) is 

similar to the matrix M ,  of Fig. 2. The essence of the current technique is 

that, by adding a row and a column of + 1 to the matrix M,, one can reorder 

the rows and columns of the augmented matrix to transform it into [H, ] .  
Using the binary representation (i.e. 0 and 1 instead of f 1) and modulo-2 

arithmetic, Cohn and Lempel13 have shown that any m-sequence matrix M 
(of dimension n x n) can be factored into two matrices: a matrix R (of 

dimension n x m) and a matrix C(of dimension m x n) where [q is formed 
by the first m rows of [ M J .  The matrix R is chosen from the columns of [MJ 
such that the first m rows of [ R ]  form an m x m unit matrix. An example 

based on the matrix M ,  of Fig. 2 is shown in Fig. 4. 

Similarly, the Sylvester-type Hadamard matrix H (of dimension L x L) 
can also be factored into two matrices: a matrix B(of dimension L x m) and a 

matrix BT (of dimension m x L) where BT is the transpose of B. The ith row 

of [a is the m-bit base-2 representation of the integer i, i = 0,1,. . . , L - 1. An 

example of the matrix H, is also shown in Fig. 4. If the rows of [ R ]  and the 

columns of [q are tagged according to the integer equivalence of their m-bit 

digits as shown in Fig. 4, it is obvious that [ M , ]  and [H,]  contain the same 
elements in a different order. Note that the tags of the rows and columns of 
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Modulo-2 Arithmetic: +fx 

Fig. 4. Factorization of the m-sequence matrix and the Sylvester-type Hadamard matrix. 

Beside each factored matrix are the corresponding 'tags' for each row or column. 

the matrices Band BT are always in ascending numerical order. Thus, using 
the tags of [R] and [a, one can transform [M,] into [H,] in three steps. 

(1) Use the tags of [q to reorder the columns of [M,] of Fig. 2 (i.e. 
move the seventh column of [M,] (whose tag= 1) into the first- 

column position, and the sixth column (whose tag = 2) into the 

second-column position, etc.) to form the permuted matrix M;, 
where 



Impulse-response and reverberation-decay measurements I99 

(2) Use the tags of [R] to reorder the rows of [M;] (i.e. move the third 
row of [M;]  (whose tag = 1) into the first-row position, the second 

row (whose tag = 2) into the second-row position, and the fifth row 

(whose tag = 3) into the third-row position, etc.). 

(3) Add a row and a column of + to the last matrix to transform it into 

CHsl. 

OUTLINE OF THE CROSS-CORRELATION PROCESS 

Having established the transformation between [M,] and [H,], one can 
formulate the following procedure to compute [h] by using [H,] instead of 

[M71. 

(1) Generate the matrix M from one period of the m-sequence. 
(2) Factor [MI into [ R ]  and [q (Fig. 4). 

(3) Obtain the row tags of [R] and the column tags of [a according to 
the integer equivalence of their rn-bit binary digits. If a triggerable m- 
sequence generator is used, the permutation tags can be generated 

once and stored for all subsequent experiments by using the same 

sequence. 

(4) Reorder the elements of [So] by using the column tags of [a and 
add a zero element to the permuted column matrix SA to form [S:] 
(Fig. 5). 

(5) Apply the fast Hadamard transform to [S:] to give [h"] (Fig. 5). 

(6)  Omit the first element of [h"] and reorder the elements of the 
resulting matrix, h', by using the row tags of [R] given in Fig. 4 to give 

the impulse response [h]. However, the reordering process will be 

reversed. Here, one takes the fourth element of [h'] as the first 

element, the second element of [h'] as the second element, and the 
first element of [h'] as the third element, etc. 

+ - 
+ + + + + + + +  
+ - + - + - + -  
+ + - - + + - -  
+ - - + + - - +  
+ + + + - - - - 
+ - + - - + - +  
+ + - - - - + +  
+ - - + - + + -  - - 

[Hd [So"] [h"l 

Fig. 5. Illustration showing the product of the Hadamard matrix and the permuted matrix 

of the output signal. 

- - 
(+S7+S6+ss+Sl +S*S2+S3) 

(-S7+S6-S4+Sl-SS+S2-S3) 

(+S7-S6-S4+S1 +S5-S2-S3) 

(-S7-S6+S4+S1 -S5-S2+S3) 

(+S7+S6+s4-Sl-SS-S2-S3) 

(-S7+S6-S4-S1+S5--S2+S3) 

(+S7-S6-S4-Sl -S5+S2+S3) 

(-S7-S6+S4-S1 +S5+S2-S3) - 

v -  

0 

S7 

S6 

S4 

Sl 

S5 

S2 

S3 
b -  

= 
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The reader can easily verify the procedure by using the example given in 
Figs 2, 4, and 5. 

REVERBERATION DECAY 

According to Schroeder,14 the ensemble average (s2(t)) of the squared 

decaying-sound pressure at a receiving point in a room excited by a white- 
noise signal is equal to a certain integral over the squared impulse response 

h2(z) of the room. Mathematically, the relation can be written as follows: 

where N is proportional to the power-spectral density of the noise in the 

measured frequency range. For narrow-band applications, one can either 

use filtered white-noise excitation or perform a narrow-band filtering on the 

broad-band impulse response. Aoshima15 suggested another approach, 
involving the use of the Fourier transform of the impulse response. His 

method requires one Fourier transform for each data point in the decay 
curve. For reasonable resolutions in both the time and the frequency 

domains, this approach requires one to compute and store in computer 

memory at least fifty l0k-point transforms. This is beyond the capabilities of 
most microcomputers. 

EXPERIMENTS 

Some preliminary results for impulse-response and reverberation-decay 

measurements have been reported by the present a ~ t h o r , ~  using the cross- 

correlation technique based on a recipe given by Harwit and Sloane,12 which 
was modified later according to the procedure given in the previous section. 

These results showed that the decay curve obtained by the present method 
compared well with the curves determined by the traditional method. 

Additional experiments have been performed to demonstrate that 
impulse-response and reverberation-decay measurements can be obtained 

in very noisy environments. These measurements were taken for one fixed 

microphone and source position in a model reverberation chamber with 

dimensions 3.2 m x 2.6 m x 1.96 m. The chamber was equipped with fixed 

diffusers only. High-level non-stationary background music was deliberately 

introduced into the room by using a radio. For this series of experiments, an 

IBM AT-compatible microcomputer was used together with an A/D board 
(Microway A2D-160), which has a built-in m-sequence generator and a 

software package written in assembly language that can perform the 
impulse-response calculation efficiently. 
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For impulse-response and reverberation-decay measurements, the period 

of the m-sequence should be at least as long as the reverberation time to 
cover a 60-dB decay range. Thus, a sequence of length n = 216 - 1 = 65 535, 

operating at a clock frequency of 20 kHz, was used for our experiments. The 

test signal was fed into a power amplifier and radiated into the room through 

a loudspeaker. The acoustical signal at one chosen location in the room was 

measured with a 25.4-mm B&K microphone, whose output was sampled at 
the same clock frequency of 20 kHz. The microphone signal was averaged 

over a predetermined number of periods to enhance the signal-to-noise ratio 

before the impulse-response and the decay curve were computed. 

RESULTS AND DISCUSSIONS 

Figure 6(a) shows the measured broad-band impulse response for the 
chosen microphone and source position with no background music. The 

signal used was at least 50dB above the ambient background noise. Five 
averages were used to reduce the influence of this ambient background noise 

in the room to establish base-line results for comparisons. The impulse 

response was normalized by its maximum value. A similar broad-band 

impulse response measured in a simulated noisy environment by using music 

from a radio is presented in Fig. 6(b). The signal used was 9 dB below the 

background music. By using 100 averages for this case, the recovered 

impulse response compared well with that of Fig. 6(a) as indicated by the 

differences plotted in Fig. 6(c), whose axes of ordinates have been magnified 
ten times. 

A comparison of the decay curves computed from these impulse responses 
by using eqn (5) is shown in Fig. 7. Agreement to within 1 dB was obtained 

for the initial 27-dB range of decay. Better dynamic range can be obtained if 

more averages are used. In general, one can expect a gain in signal-to-noise 

ratio of 10 log,, N, N being the number of averages used. However, this gain 

will not be fully reflected in the dynamic range of the decay curve because of 

the accumulative effect inherent in the summation process of eqn (5). More 
detailed investigation is required to establish criteria for choosing the 

appropriate number of averages to achieve a certain dynamic range of the 
decay curves. The number of averages required will depend on the length of 

the m-sequence used, the characteristics of the background noise present, 

and the band-width of the analysis. 

To show that the current method is also applicable for narrow-band 

analyses, the impulse response of Fig. 6b was digitally filtered by using a 6- 

pole Butterworth digital filter whose response satisfies the requirements of 
ANSI S1.11-1966 class I1 for a 2-kHz octave-band filter. A comparison of its 
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TIME (ms) 

-1 
0 200 400 600 800 

TlME (ms) 

(b) 

0.1 

-0.1 
0 200 400 600 800 

TlME (ms) 

( 4  

Fig. 6. Comparison of the broad-band impulse responses measured with different signal-to- 

noise ratio: (a) with no background music and signal more than 50dB above background; (b) 

with background music and signal 9dB below background (100 averages); (c) difference 

between the two impulse responses of (a) and (b). 

filter characteristic with that of a Bruel & Kjaer type 1613 analog octave 

filter is shown in Fig. 8, and the computed decay curve is shown in Fig. 9. For 

comparison, a decay curve obtained by exciting the room with a filtered m- 
sequence signal and using the Bruel & Kjaer analog octave-band filter is also 

depicted in Fig. 9. No background music was introduced in this 
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SPL 

(dB) 

- With Background Music 

-30 . 

-40 . 

-50 . 

... 
-60 

0 0.5 1 1.5 2 
TIME (sec) 

Fig. 7. Comparison of the broad-band decay curves computed from the impulse responses 

of Fig. 6. 

0 

-20 - 

dB - 

. . 

100 1000 10000 

FREQUENCY (Hz) 

Fig. 8. Comparison of the filter characteristics of the six-pole Butterworth digital-octave 

filter and the Bruel & Kjaer Type 1613 2-kHz analog octave filter. 

SPL 
-30 

(dB) 

- (b) Oigiral mering 

*._. 
-.-.. 

........ .... '........ ..... 

Fig. 9. Comparison of the 2-kHz octave-band decay curves: (a) from the impulse response 

obtained by exciting the room with analog-filtered m-sequence signal and no background 

music; (b) from digitally filtering the broad-band impulse response of Fig. 6(b). 
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SPL 
-30 

(dB) 

-60 0 
0 0.5 1 1.5 2 

TIME (sec) 

Fig. 10. Comparison of the 2-kHz octave-band decay curves: (a) from the impulse response 

obtained by exciting the room with analog-filtered m-sequence signal and no background 

music; (b) from digitally filtering the broad-band impulse response of Fig. 6(a). 

measurement. Agreement to within 1 dB was obtained for the initial 24-dB 

range of decay. 

Better dynamic range for the case with digital filtering can be expected if a 

broad-band impulse-response curve with less contamination of background 
noise is used as input. This is shown by a similar comparison in Fig. 10 with 

the impulse-response curve of Fig. 6a used as the input. The agreement of the 

decay curves is fairly good (within 1 dB for the initial 30-dB range of decay), 

which indicates that narrow-band results can be obtained from the broad- 

band impulse response by using digital filtering. 

CONCLUSION 

A fairly detailed account of the cross-correlation method involving the use 

of a periodic pseudorandom sequence for impulse-response and 
reverberation-decay measurements has been given. Experimental results are 

also provided to demonstrate its potential for making measurements in very 

noisy environments. Good signal-to-noise ratio can be obtained because of 

the immunity of the cross-correlation method to unrelated background 

noise and the possibility of using long sequences and averaging. The 
existence of an efficient algorithm based on the fast Hadamard transform 
for performing the cross-correlation has made this method a very powerful 

measuring technique. At t = 0, eqn (5) gives the mean-square pressure. Thus, 
I 

the current method can also be used for attenuation or transmission-loss 
measurements. 
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