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ABSTRACT: The performance of integrated silicon photonic devices
is sensitive to small structural variations that arise from imperfections
in the nanofabrication process. This sensitivity is exacerbated for next-
generation devices that require fine feature sizes to push the limits of
performance. In this work, we present a deep convolutional neural
network model to predict fabrication variations in planar silicon
photonic devices and verify their manufacturing feasibility prior to
prototyping. Our model is trained on a modest set of scanning electron
microscope images of structures that experience dimensional
inaccuracies stemming from combined contributions from proximity
effects in lithography and loading effects in dry etching. Our model
quickly and accurately predicts over/under-etching, corner rounding,
filling of narrow channels and holes, and washing away of small
features in a photonic device. With this, the expected performance of a device can be predicted through an extra simulation and any
necessary design corrections can be made prior to fabrication.
KEYWORDS: silicon photonics, integrated photonics, machine learning, deep convolutional neural networks, fabrication process variations,
topological optimization

■ INTRODUCTION
Integrated silicon photonic circuits are expected to enable a
future of all-optical and optoelectronic computing and
telecommunications with low-loss, low-power, and high-
bandwidth capabilities�all without significantly changing the
existing microelectronics fabrication infrastructure.1,2 Higher
levels of performance are achieved through modern design
elements such as subwavelength grating metamaterials3,4 and
inverse-designed, topologically optimized structural patterns5,6

that push the feature sizes of the nanofabrication technology to
its limits. Although these devices show high performance under
ideal simulation conditions, they often perform differently in
experiment.7 Highly dispersive devices like vertical grating
couplers, wavelength (de)multiplexers, and microresonators
can experience significant performance deviation from just a
few nanometers of structural variation caused by imperfections
in the nanofabrication process.
By restricting the minimum feature size of a device, certain

designs can work within a reasonable target performance range.
For sensitive, dispersive devices, where a few nanometers of
wavelength shift can completely change the intended
operation, restricting minimum feature size is not enough to
guarantee good performance, and the device will often require
tuning circuitry to “fix” the performance post process, adding
to complexity and power consumption. To mitigate fabrication
variations by current best practices, a designer will manually

calibrate a design by creating a range of pre-biases from the
nominal to increase the chances of hitting the desired
performance target.8,9 However, this process is inefficient
with time and chip space, scales poorly with design complexity,
and leaves the designer with little valuable information to carry
over to other designs. In addition, there are significant process
variation effects that cause nonuniform over- and under-
etching depending on the curvature and proximity of features
that cannot be accounted for by uniform pre-biasing. For
example, a tight convex curve (silicon inside the curve) will
experience over-etching, and a tight concave curve (silicon
outside the curve) will experience under etching. Simple,
uniform pre-biasing can only account for one of these two
variations. Furthermore, the amount of over- or under-etching
changes throughout the curve, where the apex generally
experiences the most variation. Previous works have demon-
strated methods that scale the amount of variation according to
random spatially varying manufacturing errors to design
devices that are more robust to random errors across the
chip and between different fabrication runs,10 but to the best of
our knowledge, there have been no demonstrations of a biasing
model that scales the amount of variation with respect to the
degree of feature curvature.
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Lithographic proximity effects cause unintended exposure to
nearby areas of a device (commonly seen with the rounding of
sharp features),11 and etch loading effects cause different etch
rates for features with differing sizes or differing amounts of
surrounding open area.12 Proprietary tools simulating these
effects, which are based on physical models and developed
primarily for microelectronics with Manhattan-type geo-
metries, are available to pre-emptively calculate and correct
for, e.g., proximity effects;13−15 however, proper use of these
tools requires in-depth knowledge and process-specific
calibration that are generally not available to external users

(designers). Furthermore, applying the process is not
straightforward for nanophotonic devices, which generally
contain features of highly varying curvature and pattern
density, where even the standard, dose-based proximity effect
corrections applied by most foundries cannot perfectly
reproduce them. In other words, despite the best effort in
state-of-the-art fabrication facilities to improve patterning
fidelity, deviations from the nominal design still occur for the
finer features, which ultimately degrades device performance.
These are serious challenges the silicon photonics community
is contending with.16

Figure 1. Procedure for the creation of the predictor model is outlined in the top sequence, and the usage of the predictor model is outlined in the
bottom sequence.

Figure 2. Two examples of the 30 design patterns in the dataset. The top row is of the pattern with the largest average feature size, and the bottom
row is of the pattern with the smallest average feature size. (a, d) Generated design patterns (GDS), where yellow regions are silicon and purple
regions are silica. (b, e) Corresponding SEM images. (c, f) Zoomed portions of the SEMs with green contours of the GDS overlaid on top to
demonstrate fabrication variations.
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There has been a recent effort to address this problem. For
example, purely predictive modeling methodologies17 based on
process-specific physical models that are intended for micro-
electronics but have only been applied to conventional
photonic structures with simple, straight features. In this
work, we set out to create a universal fabrication variation
predictor, as outlined in Figure 1, that accounts for the
complex unwanted effects in the multistep fabrication
processes without having to give special consideration to
each effect. For this, we propose an ensemble of deep
convolutional neural network (CNN) models that are trained
on image examples obtained from pairs of graphic design
system layouts (GDS) and their corresponding scanning
electron microscope (SEM) images. To the best of our
knowledge, our work is the first effort in predicting fabrication
variations with a purely data-driven approach that is intended
for complex, fine-featured (inverse-designed, topologically
optimized) photonics devices. We use an integrated photonics
foundry using electron-beam lithography, but the methodology
can be readily applied to other fabrication technologies such as
deep ultraviolet (UV) lithography. The structures from the
dataset only take 0.01 mm2 of chip space and 30 SEM images
to fully capture. The images are prepared for training by an
automated process and can be readily applied to any
nanofabrication process by simply refabricating and reimaging.
Although our modeling process is designed for topologically
optimized devices, the resulting model also accurately predicts
fabrication variations in conventional photonic devices, where
the impact is more subtle.
Our goal is 2-fold: first, to use the CNN model as a low-cost

replacement for the fabrication and imaging steps in design
validation, and second, to identify design features with strong
inherent fabrication uncertainty and take measures to minimize
their presence. Furthermore, we believe that this work opens
the door to future prediction-enhanced optimization algo-
rithms that generate highly robust, high-performance pho-
tonics devices with minimal extra computation and fabrication
costs. To stimulate further research and discussion on the
topic, we have made the code and data readily available in the
GitHub repository, PreFab (Prediction of Fabrication).18

■ METHODS
Data Acquisition and Preparation. For machine

learning tasks, having data that properly represent the
statistical distribution of the ground truth is critical. For this,
we use a reputable integrated photonics foundry for nano-
fabrication and SEM imaging. In addition to needing high-
quality data, a large amount of highly varied data is required to
train a well-generalized model. Because of the large costs and
lengthy timelines associated with nanofabrication, we have
designed our training structures in a way that allows us to
acquire a large dataset of high-quality training images with
minimal chip space and imaging time. Our dataset is populated
with 30 randomly generated 2.8 × 2.0 μm2 patterns (with
nanometer resolution) from different Fourier transform-based
filters, as shown by the examples in Figure 2 (see the
Supporting Information for a detailed description of the
pattern generation process). This allows us to generate a large
dataset of variable structural features like those of topologically
optimized devices without having to design multiple real
devices. The pattern size is chosen to fit an SEM image of a
desired size and resolution. The generated patterns are not
themselves optically useful. The Fourier transform filter size of

each pattern determines its average feature size. We use two
filter types (low pass and band pass) to increase the variety of
features in our dataset, which improves the generalizability of
the model. In addition to the main, wavy features, the hard
boundaries of the patterns create useful sharp features
otherwise not created by the pattern generator. Although our
dataset only contains features generated by one method (with
slightly varying conditions), it includes many variations of
features and feature spacings for the model to generalize well
to the types of photonics structures we expect to predict.
Should there be a case for predicting specialized devices with
different boundary conditions (e.g., devices densely integrated
with others; large periodic structures; small, isolated
structures), and the current model performs poorly, specialized
patterns can be fabricated, imaged, and added to the dataset to
improve the capabilities of the model.
The generated patterns were fabricated on a 220 nm silicon-

on-insulator (SOI) platform by electron-beam lithography
through a silicon photonic multi-project wafer service by
Applied Nanotools Inc.19 As is standard by most foundries, the
patterns received a baseline dose-based proximity effect
correction to improve pattern fidelity. However, it is evident
by Figure 2f that this does not perfectly reproduce the fine
features of the original design. After lithography and etching, a
3.0 × 2.25 μm2 SEM image with a resolution of 1.5 nm/pixel
was taken of each pattern. This pattern size strikes a good
balance between image quality and the amount of structural
data obtained from each image. After fabrication and imaging,
the GDS and SEM images are processed to prepare the dataset
for training. This process includes binarization of both images,
cropping to the edges of the patterns, setting equivalent image
resolution, and aligning the images together (see the
Supporting Information for a detailed description of the
pretraining image processing). The images are then sliced into
128 × 128 pixel2 slices to fill the dataset with a manageable
number of variables per training example. The slicing process
scans through an image in overlapping steps of 32 pixels. A
total of 50,680 slices are obtained. This process of taking data
from different image perspectives is known as data
augmentation,20,21 which is a common method of artificially
creating more training data. Finally, each GDS slice is matched
with its corresponding SEM slice.
Because our dataset is based on a specific set of fabrication

processes, the CNN model is specific to this fabrication
technology. However, our methodology can be extended to
many other scenarios, including other fabrication technologies
(e.g., deep UV lithography) or other material platforms (e.g.,
III−V or different waveguide thicknesses): the generated
patterns would simply need to be fabricated and imaged once.
Likewise, should the same fabrication process shift over time
(i.e., parameters of the tools change through manual
adjustments or performance drift), the model can be
recalibrated by reimaging and retraining. Given the simplicity
and speed of our process, this can be performed regularly to
keep the model up to date. The modeling process, in effect, can
replace the conventional calibration of process monitoring
structures, which only provides information for a simple set of
design features.
Training the Predictor Model. In this work, the CNN

predictor model is trained to learn the relationship between the
GDS input and the corresponding SEM outcome. A CNN
works similarly to conventional, fully connected multilayer
perceptron neural networks but with additional convolutional
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layers at the front of the network. The convolutional layers
make the CNN more suitable for identifying and classifying
complex features in images. These networks conventionally
take a full image as an input and classify its contents. Our
variation of the CNN still takes an image as the input, but the

output is now a matrix of silicon-or-silica (core-or-cladding)
classifications based on the learned effects of the nano-
fabrication process.
Our model is constructed and trained using the open-source

machine learning library, TensorFlow,22 and the detailed setup

Figure 3. Network structure of a CNN fabrication variation predictor model. Four convolutional layers are followed by a reshape layer that flattens
the 2D output of Conv4 to a one-dimensional (1D) array compatible with the fully connected layer. The second reshape layer converts the output
back to a 2D image. Note that the binarization layer is only included in inference (not training).

Figure 4. (a) Testing BCE (error) of the CNN predictor model over two epochs. An example SEM slice (from the test dataset) with overlaid GDS
and prediction contours at (b) BCE = 0.6, (c) BCE = 0.4, (d) BCE = 0.2, and (e) BCE = 0.085 (final iteration).
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is shown in Figure 3. At the front of the model are four two-
dimensional (2D) convolutional layers�each with average
pooling to downscale the image, ReLu activation to add
nonlinearity, and batch normalization to accelerate learning
and improve generalizability. This is a common network
arrangement for image classification tasks,23,24 and it proves to
work equally well for our case. The convolutional layers work
to detect features (e.g., edges, corners, circles) in our input
images (GDS) and relate them to the transformed output
images (SEM). By combining multiple convolutional layers in
a “deep” arrangement, the network can detect and classify
more complex hierarchical patterns related to the specific
dataset. At the end of the model is a single fully connected
layer with a sigmoid activation to map the convolutions back
into a 128 × 128 pixel2 prediction.
The network weights are trained with the adaptive moment

estimation method (Adam) and the binary cross-entropy
(BCE) loss function. Adam is a popular, computationally
efficient optimizer for image classification tasks,25,26 and it
proves to perform well for our case as well. BCE is useful for
binary classifier tasks such as ours. For each pixel of the GDS
image, the model classifies the probability of it being silicon: 1
being 100% silicon, 0 being 100% silica, and anything in-
between being an uncertainty. For a perfectly trained model,
the in-between values are minimized and BCE = 0. While in
practice achieving BCE = 0 is not realistic, achieving low errors
is possible and often sufficient for the network to perform well.
Prior to training, we split the dataset so that 50% of the data

is used for training and 50% is used for testing. With this
distribution, each partition receives one full pattern random-
ization of each filter type/size. The training dataset is randomly
shuffled, a batch size of 16 is used, and the training runs for

two epochs (where every image in the training set has been fed
through the model twice). The BCE progression over training
time is shown in Figure 4, where the testing error is shown to
be minimized at the end. Figure 4 also shows the prediction of
an example in the test dataset at different stages of training to
further illustrate the error/accuracy progression. Our network
arrangement and combination of parameters lead to a low
error of BCE ≈ 0.08; however, better performance may be
achieved with further network parameter refinements. Should
even higher accuracy be desired, we believe that improving the
quality of the data�through higher-resolution imaging and
more careful alignment and binarization in the preprocessing
stage�will result in the biggest improvement. For this model,
adding more of the same kind of data will not make a
significant improvement; in fact, we find that we can reduce
the size of our training dataset to 10% of the overall dataset
size before seeing a significant drop in accuracy.
Making Single Predictions. Using the process in Figure

3, an example is shown in Figure 5 on how a single prediction
(of an example in the testing dataset) is made by inputting a
128 × 128 pixel2 slice of the design and running a forward pass
(inference) through the CNN predictor model. One prediction
takes approximately 50 ms on a low-power 16-core GPU. A
raw prediction, as shown in Figure 5c, is made at the final, fully
connected output layer of the CNN. At the raw output, each
predicted pixel may be silicon, silica, or somewhere in-between
based on the certainty of the model. The in-between
(uncertain) values are a result of imperfections in the training
setup and random variations in the nanofabrication process.
The training imperfections come from suboptimal network
parameters and imperfect data. These can both be improved by
further refining the network structure and hyperparameters and

Figure 5. Prediction steps of (a) a single GDS example slice (from the training dataset). (b) Corresponding SEM slice for reference. The example
slice is fed into the CNN model to produce (c) the raw prediction. Green pixels indicate uncertainties, where the prediction is between 0 and 1. By
(d) directly binarizing the prediction, the edges of the features become rough, so we use (e) a Gaussian blur to smoothen the edges before
binarization. (f−h) Corresponding prediction steps for an ensemble model, which averages multiple predictions from multiple models together.
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increasing the resolution of the images. Random variations in
the fabrication process are more difficult to mitigate, though
our model represents them well using uncertainty values.
These process variations can arise from changes across the
surface of the chip (e.g., variation of plasma density in etching,
wafer bowing) and small variations in the fabrication
equipment over time (e.g., e-beam drift). The resulting
random structural variations are more significant for structures
near and past the minimum feature size limits. For the example
in Figure 5c, there is a narrow channel near the bottom (at x ≈
50 nm, y ≈ −100 nm) that has more uncertain pixels (neither
fully yellow nor purple) in the raw prediction. Channels like
this occur throughout the dataset, and they can get “bridged”
after fabrication, like in this example, but not always.
Inconsistencies in the outcome of seemingly similar channels
are caused by complex physical factors inherent to the
fabrication processes that this network structure cannot easily
learn and will therefore result in uncertain predictions.
Similarly, small silicon islands may fall over and be washed
away in some examples but remain in others�resulting in
further difficulties for the model to understand. Although the
prediction accuracy tends to be lower for designs with many
small features, the prediction uncertainty carries additional
value as a rough metric of manufacturing feasibility/reliability
and can be a tool for the designer in finding which features to
modify. Regardless, a decision must be made for the final
prediction and therefore any pixel above or equal to 0.5 will be
silicon. To minimize roughness on the uncertain edge areas, a
Gaussian blur is applied before binarization (i.e., the Gaussian
blur eliminates the high-frequency components created by
forced binarization). The size of the Gaussian blur (5 × 5
pixel2 kernel) is set to remove the rough pixels without
modifying the main features of the structure.
To minimize training uncertainties that show up in the raw

prediction due to the network model and to further increase
prediction accuracy, an ensemble of models is used to make a
final prediction. Ensemble learning is a common approach
used to improve the robustness of machine learning
models.26,27 We trained 10 identical models on the same
dataset but with different randomized weight initializations and
shuffling of training data. Because the optimization of these
deep neural networks is highly nonconvex, each instance of the
model will likely end up in a different local minimum and will
perform slightly differently. By averaging the predictions of all
models together, we remove outlying mispredictions of
individual pixels and produce a final prediction with fewer

uncertain pixels. This is evident by the smoother raw
prediction in Figure 5f and the subsequent binarization of it.
The average prediction error of the examples in the testing
dataset (calculated as mean-squared error) for the ensemble
model is 0.5% lower than the best-performing individual model
and 6% lower than the worst. Although the improvement is not
large on average, the ensemble model achieves consistently low
relative error for each prediction example.
Making a Complete Prediction. Since the training data

consists of small, 128 × 128 pixel2 (211 × 211 nm2) slices,
predicting the fabrication variation of a full device design
requires multiple predictions to be made and stitched together,
as shown by the (zoomed) example in Figure 6. Fabrication
variations are highly dependent on the physical size of the
features, so the device image to be predicted must first be
scaled to the resolution of the training images (1.5 nm/pixel).
Because the individual image slices often contain partial
features at the boundaries (i.e., there is some missing structural
context), the accuracy there will often suffer. As a result, the
stitched device prediction, termed coarse stitching, can have
misalignments and bumps at the seams. We use an improved
stitching process, termed fine stitching, with finer “scanning”
steps of 32 pixels, that averages overlapping offset predictions,
ensuring that each feature can be predicted away from the
slicing boundaries to create a smoother and more accurate final
prediction. The stitching step size can be further reduced, but
the improvements are marginal. The example in Figure 6 is
from one of the generated patterns (zoomed in for
demonstration), where 1,400 and 21,200 predictions (each
prediction being 128 × 128 pixel2) were made and stitched
together for the coarse and fine stitching methods, respectively.
Recall that the prediction of each slice is already made up of
predictions from 10 different models. For the coarse stitch in
Figure 6a,b, multiple stitching errors are observed (marked by
red circles). These stitching errors do not appear for the finer
stitch in Figure 6c,d. Using a larger slice size in the CNN
training process would reduce stitching issues, but the
increased scale would be more computationally expensive to
train and may lead to worsened individual prediction accuracy.
Despite the low accuracy near the boundaries of each predicted
slice, this fine overlapping stitch method produces a smooth
prediction for any full structure of any size.
It should be noted that CNNs can in principle be scaled

appropriately to predict full devices without the need for
stitching. However, as discussed above, there are trade-offs in
building a well-trained CNN model. Working with larger

Figure 6. Prediction (zoomed in with overlayed stitch grids for demonstration) of a generated pattern with (a) no binarization and a coarse
stitching step size (128 pixel), (b) binarization and a coarse stitching step size, (c) no binarization and a fine stitching step size (32 pixel) with
overlap averaging, and (d) binarization and a fine stitching step size with overlap averaging.
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images/slices (with more pixels/variables) leads to larger
networks and higher computation cost.28 For a given set of
SEM images, using larger slices also translates to a dataset with
fewer examples. Additionally, to reach close to nanometer
resolution for SEM images with a limited frame size (2048 ×
1536 pixel2 in our case), a typical photonic device would
require several full SEM images to completely cover, thereby
necessitating stitching regardless. The slice−predict−stitch
process is also more flexible when predicting devices of
different shapes and sizes, as we can build up a full prediction
with small, “unit cell” pieces rather than matching the model to
one specific device. We believe the stitching strategy we
developed addresses these limitations and does not add
significant complexity and computation cost (given the
millisecond-scale prediction time for each slice).

■ RESULTS AND DISCUSSION
Figure 7 presents a full prediction example (zoomed in for
demonstration) that showcases the capabilities of the CNN
predictor model. The example is taken from a generated
pattern in the testing dataset and therefore has not been seen
by the model in training. Figure 7a presents a zoomed portion
of the SEM of the example, with overlaying GDS design and
prediction contours for comparison. The longer, straighter
edges in the example do not experience much fabrication
variation, other than a slight over-etch. The design and SEM
differ more greatly where the design has tight bends and
corners. At these points, proximity effects cause unequal
exposure and rounding, which the CNN model predicts. From

Figure 7g, it is further evident that the model does more than
uniformly shift the silicon boundaries (like that of a
conventional biasing method).8 For long, straight sections,
the over-etching is uniform but increases with higher degrees
of convex bending (silicon inside the curve). For concave
bends (silicon outside the curve), the silicon experiences
under-etching. This is verified by the close overlap between the
SEM and the prediction contour for bends and corners in
Figure 7a. The certainty of the degree of over/under-etching is
limited by the resolution of the SEM images (1.5 nm/pixel),
which is evident by a thin uncertainty line remaining in Figure
7e (defined as U = 1 − 2|0.5 − y|, where y is the prediction
image/matrix). This uncertainty line increases in magnitude
for features smaller than the process-specified feature size limit
and drops to zero in larger areas of only silicon or silica.
The model sometimes makes mispredictions if small islands

remain standing, like those at (x ≈ −200 nm, y ≈ 100 nm) and
(x ≈ 400 nm, y ≈ −500 nm). These small features are affected
more by proximity effects and experience additional over-
etching due to having no surrounding silicon to protect them.
The model can predict the high degree of over-etching for
these islands; however, being isolated also means these islands
have less structural support and tend to get washed away.
Islands near the process-specified minimum feature size may or
may not get washed away in the resist removal stage, which the
model cannot accurately predict. This is evident by the high
degree of uncertainty for the small islands in Figure 7e. If the
pixel value is slightly higher than 0.5, the model will keep the
island through binarization, but the likelihood of it washing

Figure 7. Visual analysis of a generated test pattern (zoomed in for demonstration), which includes: (a) SEM with overlayed GDS and prediction
contours, (b) GDS, (c) processed SEM, (d) nonbinarized prediction, (e) uncertainty of the prediction, (f) binarized prediction, and (g) difference
between the GDS and the prediction, which shows the distribution of over-etch and under-etch for different feature characteristics.
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away is still relatively high. Islands much smaller than the
minimum feature size are easier for the model to predict, as
they will more likely be washed away. For any feature with high
uncertainty, it is advised that the designer take measures
against it (e.g., designing for larger, simpler features with less
prediction uncertainty).
The example in Figure 7 also illustrates more specialized

capabilities of the predictor model over conventional methods,
with, e.g., the filling of a narrow channel at (x ≈ −500 nm, y ≈
500 nm). With a uniform bias, these gaps would be widened,
but in fabrication, they get filled due to proximity effects and
the difficulty to fully etch through narrow resist openings. This
also occurs for small holes in the dataset (not shown in the
Figure 7 example). The fallen features at (x ≈ 400 nm, y ≈
−300 nm) and (x ≈ 0 nm, y ≈ 0 nm) provide further insight
into the capabilities of the model. These fallen features
sometimes get picked up by the SEM processing/binarization
step, as shown in Figure 7c. These fallen features not appearing
in the final prediction demonstrates the high generalization of
the trained model, as it is learning the physical process effects
rather than outputting directly what it has seen.
One potential limitation of our approach is that the relatively

small slicing window does not capture much of the
surrounding structure and therefore cannot take longer-range
proximity effects directly into account. Given that these effects
can be corrected for by the baseline, dose-based proximity
effect correction process, we believe they are small in
comparison to the residual short-range variations (e.g., corner
rounding, washing away of small features) we see and that our
model predicts. However, a future work that captures more of
the surrounding structure in the images may help to further
reduce the small uncertainties our model shows in this analysis.
Figure 8 presents the differences in prediction−SEM and

GDS−SEM for each structural feature in the training dataset
(15 patterns). For each generated pattern, a full fine-stitched
prediction is made. After prediction, the contour of each
structural feature is extracted, and the percentage of unequal
pixels between prediction and SEM, and GDS and SEM, are
calculated. For an additional comparison, we add eroded
versions of the GDS contours to represent that of a commonly

used uniform over-etch bias. The degree of erosion,
approximately 3 nm, is chosen to give the best fit to the test
dataset (lowest average error). The differences are plotted in
Figure 8a as a function of contour area divided by contour
perimeter, which increases as features get larger and less
complex. For 93% of the features, the prediction is closer to the
SEM than the eroded design is. This is expected, as the
uniform bias does not capture the varying degrees of over/
under-etching (demonstrated by our model in Figure 7g),
bridging of narrow channels, and the washing away of small
islands. As the design features become smaller and more
complex, a larger discrepancy between SEM and GDS is
observed, as expected. In these cases, the prediction still aligns
rather well with the SEM contours, which indicates its greater
benefit for complex, fine-featured, topologically optimized
devices. This is demonstrated in Figure 8b, which averages
differences for 10 equally spaced contour size ranges. Note that
the slight leveling in prediction−SEM difference for the
smallest contour size range is because the predictor sees more
small islands that get washed away: in these cases, the
prediction and SEM are both empty, which leads to many
simple, perfect predictions. For complex, fine-featured devices,
we believe the predictor model can serve as a more valuable
guide than adhering to an absolute feature size limit, as some
features larger than the limit may vary significantly and some
features below the limit may still be feasible to keep.
To demonstrate how well the model generalizes to patterns

outside of the testing dataset, Figure 9 presents the prediction
of two different grating couplers containing subwavelength
grating (SWG) structures29 and a topologically optimized
wavelength demultiplexer (DEMUX).30 These devices were
fabricated using the same process but on separate runs. The
two gratings contain many sharp corners that get rounded in
prediction and fabrication. The various sharp features at the
boundaries of the patterns in our dataset allow the model to
accurately predict more conventional, Manhattan-like struc-
tures like these. The topologically optimized DEMUX contains
features more like those of our training and testing datasets. In
this example, we see the filling of a hole at (x ≈ 0 nm, y ≈
−250 nm), the other major variation in this example being the

Figure 8. (a) Prediction−SEM, eroded-GDS−SEM, and GDS−SEM differences for each contour in the test dataset of images as a function of
contour size (measured as contour area divided by contour length). (b) Averaged prediction−SEM, eroded-GDS−SEM, and GDS−SEM
differences as a function of feature size.
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smoothing of the pixelated edges of the device. Despite these
types of edges not being directly included in the training
dataset, the model is able to interpret them and make an
accurate prediction. In comparison to the uniform erosion
method, our model achieves 40, 37, and 32% reductions in
error (calculated as mean-squared error) for the three devices
in Figure 9, respectively.

■ CONCLUSIONS
Inherent physical limitations such as proximity effects, as well
as process variations, such as etch-rate dependence on pattern

density in nanophotonic device fabrication, can cause severe
performance degradation and delayed prototyping. Despite
best efforts in state-of-the-art fabrication facilities, such
variations are still inevitable. In this work, we present a deep
convolutional neural network model for the prediction of
planar fabrication variations in silicon photonic devices and
propose it as a tool to validate the feasibility of a design prior
to fabrication and further offer the possibility of pre-
lithography correction. These capabilities reduce the need to
perform multiple correctional fabrication runs and accelerate
the prototyping of nanophotonic devices and circuits,

Figure 9. (a) Grating coupler with subwavelength structures (connecting waveguide excluded), (b) zoomed portion of it, and (c) zoomed SEM
image of it with an overlayed prediction contour. Corresponding images for (d−f) focusing grating coupler and (g−i) topologically optimized
wavelength DEMUX.
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representing significant savings in cost and time. In other
words, the CNN model can serve as a surrogate for design
validation for a particular fabrication technology. The CNN
training data is constructed from a modest set of SEM images.
We demonstrate how our model quickly and accurately
predicts the fabrication variations in a wide distribution of
structural features. As features become smaller and more
complex, as is typical for highly sensitive topologically
optimized devices, fabrication variations become more
significant and vary markedly with feature curvature and
density. The relative benefit of our predictor model is
increased for these types of variations, as simple, linear biasing
fails to represent them. Compared to current process
simulation tools, including proximity effect calculation and
correction, our approach is entirely data-driven; knowledge of
the processing specifics and material parameters, which is
typically not available to photonics designers, is not required
here. The current model is based on an electron-beam
lithography process, but the same methodology can be directly
applied to other fabrication technologies (e.g., deep UV
lithography). For the next-generation photonics devices, this
tool allows the designer to know a priori how far to push the
size and complexity of the features. We envision future design
methods to integrate fabrication variation predictor models
into the optimization algorithm to automate the creation of
truly robust and high-performing photonic devices.
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