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ABSTRACT

We present an electrically controllable Fabry-Perot
interferometer constructed from the organic material tris
(8-hydroxyquinoline) aluminum (Alqs). Electrostatic
compression of a two-turn helical Algs nanospring film
with a pitch of 300 nm deposited via glancing angle de-
position (GLAD) between parallel, partially reflective
mirrors controls the peak transmission wavelength. A
1.6 nm shift of the peak transmission wavelength from
582.4 nm to 580.8 nm is measured. The nanostructure
provides the ability to electrically control the transmis-
sion wavelength of an optical filter.

Keywords: Fabry-Perot, nanospring, Alqs, GLAD,
interferometer

1 INTRODUCTION

One feature that is desirable feature for optical fil-
ters is electrical control of the peak transmission wave-
length. A shift of several nanometres will ideally re-
sult from a variable applied voltage. Fabry-Perot in-
terferometry has previously been used to measure sub-
nanometre length changes [1], to study the resonant fre-
quencies of cantilever structures [2], for the creation of
electromechanical motion transducers [3], and as the
detection mechanism for chemical sensors constructed
from porous silicon [4-6]. In this paper we discuss the
fabrication and characterization of an electrically vari-

able Fabry-Perot interferometer constructed from a porous,

helically structured thin film of tris (8-hydroxyquinoline)
aluminum (Alqs) deposited via glancing angle deposi-
tion (GLAD). The nanosprings are electrostatically com-
pressed between two partially reflective mirrors. As the
mirror separation is directly related to the peak trans-
mission wavelength [7], the peak of the transmission
band shifts to a shorter wavelength. In previous studies
inorganic SiO2, which has a Young’s modulus of ~ 90
GPa, was used to create nanosprings [8], however, Alqs
is much softer with a Young’s modulus of ~ 2.3 GPA [9).
As Alqs is softer than SiOs, the nanospring films expe-
rience nanometres of compression before device break-
down and demonstrate electrically variable optical be-
haviour. In this work, electrostatic compression results
in a transmission band shift of ~ 1.6 nm.

2 GLANCING ANGLE DEPOSITION

It is possible to create a number of optical filter
devices such as rugate filters [10-12], chiral nanoengi-
neered structures that selectively transmit circularly po-
larized light by utilizing the circular Bragg effect [13,14],
anti-reflection coatings [15], humidity sensors [16], and
photonic crystals [17] through the controlled single step
deposition at glancing angles of incidence. GLAD is
an advanced single step physical vapour deposition pro-
cess where a porous thin film is created via a deposi-
tion angle of @ > 70° relative to the substrate nor-
mal [18,19]. Thin film structures with specific archi-
tectures such as slanted posts, helices, vertical posts,
and density-gradient columns may be grown with several
nanometers of precision through deposition rate feed-
back. Algs is an ideal material for use in a compressible
nanospring device, as it produces low-defect nanospring
structures [13], and has a Young’s modulus that enables
low voltage electrostatic compression.

3 NANOSPRING COMPRESSION

Previous work [8,20] determined that the spring con-
stant of a compressible nanoscale helix can be calculated
using the equation:
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where Y is the Young’s modulus of the spring mate-
rial, v is Poisson’s ratio for the material, d is the diam-
eter of the nanospring column, R is the coil radius, n is
the number of turns, and « is the spring pitch. For this
spring constant, the nanospring deflection (Axzg) as a
function of applied voltage for a parallel plate capacitor
structure is determined by:
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where €, is the dielectric constant of the filling ma-
terial, ¢ is the number of springs in the electrode area,
A is the electrode area, V; is portion of the applied volt-
age that drops across the nanosprings, hs is the height
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100 nm

Figure 1: (a) Schematic depiction of the constructed
nanostructure. (b) SEM image of the Algs nanospring
structure. The helical pitch is 300 nm, with a 25 nm
thick Al layer above and below the structure.

of the nanosprings, and k is the calculated spring con-
stant. For the dense capping layer of the nanospring
structure, the compression (Az.) is calculated through:

B ere()VC2
Az, = Vi (3)

where V. is the voltage that drops across the dense
film layer, and h. is the thickness of the layer [21]. The
total compression of the nanospring structure is thus
the sum of the individual compressions of each compo-
nent. At a specific compression, the peak transmission
wavelength of the Fabry-Perot interferometer will shift
by:

2
AN = "EAg (4)
m
where A\ is the wavelength shift, x is the effective
refractive index of the nanospring structure, and m is

the transmission mode of the Fabry-Perot [7].

4 DEVICE CONSTRUCTION

Figure 1 (a) depicts a schematic diagram of the vari-
able optical filter which shows that the device is con-
structed from three separate layers. The base layer of
the transparent conductor indium tin oxide (ITO) pro-
vides a superior electrical path compared to the rela-
tively thin mirror layers. A 25 nm thick aluminum layer
forms a partially reflective mirror with ~ 80% transmis-
sion, and one electrode of the parallel plate capacitor
for electrostatic compression. A two-turn, right-handed
helical Algs film with a 300 nm pitch is deposited on
top of the reflective electrode via the GLAD PVD tech-
nique using a rotating substrate at a deposition angle
of v = 85° via thermal evaporation. As the nanospring
structure is highly porous, a solid capping layer of Alqs
deposited by decreasing the flux incidence angle o dur-
ing deposition [18]. A final 25 nm thick Aluminum film
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Figure 2: (a) (Solid Line) Transmission spectrum at 0
V. (dotted line) Transmission spectrum at 5 V. (dashed
line) Transmission spectrum at 10 V. Spectra at 5 V
and 10 V have been shifted along the transmission axis
to better illustrate the wavelength shift. (b) (o) Shift in
the peak wavelength of the transmission band a function
of applied voltage from 0 V to 10 V.

is deposited and patterned with 3 mm x 3 mm elec-
trodes to complete the device. Figure 1 (b) illustrates
a SEM image of the edge of a completed device. The
total device thickness is measured at ~ 790 nm from the
SEM image, with each helix having a column diameter
of ~ 70 nm.

The shift in the peak transmission wavelength as a
function of applied voltage was measured using a fiber-
coupled white light source shone at normal incidence
onto the top partially reflective mirror. At each ap-
plied voltage a spherical lens focused light transmitted
through the Fabry-Perot into a fiber-coupled spectrom-
eter. Figure 2 (a) depicts the third mode of the trans-
mission spectrum of the Fabry-Perot device at applied
voltages of 0 V (solid line), 5 V (dotted line), and 10
V (dashed line). As the applied voltage compresses the
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nanospring structure the transmission spectrum shifts
to shorter wavelengths from an initial peak of 581 nm.
Figure 2 (b) (o) illustrates that there is a measured shift
in the peak transmission wavelength by 1.6 nm from
582.4 nm to 580.8 nm. This peak wavelength shift cor-
responds to a physical compression of 1.73 nm as the
effective refractive index of the nanospring structure is
~ 1.42 via the effective medium approximation [22].

We have demonstrated an electrically controlled Fabry-
Perot interferometer based on a parallel plate capacitor
structure filled with GLAD deposited nanosprings. A
shift in the peak wavelength transmitted through the
device results from electrostatic compression of the en-
tire nanostructure. The ability to precisely control the
transmission wavelength of an optical filter through an
applied voltage is very useful for the creation of variable
optical filter devices.
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