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RESUME

Les crétes de pression de la glace de mer de premidre année
sont modélisées sous forme de prismes bidimensionnels se
comportant selon la loi de Mohr-Coulomb. La répartition des
contraintes passives est obtenue en utilisant une solution
similaire et des polynomes approximatifs de 1la variable
dépendante. Ces analyses permettent de calculer les forces
horizontales dans les couvertures de glace 1li%es 3 la formation
de crétes de pression flottantes et dans certains cas, aux amas
de glace le long des c8tes.
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STRESSES IN FIRST-YEAR ICE PRESSURE RIDGES

M. Sayed and R.M.W. Frederking
Division of Building Research
National Research Council Canada
Ottawa, Ontario, Canada

ABSTRACT

First—year sea ice pressure ridges are modelled as
two-dimensional wedges of a Mohr-Coulomb material and
the passive stress distribution is obtained using a
similarity solution and approximate polynomial forms of
the dependent variable. Analysis gives the horizontal
forces in ice covers associated with formation of
floating pressure ridges and some cases of rubble pile-
up agalnst shores.

INTRODUCTION

Ice floes driven by wind and current often fail on
encountering other ice floes or fixed obstacles, by
crushing, flexure or buckling, with resulting
acummilation of ice blocks. These masses form a
variety of features such as pressure ridges, pile-ups
on shores, and rubble fields surrounding offshore
structures. There have been extensive field,
laboratory, and analytical investigations of the
frequency of occurrence and the characteristics of such
ridges and pile-ups, and of associated loads. Kovacs
and Sodhi (1) presented a comprehensive review of the
literature on ice rubble pile~ups; and a number of
recent studies were included in the Proceedings of the
Workshop on Sea Ice Ridging and Pile—up (2). Early
investigations of ice rubble features and geometrical
models of ridges were reported by Zubov (3); recent
investigation of first—year pressure ridges in the
Beaufort Sea have been presented by Tucker and
Govoni (4).

An analytical model of the kinematics of pressure
ridge formation was developed by Parmerter and
Coon (5), who obtained lower bounds for the associated
forces by equating the work done by the advancing ice
sheet to the increase in the potential energy of the
ridge. This approach has been adopted in all
subsequent studies that estimate ridging or pile-up
forces. Some authors have used semi—empirical formulas
of soil mechanics to include frictional forces as well,
Kry (6) discussed ice failure modes associated with
rubble formation and the resulting forces on wide
offshore structures. Mellor (7) treated brash ice as a
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Mohr—Coulomb material and considered some simple cases
related to pressure ridging.

Laboratory experiments on model ice rubble
performed by Keinonen and Nyman (8) and by
Prodanovic (9) suggest that the bulk rubble obeys the
Mohr-Coulomb yield criterion. In other experiments by
Tatinclaux and Cheng (10) the rate effect on shear
resistance was examined. The present study is
concerned with the development of solutions for stress
distributions in first—year pressure ridges and some
cases of rubble pile-up.

GOVERNING EQUATIONS

Deformation of bulk rubble during ridge building
or rubble piling is usually comprised of relative
motion and rearrangement of the blocks, in addition to
fallure of individual blocks. This mode of deformation
1s similar to the behaviour of granular materials and
soils., Both observation and experimental evidence
suggest that In situations of present interest the
rubble may obey the Mohr-Coulomb yield criterion. In
the following analysis bulk rubble is considered to be
a rigid-plastic continuum undergoing quasi-static, two—
dimensional deformation; there are no experimental data
or field observations of possible volume changes during
deformation. A pressure—voids relation would be
required if compressiblity were to be considered. The
ice block concentration (or voids ratio) 1s therefore
assumed to be constant. As rubble-piling events
usually occur over short periods (1), temperature and
its effect on the deformation process are ignored.

The equations of equilibrium are

1o T g. = 0

Zry 178, x 8 e=Ycos9 (1)
ar r 36 T

3T d0 T

_r8 4177849 8- ygin e (2)
or r 39 T

where y is the unit weight (or buoyancy of submerged
rubble) and g., O and T g are normal and shear stress
components, as shown in Fig. 1. Compressive stresses
are considered positive throughout the present
analysis,
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Figure 1 Sketch of two-dimensional wedge

The Mohr-Coulomb yield criterion is satisfied by
expressing the stress components as follows

o, =otgq cos2y
0g = 0 -q cos2y 3)
Trg = q sin2y

and q = 0 sin¢ + C cos¢ (4)

where ¢ is the angle of internal friction, C is the
cohesion, § is the angle between the major principal
stress and the r—direction, and ¢ is the average normal
stress.
g0t % 17t )
2 2

o1 and opy are the major and minor principal stresses,
respectively.

This set of equations is sufficient for
determining the components of the stress tensor (or the
variables, ¢ and P) and can be reduced to two first—
order, quasi-linear, hyperbolic partial differential
equations. The same equations are also used in
studying the critical equilibrium of granular
materials. The procedure of numerical solution and its
application to several cases was given by
Sokolovski (11).

Experimental results provide very little
information about the nature of the cohesion term, C.
Here it is assumed that C depends on the average normal
stress. The use of a pressure-dependent cohesion makes
it possible to satisfy the boundary conditions while
maintaining a critical state everywhere within the
boundaries and, in addition, may be physically
justified. Contact area and bond strength between
individual blocks are expected to be proportional to
normal contact forces and, in turn, to the over-all
average normal stresses. A similar assumption was used
for granular materials in bins and hoppers by Jenike
and Johanson (12). The following simple form for
cohesion is employed

C=ko (6)
The governing equations can thus be written in a form
similar to that for cohesionless materials by using an
equivalent angle of internal friction
¢' = sin~! (sin¢g + k cos¢) (7)
SOLUTION

The critical equilibrium of a two-dimensional
wedge (Fig. 1) is assumed to simulate an actively

forming ridge or rubble pile. This problem admits the
"similarity” or "radial stress” solution of

Sokolovski (11). Average normal stress becomes
proportional_Eb distance, r, from the apex of the
wedge. The solution has the form

ag=yr s (0) (8)

v =9 (8) (9)

Substituting Eq. (8) and (9) in (3) and using (4), (6)
and (7), Eq. (1) and (2) may be reduced to two ordinary
differential equations for the unknown functions S

and .

dy _ cosb - sing'cos(2 ¢y + 6) - S cos 2y’ -1 (10)
de 2 S sin¢g'(cos2y - sing')

ds _ = sin(2 ¢ + 6) + S sin2y an
de cos2y - sing’'

1
The stress characteristics form angles * fl - gLJ with

the principal stress direction. Notice that a
singularity exists when cos2y = sin¢'. This
corresponds to a radial stress characteristic.

Both Sokolovski (11) and Marais (13) used direct
integration of Eq. (10) and (1l1) to obtain solutiomns
for the active case. Nadal (l4) also developed an
approximate solution for a special case of the active
state. A review of the available active state
solutions was given by Marais (13). The present
problem, however, corresponds to the passive state (the
horizontal normal stresses are larger than the vertical
normal stresses); direct integration of Eq. (10) and
(11) does not yield an appropriate solution that
satisfies all boundary conditions. Marais (i3) also
reported that a passive state solution could not be
obtained in a manner similar to that of the active
state. It 1s possible that these difficulties are
caused by the occurrence of stress discontinuities.
Savage and Yong (l5) presented an analysis of similar
discontinuities that exist in cohesionless granular
materials. Numerical integration would require
repeated trials to locate such discontinuities. A
simpler approach is used in the present study to obtain
an approximate solution. The exact distributions of S
and ¢, which may be discontinuous, are approximated by
continuous functions expressed in powers of 6.

Boundary Conditions

Boundary conditions at the side slopes of the
wedge are assumed to correspond to those of an infinite
slope. The stress function, S, simply vanishes, but
the value of the angle, ¢, has to be derived from the
stress distribution near the stress-free surface. It
can be shown (see for example, Marais (13)) that a
region in the vicinity of the side slope must exist
where stresses are determined by conditions of an
infinite slope. The present approach, however,
requires only the values of Y at the boundaries. The
angle between the major principal stress and the
vertical direction for an infinite slope is constant:

P = ¢+ 6 = constant (12)
As a result of this hypothesis, %%-= -1. Consequently,
Eq. (10) gives
g = €088 ~ sing’cos(2 ¥ - 8) (13)

cos 24’




0 and 6 = X - &, Equation (13)

gives two values of 7 corresponding to the active and
passive states. For the passive state

At the side 'slope S

n -8~ sin”! [———E:I'“5 )

(14)
sing'

2y =

Approximate Solution

Analysis 1s simplified by considering the stress
angle, ¥, to be a linear function of 8. This
assumption was used by Nadai (l4) for the active state,
and is in reasonable agreement with the numerical
solutions of Sokolovski (11) and Marais (13). The
passive state may be somewhat different, but the linear
distribution still agrees with the exact solution for
the limiting case of horizontal sides (apex angle = )

or an infinite slope of any inclination. Thus, the
stress angle is given by
* * %y 0 T
b=y + (¥ - ¥y) (—2) (15)
ap + o

where wt and W; are the values of ¢ at the side slopes.
These could be determined from Eq. (12) and (l4), and
ay and ay are the angles between the side slopes and
the vertical direction., For symmetrical wedges, only
half the wedge need be studied and the value of ¢ at
the centreline will be %-. Equation (15) then reduces

to
p=T4 (4 - 1) &) (16)
2 27 oy
The stress function, S, is approximated by a
polynomial form
= 2 3
S=S,+5 8+5)0°+850 +... a7

The coefficients So’ Sy» o o o+ are determined by
satisfying the boundary conditions and the equilibrium
of forces on sectors of the wedge. Terms of order
greater than 02 are neglected. As S = 0 at the
boundaries, Eq. (17) may be written as

[ 1+ ifl_:_le 9 - __23_ ]

5 =5, (18)
e @2 ap *
For symmetrical wedges (u = “2)’ S is an even function
of 6 and Eq. (18) reduces to
9 2
s=5,[1-() ] a9
a1

The unknown coefficient, S , may be obtained from the
balance of vertical forces acting on a sector of the
wedge of radius r. This condition is
1 2
(“1 + “2)
a

=fl

-a,

(<1r cosb = T g sin6) r d6 (20)

Substituting Eq. (15) and (18) in (8) and (3), the
condition given by Eq. (20), gives S . The integration
in Eq. (20) can be obtained in a closed form, albeit a
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very lengthy one. It is
evaluate it numerically.
The additional term

simpler and more practical to

5393 was included in an
extension of Eq. (18) to test the convergence of the
present solution for asymmetrical wedges. The
additional condition was the equilibrium of horizontal
forces on a sector of the wedge. The results, in this
case, were almgst identical to those obtained by
neglecting S307.

The present solution approximates the exact
solution by power series expansion. It implies that
the yield criterion and similarity condition are
satisfied everywhere. The equilibrium of forces,
however, is only satisfied in an average sense over the
wedge. It could be satisfied over any arbitrary number
of smaller sectors of the wedge by including more terms
in the power series of Eq. (17).

RESULTS

Values of So are presented in Fig. 2 for
symmetrical wedges and in Fig. 3 for asymmetrical
wedges with one horizontal side, §y = 0, Stress
distributions in wedges of any side slope can be
obtained, as well, from the present analysis. As
expected, stresses increase with increasing equivalent
angles of internal friction, ¢', and with decreasing
side slope, §. The calculated values of S are less,
by 3%, than tTe exact values for a horizontal surface
([t - sing']|™") owing to approximation of the exact
solution cosine function by a parabola. The error is
expected to decrease for smaller apex angles
(larger 8). When the analysis was extended to the
active state to examine its accuracy, the results were
in good agreement with Marails' numerical values 13).
The maximum error was 3% for horizontal surfaces and
decreased for larger values of §.

The horizontal force in the ice sheet adjacent to
a symmetrical rubble wedge (sail or keel) may be
determined by integrating the normal stress along the
vertical axis (6 = 0),

H
F=] og dr (21)
o
From Eq. (3 to 8, 19)
F = %-Y n® Sq (1 = sing' cos2y,) (22)

where H is height of wedge (from apex to base, see
Figure 4a) and the angle, y,, is X . The order of

these forces may be 1llustrated by comsidering an
example of typical values for a first—year pressuge
ridge of a symmetrical tyiangular sail (¢' = 60°,
§ = 25° and vy = 6200 N/m”). The force associated with
keel formation may be taken as approximately equal to
that assoclated with the sail (since weight of the sail
equals buoyancy of the keel). Thus, for a sail height
of 3 m the force ig the ice sheet during ridge building
would be 2.34 x 107 N/m.

Asymmetrical rubble features, as shown in Fig. 4b,
may have sail and keel apexes at different vertical

*This is the value of ¢' for an internal friction
angle, ¢ = 50° and a cohesion coefficient, k = 0,15,
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Figure 2 Stress coefficient, Sos for symmetrical
wedges

planes. The horizontal force in the ice sheet should
be estimated by including the shear stresses on part of
the horizontal base of the wedges in addition to the
normal stresses on the vertical planes through the
apexes. Note that y_  can be determined from the
boundary values and finear distribution of y given by
Eq. (14) and (15). Normal and shear stresses omn the
horizontal base of the wedge are given by

o, = [1 + sing' cos2(y + )] (23)

y cos8
T, = B sing' sin2(y + 0) (24)
XY cos®

The stresses on the base of the sail of a ridge would
not be in equilibrium with those on the base of the
keel if both sail and keel had a common plane boundary
at the water level. Instead, at water level a layer of
rubble or an ice sheet must exist that has stresses
from the sail and keel acting on different sides.
Integration of the shear stresses along this layer
gives the same total horizontal force in the ice cover
as that predicted by Eq. (22).

The force obtained from the potential energy
approach for a symmetrical wedge is (Kovacs and
Sodhi (1)).

_ 1
Fy 5 vq Ht (25)
where Y{ and t are the unit weight and thickness of ice
blocks, respectively., The ratio of the forces
predicted from the present analysis to those from the
potential energy approach is

F _Hxy S, (1 + sing') (26)
Fp t oy

Typical values of the variables in Eq. (26) give ratios
of the order of 20,

The preceding analysis applies to newly formed,
floating rubble with a wedge—shaped sail or keel and
two plane, stress—-free sides. Grounded rubble, on the
other hand, would have different boundary conditions.

o

STRESS COEFFICIENT, S

SIDE SLOPE, 8 (degrees)

Figure 3 Stress coefficient, S, for asymetrical

wedges with one horizontal side (8, = 0)

The similarity solution could be extended to treat such
cases only if the grounding stress on the keel side
were proportional to the distance from the apex.

Shore pile—ups occurring above water level may
correspond to the above analysis if the rubble is
pressed against an obstacle in such a way that a
passive stress state exists. An ice sheet or a layer
of rubble advancing on the shore would be subjected to
resistance due to rubble on its top surface (or the
base of rubble wedge) and to the resistance of
grounding on its bottom surface. Rubble forces can be
estimated as for floating ice. Ground resistance may
be assumed to be equal to the normal force from the
rubble wedge multiplied by a friction coefficient
between the soil and ice. Note that the shear stresses
from the ground and the rubble wedge are not in
equilibrium and act in a direction opposite to the
movement of the advancing ice sheet. Other pile-up
situations (not considered here) may occur where there
are no vertical obstacles exerting horizontal force on

1CE SHEET SAIL

F _g WATER LEVEL

A -

| ke

al SYMMETRICAL RIDGE

ICE SHEET

b) ASYMMETRICAL RUBBLE

Figure 4 Ice rubble features




the wedge opposite the advancing ice sheet. A passive
state might develop in parts of the wedge, while an
active state might develop in others.

Ice sheet thickness does not influence stress
distribution, according to the present analysis, except
through its effect on bulk rubble properties. It could
be related to rubble height by equating the predicted
forces to ice sheet strength. This would require
assumptions regarding the failure modes of the ice
sheet.

CONCLUSION

An analytical model of ice rubble pile~ups and
first-year ridges has been developed, in which the
Mohr—Coulomb yield criterion and equilibrium equations
are employed to describe the stress field. Deformation
was assumed to be two—dimensional and quasi-static.
Solutions were obtained using the similarity method and
expressing the unknown stress function in a polynomial
form. The resulting horizontal forces in the ice sheet
seem to be reasonable and substantially exceed the
lower limits obtained from an energy balance neglecting
frictional dissipation. Stress distribution and total
forces are related to bulk rubble properties and the
geometry of the wedges.

This analysis deals only with the stress field at
the critical state of equilibrium. Kinematics of the
problem have not been considered. The continuity
equation and a flow rule should be included in the
governing equations in order to determine the strains
and displacements of the rubble. At present there is
no available information regarding the appropriate flow
rule. Further experimental work will be needed to
clarify this problem.

NOMENCLATURE

C cohesion of bulk rubble

¥ horizontal force in the ice sheet

Fp value of F estimated using potential energy
method

g gravitational acceleration

H height of wedge

k parameter used in Eq. (6)

q stress given by Eq. (4)
S stress function

S coefficients used in Eq. (17)
t thickness of ice blocks

ap,ay angles between vertical direction and sides
of the wedge

Y unit weight of bulk rubble

Y4 unit weight of ice blocks

§ angle between horizontal and the stress—free
surface

81,6, angle between the horizontal and sides 1 and
2 of wedge

[+] average normal stress

o1 major principal stress

o1y minor principal stress

9, normal stress in r direction

gg normal stress in 6 direction

gy normal stress in x direction

cy normal stress in y direction

Tro shear stress in r-6 direction

Tyy shear stress in x-y direction

4, angle of internal friction

[ equivalent angle of internal friction

V] angle between oy and r direction

Vo angle between o and x direction

120 ) angle y at sides 1 and 2 of the wedge
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