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ABSTRACT: A self-consistent optimally tuned range-separated
hybrid density functional (scOT-RSH) approach is developed. It
can simultaneously predict accurate geometries, vibrational
modes, and frontier orbital energies. This is achieved by
optimizing the range-separation parameter, γ, to both satisfy the
ionization energy theorem and minimize interatomic forces. We
benchmark our approach against an established hybrid functional,
B3LYP, using the G2 test set. scOT-RSH greatly improves the
accuracy of occupied frontier orbital energies, with a mean
absolute error (MAE) of only 0.2 eV relative to experimental
ionization energies compared to 2.96 eV with B3LYP. Geometries do not change significantly compared to those obtained from
B3LYP, with a bond length MAE of 0.012 Å compared to 0.008 Å for B3LYP, and a 6.5% MAE for zero-point energies, slightly
larger than that of B3LYP (3.1%). scOT-RSH represents a new paradigm in which accurate geometries and ionization energies
can be predicted simultaneously from a single functional approach.

SECTION: Molecular Structure, Quantum Chemistry, and General Theory

D ensity functional theory (DFT) is the method of choice
for electronic-structure calculations across an unusually

wide variety of disciplines,1 from organic chemistry2 to
condensed matter physics,3 as it allows for accurate quantum-
mechanical calculations at relatively modest computational cost.
Practical applications of DFT almost invariably rely on the
solution of the Kohn−Sham equation (in either its original4 or
generalized5 form). Within (generalized) Kohn−Sham theory,
the interacting many-electron problem is mapped onto an
effective single-particle one. This mapping is exact in principle,
as the ground-state density of the original and single-particle
description are the same. However, the mapping relies on an
exchange-correlation energy, Exc, which is a generally unknown
functional of the electron density. The practical success of
DFT, therefore, hinges entirely on the existence of suitable
approximations for Exc.
Fortunately, approximations sufficiently accurate to predict

quantities obtained from the total energy (including its first and
second derivatives with respect to atomic positions) have been
developed and are in widespread use. In particular, the
generalized-gradient approximation (GGA), which expresses
Exc in terms of the electron density and its gradient, has become
very popular in materials physics6particularly when paired
with periodic boundary conditionsand conventional hybrid

functionals, which combine a fraction of Fock exchange with a
complementary fraction of GGA exchange, have seen similar
rates of adoption for applications in chemistry.2 These have
become the standard “workhorse approximations” for accurate
prediction of structural quantities such as lattice constants,
bond lengths and angles, as well as response properties such as
vibrational frequencies, elastic constants, etc.
Unfortunately, neither conventional GGAs nor conventional

hybrid functionals do nearly as well in the prediction of
electronic excitation spectra of molecular systems.7 In
particular, they usually fail to describe frontier orbital
energies.8−11 Within the (generalized) Kohn−Sham frame-
work, the ionization energy (IE) theorem guarantees that for
the exact exchange-correlation functional, the (generalized)
Kohn−Sham eigenvalue associated with the highest occupied
molecular orbital (HOMO) should correspond to the first
vertical IE.9,12−16 There are, however, no formal constraints on
any of the other Kohn−Sham energies; for example, the lowest
unoccupied molecular orbital (LUMO) energy computed from
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Kohn−Sham DFT is not guaranteed to correspond to the
electron affinity (EA). In fact, the LUMO energy and EA differ
by the derivative discontinuity, that is, by a finite “jump” in
energy associated with an integer increase in the number of
electrons in the system that the exact Kohn−Sham potential
must possess. With standard GGA approaches, this derivative
discontinuity is missing and is erroneously averaged away.
Consequently, HOMO and LUMO energies under- and
overestimate the IE and EA, respectively.17−19 The use of a
fraction of nonlocal Fock exchange in conventional hybrid
functionals mitigates the derivative discontinuity problem, as
some of it is “absorbed” into the nonlocal Fock operator.
However, HOMO and LUMO energies typically still under-
and overestimate the IE and EA, respectively, just like in a
GGA, albeit less severely,9,20 limiting the utility of the
(generalized) Kohn−Sham spectrum for predicting and
understanding spectroscopy measurements.
In recent years, a promising new class of hybrid functionals

has emergedthat of range-separated hybrid (RSH) func-
tionals,21,22 which are based on partitioning the Coulomb
interaction in space. Many such partitioning schemes exist.23−28

Perhaps the simplest one distinguishes between short- and
long-range contributions through use of the error function,
namely, using the relation (1/r) = (1/r)erfc(γr) + (1/r)erf(γr),
where r is the interelectron coordinate and γ is an adjustable
length-scale. The two interaction ranges are then treated
differently: in the functional used here, the short-range term is
handled in a GGA manner, allowing for a local balance between
exchange and correlation contributions. Meanwhile, the long-
range term is handled in a Fock-like manner, which guarantees
the correct ∼ −1/r asymptotic behavior for isolated molecules,
crucial for processes involving electron removal (ionization).
It has been recently demonstrated9,29,30 that the RSH

approach can improve the DFT eigenvalue prediction if the
range separation parameter, γ, is optimally tuned (OT) so as to
obey the IE theorem, that is, it minimizes the function

γ ε γ γ= + − −
γj N N E N E N( ; ) ( ) [ ( 1; ) ( ; )]HOMO gs gs

(1)

where εHOMO
γ (N) is the eigenvalue of the highest occupied

generalized Kohn−Sham state for the N-electron system, and
Egs(N; γ) and Egs(N − 1; γ) are the total energies of the original
system and its cation, respectively, for a specific choice of γ.
The function j then represents the remaining deviation from
the IE theorem, where j = 0 implies that the HOMO level is
equal (and opposite in sign) to the IE, as expected from the
exact functional. Simultaneous excellent agreement between the
LUMO and EA can be obtained by applying the above
condition not only on the neutral system but also on its
anion,9,29 for example, to minimize

γ γ γ= + +J N j N j N( ; ) [ ( ; )] [ ( 1; )]2 2
(2)

This double-tuning procedure has been used successfully for
predicting fundamental (with time-independent DFT) and
optical gaps (with time-dependent DFT) in a variety of systems
(see, for example, refs 30−42). Additionally, it was shown to be
useful in the prediction of other optical properties such as (full,
partial, or implicit) charge-transfer excitations29,43−47 and
optical rotations.48 It has also proven to be helpful beyond
the frontier orbital energies in approximating the outer valence
excitation spectra.49,50 It should be noted, however, that the

double-tuning procedure should not be applied when the EA is
negative.31

Despite this impressive range of successes, structural
information in most of the above-mentioned OT-RSH research
was obtained using conventional semilocal or hybrid func-
tionals, with the relaxed geometry “frozen” for the sake of the
subsequent OT-RSH calculation. Very little work has been
devoted to structural predictions from OT-RSH calcula-
tions.33,51−53 Apart from our preliminary results,54 and the
work of Körzdörfer et al.,55 which focused on the specific case
of bond-length alternation in polyenes, tuning of γ and
structural optimization have been treated as unrelated tasks.
Generally speaking, obtaining a functional that offers

predictions of sufficient accuracy for quantities derived from
both the total energy and the frontier orbital eigenvalues is
known to be a very difficult task.56−60 Therefore, it is of great
interest to examine whether, and to what extent, OT-RSH
functionals can balance these two requirements. Specifically, we
ask whether OT-RSH functionals can supply accurate
predictions for both frontier orbital eigenvalues on the one
hand and structures and vibrational frequencies on the other
hand.
In this Letter, we develop a self-consistent (scOT-RSH)

approach for a nonempirical range-separated hybrid density
functional that can simultaneously predict accurate geometries,
vibrational modes, and frontier orbital energies of molecules.
Starting with a range-separated hybrid functional, we introduce
a scheme by which the range separation parameter γ can be
simultaneously optimized to both satisfy the IE theorem and
minimize the forces acting on atoms for molecular structures.
In order to assess our approach, we focus on the G2 test

set,61 which contains 148 small organic molecules. We have
chosen this particular test set for two reasons. First,
experimental gas-phase structural, vibrational, and ionization
energy data have been extensively recorded for this set, making
a comprehensive comparison between theory and experiment
meaningful. Second, we compare our calculations to those
obtained from the popular conventional hybrid functional,
B3LYP.62,63 In its construction, B3LYP was explicitly fit against
thermochemistry data of this set and is therefore at its best by
definition. This makes the burden of proof on the accuracy of
our approach particularly high.
Our nonempirical range-separated hybrid density functional

scheme proceeds as follows. First, following the existing OT-
RSH approach,9,29 for fixed geometry, we obtain the range
separation parameter γ such that the molecule, in its fixed
configuration, satisfies eq 1. Ten independent calculations (in
parallel) for both the neutral and cationic species were
performed at the initial geometry over a range of γ values.
From these, the two values of γ most closely satisfying eq 1
were identified and then used as the upper and lower bound for
a second trial set of ten γ values. All molecules exhibited a clear
minimum of j(N;γ). We note, however, that some molecules
within the set require careful identification of their (neutral or
cationic) ground-state spin configurations50,64,65 (which can be
quite sensitive to initial geometries, as discussed below).
Second, we optimize the positions of the nuclei in the ground

state, that is, we eliminate any residual Hellmann−Feynman
forces. For the new geometry, we then recompute γ. This
procedure continues until we converge on a γ for which all
forces are negligible. This results in an optimized geometry
obtained without resorting to empirical parameters. For most
molecules in the set, self-consistency was achieved in a single

The Journal of Physical Chemistry Letters Letter

dx.doi.org/10.1021/jz5010939 | J. Phys. Chem. Lett. 2014, 5, 2734−27412735



iteration. Throughout the entire set, self-consistency was always
reached in less than four iterations. Our parallel implementa-
tion results in an additional factor of 2−3 in the time-to-
solution compared to that of standard DFT functionals.
We used B3LYP/6-31G*-optimized structures66,67 as initial

geometries for our scheme. To rule out any bias B3LYP may
have imposed on our results, we randomly selected several
molecules from the set, optimized their structure using the
unified force field,68 and confirmed that this did not impact the
final results. All calculations were performed using the QChem
3.2 package.69 The “G3Large”70 basis set was used throughout.
This basis set was chosen as it is defined for all atom types
present in G2 and is also compatible with the G3/99 and G3/
05 test sets. We additionally ascertained that results obtained
with this basis set are consistent with those obtained using
Dunning’s cc-pVTZ basis set.71 The largest differences found
between the two basis-sets were of the order of 1% for the
HOMO levels, 0.1% for bond lengths, and 1% for vibrational
frequencies. We used an OT-RSH functional of the form given
in eq 1 based on the LC-ωPBE functional,25 which employs a
short-range version of the Perdew−Burke−Ernzerhof (PBE)
GGA exchange functional72 and PBE-GGA correlation.
We emphasize that any structural relaxation within DFT

typically requires two nested self-consistent procedures: an
outer one for the geometry and an inner one for the self-
consistent solution of the electronic structure at a fixed
geometry.73 Here, an additional self-consistency cycle, nested in
between the usual inner and outer ones, is the self-consistency
in the choice of γ. This allows the functional to adapt itself to
both the instantaneous geometry and electronic structure of the
system. Thus, one may think of our approach as a special case
of a nonempirical “fourth generation” density functional, where
the functional is not and cannot be expressed explicitly, but
rather is defined implicitly with the aid of a uniquely defined
numerical procedure.64

Most molecules in the G2 set have a negative EA (our
calculations indicate that this is the case for 116 out of the 148
molecules in the data set). For many of the molecules that have
a positive EA, experimental data for the vertical EA are sparse
and not always reliable. Therefore, we use the single HOMO-
tuning condition of eq 1, rather than the double-tuning
procedure of eq 2. Nevertheless, the consequences of double
tuning are discussed further below.
A first and crucial test of the suggested approach is the

comparison of HOMO eigenvalues to experimental IEs. In
particular, the question is whether, as in the above-mentioned
previous work, the method still facilitates the prediction of the
IE or whether the simultaneous geometry optimization reduces
the level of agreement between theory and experiment. Our
comparison to experimental IEs is based primarily on the
database of the National Institute of Standards and
Technology.74 However, some of the examined systems have
multiple reported reference values, with a large deviation
among these values. For other systems, the data set contains
two different spin configurations, but only one reference value
exists. In other cases yet, values reported in the database as
vertical ionization energies are in fact adiabatic. For these cases,
we used values collected directly from the literature. A detailed
report is tabulated in the Supporting Information. Nevertheless,
we caution that some errors in the experimental data may
remain. With this in mind, a comparison of HOMO eigenvalues
from our self-consistent RSH functional and from B3LYP,

against the experimental gas-phase ionization energies, is given
graphically in Figure 1 and is summarized in Table 1.

Overall, and especially when considering the above-discussed
difficulties in the comparison to experiment, the resulting mean
absolute error (MAE) of the self-consistent functional HOMO
energies with respect to experiment is excellent. The MAE is
0.2 eV, corresponding to a relative error of 1.84% from
experiment, with a standard deviation (STD) of 0.17 eV. For
comparison, B3LYP results severely underestimate the
experimental values (as is well known and expected) and
yield a MAE of 2.96 eV (i.e., a relative error of 27.24%) and a
standard-deviation of 0.52 eV. Interestingly, recent work75

explored the IEs of a subset of 55 molecules from the G2 set by
applying various flavors of Koopmans’ corrections.16,76 We note
that our results are on par with the best results obtained from
such corrections and slightly outperform the many-body
perturbation theory results reported in ref 77 for a further
subset of 34 of these 55 molecules.
It is important to note that IE predictions based on the

B3LYP-optimized geometry, namely, a standard, nonself-
consistent OT-RSH, differ from the scOT-RSH IE results by
a very small amount (less than 0.01 eV). Importantly, although

Figure 1. Comparison of the calculated generalized Kohn−Sham
HOMO eigenvalues for the neutral species, calculated with B3LYP
(red squares) and scOT-RSH (blue × marks), with the experimental
vertical ionization energy, in eV. Points lying on the 45° dashed line
indicate agreement between theory and experiment (within the
accuracy of the latter).

Table 1. Comparison of Bond Lengths, HOMO Energies,
and Zero-Point Energies Calculated Using B3LYP and the
New scOT-RSH Scheme, with Experimental Values Across
the G2 Set

HOMO [eV] Bond length [Å] ZPE [cm−1]

scOT-RSH MAE 0.20 0.012 379.31

STD 0.17 0.014 299.4

% error 1.84 1.02 6.49

B3LYP MAE 2.96 0.008 250.73

STD 0.52 0.011 258.4

% error 27.24 0.61 3.10
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the change in γ is modest in this case (less than 5%), all
information can be extracted from one fully self-consistent DFT
calculation without any empiricism. The fact that we observe
only small differences between self-consistent and nonself-
consistent calculations in this case may then serve as a
validation of the assumption made in previous calculations, i.e.,
that it is acceptable to base the OT-RSH calculations on
geometries optimized with standard functionals. One can
certainly envision, however, that for more complex molecules
quantitative and even qualitative differences may arise.
Next, we compare computed bond lengths and angles to

experimental gas-phase structure, again taken from the NIST
database.74 The results are given graphically in Figure 2 and

summarized in Table 1. As expected, B3LYP bond-length
predictions are within a highly satisfactory MAE of 0.008 Å
from experiment (corresponding to a relative error of 0.61%),
with a standard-deviation of 0.011 Å. The predicted bond
lengths obtained from our self-consistent scheme exhibit a very
similar accuracy, with a MAE of 0.012 Å from experiment
(corresponding to a relative error of 1.02%) and a standard
deviation of 0.014 Å. We additionally compared the self-
consistent scheme predicted angles to experimental values.
Again, in order to confine ourselves to well-established
experimental data, we have limited our examination of angles
to “central” ones within each molecule (see Supporting
Information for further details). Here too, our results show a
satisfying MAE of 0.52° from experiment, corresponding to a
relative error of 0.48%. B3LYP results are very similar, with a
MAE of 0.59° from experiment, corresponding to a relative
error of 0.53%.
To further explore the capabilities of our suggested scheme,

we examined molecular vibrational properties. For these
calculations, γ was held fixed at the optimized value. This can
be justified by assuming that γ is a weak function of the atomic
positions (an assumption already verified above) so that its

change in the course of small-amplitude molecular vibrations
can be neglected. Furthermore, allowing γ to change during the
vibration raises difficulties associated with size-consistency
issues, as discussed in detail below. To reduce the number of
degrees of freedom and avoid spurious comparison of
frequencies corresponding to different normal modes, we
considered the zero-point energy (ZPE), calculated for each
molecule by ZPE = 1/2 ℏ ∑v = 0

M − 1
ωv, where ℏ is the reduced

Planck constant and ων is the vibrational frequency for mode ν,
out of a total of M normal modes per molecule. The results,
compared to ZPEs obtained from experimentally derived
harmonic freqencies, are reported graphically in Figure 3 and

summarized in Table 1. We find that B3LYP yield a MAE of
250.7 cm−1, corresponding to a relative error of 3.10% from
experiment. Our self-consistent scheme yields a somewhat
larger, but still useful, MAE of 379.3 cm−1, corresponding to a
relative error of 6.49%.
The combined results of Figures 1−3 indicate that the

suggested self-consistent scheme is indeed successful in
predicting accurate HOMO energy levels across the G2
benchmark data set, without compromising the accuracy of
structural predictions and with very little compromise on the
accuracy of vibrational frequencies. Having established this
overall success, we now turn to discussing present-day
limitations of the approach.
First of all, trivially, the self-consistent approach hinges on

success in finding an optimally tuned range-separation
parameter, γ. This was possible for all molecules in the G2
data set. In some cases, issues with competing spin
configurations arise, which manifest themselves in j(N;γ) with
no minima. Special care must be taken in these instances to
ensure that the spin configurations being used are indeed the
optimized ones, namely, that they lead to the minimal total
energy among all possible configurations.

Figure 2. Comparison of theoretical bond lengths across the G2 test
set, calculated with B3LYP (red squares) and scOT-RSH (blue ×

marks), with experimental values.74 Points lying on the 45° dashed line
indicate agreement between theory and experiment (within the
accuracy of the latter).

Figure 3. Comparison of theoretical zero-point energies across the G2
test set, calculated with B3LYP (red squares) and the new scOT-RSH
scheme (blue × marks), with experimental values.74 Points lying on
the 45° dashed line indicate agreement between theory and
experiment (within the accuracy of the latter).
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Next, we address the issue of the detailed choice of tuning
criterion. Specifically, we consider the difference between the
single-tuning procedure of eq 1, recommended for determining
ionization energies,26 and the double-tuning procedure of eq 2,
recommended for determining fundamental gaps as well as
optical excitations.9,30 As mentioned above, for most systems in
the G2 data set the electron affinity is negative and eq 2 is
inapplicable. However, for 32 molecules the self-optimized
scheme based on eq 1 predicted a bound LUMO level. For
these, we further investigated the effect of applying the double-
tuning procedure. Recall that the minimal value of J in eq 2 may
serve as a figure of merit for the expected remaining error in
eigenvalues.78 For 15 of the 32 examined molecules, the
double-tuning procedure resulted in an optimal J smaller than
0.2 eV, that is, the prediction of both HOMO and LUMO
energies is satisfactory. For 6 molecules, the double-tuning
procedure led to a somewhat larger, but still tolerable, error of J
= 0.2−0.3 eV. For the remaining 11 molecules, the error was
larger and in the range of J = 0.3−0.6 eV, with one exception
OHwhere the minimal J was 0.77 eV. Interestingly, among
those 11 molecules, 10 are spin-polarized. In all these cases, we
could easily find a value of γ such that the HOMO or LUMO
tuning succeeds individually, that is, the first or second terms
on the right-hand side of eq 2 are minimized separately.
However, the value of γ needed for these two minimizations
was too different to allow for a satisfactory least-squares
compromise. Such behavior is typical for very small systems
(and has been pointed out previously30,64 for atoms and
dimers), where the addition or removal of a single electron may
change the chemical nature of the system strongly. This is
typically much less of an issue for larger systems.9,30,50 The
good news is that the tuning procedure itself provides a
warning sign when the reliability of the result may be suspect.
Generally speaking, the approximation we employ assumes

an adequate choice for semilocal exchange and correlation
expressions. If this is not the case, for example, due to
significant contributions from static correlation55 or long-range
correlation,9,27,33,79 results may suffer. This may be responsible
for the slightly reduced accuracy in the description of molecular
vibrations. Indeed, we found larger errors (of the order of 10%)
for diatomic molecules, where left−right static correlation is
important.80 The combination of semilocal exchange and
correlation is known to provide a mimic of static correlation
effects.81,82 In the RSH scheme, some of the semilocal exchange
is replaced by Fock exchange by definition, which may explain
some of the error. With B3LYP, however, molecules requiring
more static correlation are part and parcel of the training set
and the treatment is somewhat more accurate owing to the
partial incorporation of such effects via the choice of
semiempirical parameters.
Up to this point, we have discussed structural parameters and

vibrational frequencies, which are related to the first and second
derivative of the total energy, respectively. We have not,
however, discussed atomization or reaction energies. These are
related to finite total energy differences. In this case, the OT-
RSH approach is at a disadvantage because of the size-
consistency problem. The size consistency criterion is a
fundamental constraint in DFT, which states that the total
energy EAB of a system comprised of two well-separated,
independent subsystems A and B with energies EA and EB must
be given by EAB = EA + EB.

6 Nontuned RSH functionals are size
consistent (as are all of their exchange and correlation
ingredients). However, by construction, a tuned RSH func-

tional is not size consistent because, due to its implicit
definition, it generally has different γ values for the whole
system and the two separate subsystems. The size consistency
error, defined as EA + EB − EAB, where each of the energies is
calculated with its own γ, tuned for the A, B, or AB system
separately, was found to be as large as a few electronvolts for
several diatomic molecules.64 This drawback is particularly
problematic for protonoation/deprotonation processes, owing
to the large γ associated with the hydrogen atom. Although in
practice this is much less of an issue for larger fragments,
theoretically this is a serious problem that is inherent in the
methodology presented here.
Another possible difficulty with the new suggested scheme is

the fact that while applying the self-consistent procedure, the
resulting geometry may be affected by the specific value of γ, so
that the self-consistent procedure can get “stuck” at a point that
does not correspond to the stable ground-state configuration. If
the total energy changes gradually with γ, which is usually
found to be the case, this issue is not found to be a problem in
practice. This can be learned from cases discussed above, where
initial geometries from the unified force field led to exactly the
same results as B3LYP initial geometries. However, this could
be a severe issue for systems where different choices of γ lead to
an abrupt change in the energy, typically owing to an abrupt
change of electronic configuration.64 For example, we found the
optimal tuning of the P2 molecule to be highly affected by the
initial P−P bond length. Above some critical bond length, the
tuning procedure did not succeed at all, likely due to a
problematic configurations of the charged species within this
larger separation. However, when starting with a smaller bond
length the self-consistent procedure was normally applied and
led to results that are well within the overall spread.
Even with these caveats, the results reported in Figures 1−3

represent, in our opinion, a major step forward. Our approach
manages to obtain quantitatively useful information for
quantities related to both eigenvalues and energies. The unique
value of γ, obtained for each molecule, can be viewed as a
descriptor for the character of the various electronic environ-
ments exhibited across the data set. Some selected molecules
are shown and sorted by their optimal γ value in Figure 4. It has

been pointed out previously (e.g., in 30−32) that, within classes
of chemically similar molecules, γ generally decreases with
molecular size. This is a clear reflection of the fact that with
increased electron delocalization the system emphasizes
correlation over exchange. This immediately explains several
additional features of our approach: First, the lack of a universal
and arbitrary division between the relative importance of
exchange and correlation, together with the fact that we wish to
keep the expression for either one simple, is a strong driving

Figure 4. Selected molecules sorted by the optimal value of γ obtained
through the scOT-RSH procedure.

The Journal of Physical Chemistry Letters Letter

dx.doi.org/10.1021/jz5010939 | J. Phys. Chem. Lett. 2014, 5, 2734−27412738



force for the use of a tuning procedure. Moreover, this
immediately explains the repeated observation that results of a
similar quality are not obtained with a fixed-γ approach.9

Second, the choice of γ from a physical consideration, rather
than through fitting a data set, explains why we can approach
the level of accuracy afforded by semiempirical functionals,
even when the latter are given the “home field advantage”, that
is, the comparison is made on the very data set used to
parametrize the semiempirical approach. The obvious advant-
age is that, on general physical grounds, we expect the accuracy
of our approach to remain similar for systems far removed from
the benchmark data set, whereas this is not guaranteed for
semiempirical approaches. In practice, one may still use initial
geometries from other functionals in certain cases, but here we
show that a fully self-consistent cycle is of the same level of
accuracy. Finally, we note that in this self-consistent
optimization approach, if long-range correlation is not essential,
we can also expect other response properties to be well
predicted.83

In conclusion, we have introduced and demonstrated the
success of a self-consistent functional at describing geometrical
and electronic properties across the 148 molecules in the G2
test set. Given that this approach contains no empirical or
fitting parameters, its success at predicting experimental results
establishes a new performance standard. Our implementation is
fully parallelized and typically adds no more than a factor of 2
or 3 to the time-to-solution on a modern computing platform.
Finally, the self-consistent procedure naturally produces an
electronic order parameter that describes the varied nature of
the electronic environment observed within the test set.
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