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EXECUTIVE SUMMARY

This report details the development of a Multi-Scale integrated fuel cell suite of 
software developed at NRC and Queens/RMC Fuel Cell Centre in conjunction 
with Forschungszentrum Jülich GmbH. Following the history of the project, some 
mathematical details of the cell/small stack level models are provided, together 
with brief details on other scale models. The model is developed for application to 
solid oxide fuel cells, though it may readily be applied to polymer electrolyte fuel 
cells. The implementation of the model into the C++ class library, OpenFoam, is 
then explained together with details of how to download and run the code from the 
repository  where it resides. Some examples of practical applications, considered 
as validation and verification exercises of the code, together with discussion 
highlighting the advantages and disadvantages associated with the open source 
implementation, are provided.  Finally, general conclusions from the project are 
drawn and suggestions for future work are proposed.
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1

DEVELOPMENT OF AN OPEN SOURCE SOFTWARE LIBRARY FOR SOLID 
OXIDE FUEL CELLS

1. INTRODUCTION 

1.1 Historical Background

1.1.1 National Research Council

The National Research Council (NRC) is Canada’s premier federal science and 
technology laboratory. Within NRCs Institute for Chemical Process and 
Environmental Technology (ICPET), now a unit of the Energy Mining and 
Environment (EME) portfolio, fuel cell models have been developed using 
computational fluid dynamics (CFD), and other codes and methods, since 1999. 
These include solid oxide fuel cell (SOFC) and polymer electrolyte fuel cell 
(PEMFC) models.

Originally, models were developed by writing subroutines and functions in-house, 
in programming languages such as FORTRAN and C, within large commercial 
codes such as PHOENICS and Fluent [1]. Subsequently with the development by 
Fluent and others, of their own specialized PEMFC and SOFC codes, the NRC-
developed user-defined functions were abandoned. However, experience in 
adapting such “black-box” commercial CFD codes to the complex physico-
chemical hydrodynamics associated with hydrogen fuel cells was mixed. In 
addition, because such codes are proprietary, ie. the property of the software 
house, it is not possible to share resources among collaborators and partners, 
without such third parties purchasing additional licenses at significant cost.

At the same time in-house codes were also developed, in C/C++. These have the 
advantage that the authors have complete control over the product, but suffer 
from the need for development of suitable interfaces to graphical post-processing 
software, such as VTK, and front-end graphical user interfaces (GUI) which can 
involve more work and maintenance than the development of the core solver 
itself. In addition, the issue of portability, eg between MSWindows and UNIX, is a 
matter for concern. Also NRC/ICPET does not have the facilities to provide 
software support, in the commercial sense, to partners and stakeholders.

It became apparent that a third way was necessary; one where software 
development was restricted to features salient to fuel cell research and 
development, but without “reinventing the wheel” in terms of well-established flow 
solvers and numerical schemes. The arrival of open source CFD codes in the 
workplace proved to be timely, and it was agreed to conduct an experiment in 
fuel cell modelling employing the open source CFD code “OpenFoam”, Weller et 
al.  [2], which is the core activity of this program. In addition to this project,
OpenFoam has replaced commercial CFD code in numerous other projects at 
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NRC/ICPET.

1.1.2 Forschungszentrum Jülich GmbH

Forschungszentrum Jülich GmbH (FZJ) is one of Europe’s largest 
interdisciplinary research centres, and generates research in the areas of health, 
energy, climate and information technology. The Institute for Energy Research –
Fuel Cells (IEF-3), now including climate (klima) research (IEK-3, Energy 
Process Engineering), has been developing fuel cell technology for a number of 
decades. It is generally considered to be the leading European laboratory in fuel 
cell development. FZJ has been a leading developer of planar SOFCs and is 
working on the development of high temperature polymer electrolyte fuel cells 
(HT-PEMFCs) and direct methanol fuel cells (DMFCs) . Similar to the NRC 
situation, FZJ had been employing commercial codes, but increasingly found the 
conventional licensing model to be, not only expensive, but also sub-optimal in 
the context of fuel cell R&D, especially for running in parallel on the Jülich 
Supercomputing Facility, one of the largest supercomputing facilities in the world.

1.1.3 Queen’s-RMC Fuel Cell Research Centre

Although not formally part of the original project/contract between NRC and FZJ; 
faculty members, staff, and students at the Queen’s-RMC Fuel Cell Research 
Centre (FCRC) have participated in the project from its earliest stages, and will 
continue to do so into the future. The FCRC is Canada's leading university-based 
research and development organization in partnership with industry dedicated to 
advancing the knowledge base for addressing the key technology challenges to 
the commercialisation of fuel cell applications.

1.1.4 Project meetings

Dr. Beale visited IEF-3 Jülich in March 2007 where the idea for a project was 
originally conceived. M. Spiller and D. Froning of IEF-3 visited NRC in 6-7 
September 2007. Dr. Beale visited Jülich  together with Prof. Pharoah and Prof. 
Karan in December 2007. A MUSIC workshop was held in the Jülich 
Supercomputing Centre in March 2009. In attendance were H. Jasak, H. Rusche 
(Wikki Ltd.), S. Beale, H. Roth (NRC), J. Pharoah, H-W Choi, D. Jeon (FCRC), D. 
Froning, S. Berns (FZJ). Dr. Beale and Prof. Pharoah visited Jülich and also 
Wikki in London 19-21 January 2011. The partners met again in Montreal in May 
2011 at the ECS meeting. In addition to face-to-face meetings, video 
conferences between the parties have been held on a monthly basis over the 
period of the project.
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1.2 Problem definition

The partners agreed to develop a common framework for fuel cell modelling. The 
model was to be for Multi-Scale Integrated Fuel Cells (MUSIC), the ultimate goal 
being to develop an integrated suite of software, freely available to fuel cell 
researchers at every scale from nano/micro through to cell/stack and hotbox. By 
freely sharing the implementation, it is hoped to accelerate technical 
improvements in fuel cell modelling and hence fuel cell design, eliminate silos, 
and establish a ‘community of users’ who can continually upgrade and enhance 
the MUSIC library. At the same time the details of any specific design can be 
kept private, thereby obviating any compromise to intellectual property to 
individual stakeholders, who may be potential business rivals, in the project.

The authors will maintain versions using configuration management (CM) tools. 
The code is to run on PCs, parallel LINUX Beowulf clusters, and eventually 
super-computing facilities. The existing software suite, OpenFOAM, was selected 
as the platform for the project. Technical support was provided by Wikki Ltd. 
(London, UK) under sub-contract to NRC. Adoption of software best practices [3]
from the outset assists in continuity in model development and application.

The details of the sub-component of the work statement specific to the NRC-
Jülich funded interaction as discussed in this report are as follows: NRC staff and 
personnel would:

1. Implement a SOFC/HTPEMFC single-cell model in OpenFoam
2. Implement a SOFC/HTPEMFC stack model in OpenFoam
3. Perform simulation for a 3D Jülich fuel cell stack
4. Verify and validate the developed model(s)

Owing to staffing and funding issues at both NRC and FZJ, there were some 
variances from the original work statement as further detailed in the report below.

1.3 Description of remainder of the report

This report is mainly centred on the development, application, and 
documentation of the cell-level and detailed (cell-based) stack model, in the 
context of SOFCs, since this consumed, by far, the majority of the actual time 
spent on the project. Chapter 0 gives a description of the cell/small-stack level 
model together with a brief description of MUSIC models at other scales. 
Chapters 2 and 0 discuss the specific implementation of the model in 
OpenFOAM and also provide details for the user interested in downloading and 
running the cell-level code for the cases of co-flow, counter-flow, and cross-flow.
The architecture for other MUSIC modules is similar to that provided here at the 
cell-level.  Chapter 3 discusses some case studies considered as part of the 
validation and verification process.  Finally, Chapter 4 contains a discussion of 
the overall results of the project and Chapter 5 points to some conclusions and 



53179
4

suggestions for future work.

Description of cell and small-stack model

1.4 SOFC cell-level model equations

The fuel cell is presumed to be composed of the following volumetric zones: two 
interconnects, fuel (channel), passive anode substrate layer (ASL), active anode 
function layer (AFL), electrolyte, cathode current collector (CCL), cathode 
functional layer (CFL), and air (channel). The reactions in the active layers are 
presently being treated as acting on planar interfaces between the volumetric 
electrode(s) and the electrolyte.

A binary mixture of oxygen and nitrogen is presumed on the air (cathode) side, 
whereas a bindary mixture of hydrogen, and water vapour is presumed on the 
anode side.

1.4.1 Transport equations

The equations to be solved are as follows:

 div 0 u (1)

   div grad div gradp      Puu u S (2)

   effdiv div gradi iy y  u (3)

   effdiv div gradP Pc T k c T S  u (4)
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Figure 1. Schematic of fuel cell showing component layers.

1.4.2 Porous media source term

In the , AFL, CFL, ASL, CCL

Dk


 P

u
S (5)

ie., the state variable is the superficial (not interstitial) velocity. 

1.4.3 Species source terms

In the cell model, the electrochemical reactions are presumed to occur at the 
interface of the AFL and CFL with the electrolyte. This shortcoming will be 

removed in future versions. The source terms are thus per unit area ''im (kg/m2s) 

(for H2, H2O and O2) and related to current density, "i (A/m2), according to 
Faraday’s law. The mass source/sink terms are given by,

"
''i

Mi
m

F
 


 (6)

where M = 2, 18 and 32 [kg/kmol] for H2, H2O, O2 and  = 2, 2, 4 [electrons
transferred per molecule] respectively.
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The species source terms per unit area, ''S , are prescribed as follows:

Air-side (cathode): 

O2 mass sink

2O

32
''

4

i
m

F
 


 (7)

O2 species sink:

 
2 2O O'' " 1S m y   (8)

N2 species source:

22 NO "'' ymS   (9)

Fuel-side (anode):

2H

2
''

2

i
m

F
  (10)

H2 species sink due to H2 consumption 

 
2 2H H'' " 1S m y   (11)

H2O species source due to H2 consumption

OHH 22
"'' ymS   (12)

H2O mass source

2H O

18
''

2

i
m

F
 


 (13)

H2O species source due to H2O production

 
2 2H O H O'' " 1S m y   (14)

H2 species sink due to H2O production

2 2H O H" "S m y   (15)
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1.4.4 Electrochemistry

If the current density is considered variable, the cell voltage, V, may be 
expressed as,

caRiEV  (16)

where a and c are anodic and cathodic overpotentials, and R is the area 
specific resistance(m2).

The Nernst potential, E, is obtained as

a
p

p

F

RT

x

xx

F

RT
EE 
























0OH

0.5
OH

0 ln
4

ln
2

2

22 (17)

Where  0 a
p p is the ratio of the air-side pressure to the (air) pressure at which 

E0 is evaluated., and,

0
0

G
E

nF


  (18)

where 0G is the reference Gibb’s free energy. From Hernández-Pacheco and 

Mann [4], the following expression is obtained.

 0

247340 54.85

2

T
E T

F


 (19)

1.4.5 Area specific resistance

Initially a semi-empirical correlation by Ghosh et al., see [5], was used to 
compute R in units of ohm cm2.

2 3 40.3044 0.408 0.8687 2.7861 2.9285R r r r r     (20)

where

1463.1
1000


T

r (21)

with T in degrees C. Other ASR correlations were subsequently coded based on 
(proprietary) formulations provided by FZJ, and others. These may, or may not,
include an implicit contribution due to activation overpotentials being excluded 
explicitly from Eq. (16).
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1.4.6 Activation overpotentials

The overpotentials are obtained implicitly during the iterative procedure by 
means of the well-known Butler-Volmer equations at both the anode and the 
cathode,

     RTnFRTnFii  1expexp"" 0 (22)

with "0i and  being prescribed at both the anode and the cathode. At present it 

is presumed 0"0 i , and these terms are excluded, with the activation terms 

being incorporated via the ASR, above. However when comparing with the two-
potential model (below) values of  are computed, for a given local current 
density, "i , based on values of 0i and  from the literature. Theoretically, these 

are applied at both the anode and the cathode, though in practice the anodic 
activation overpotential may be considered as being negligibly small.

1.4.7 Electrolyte heat source

The total volumetric heat source (W/m3) in the electrolyte is presumed to be the 
difference between the total heat and that consumed in the load, as follows, 

2

H
S i V

F

    
 

 (23)

At present this source is presumed to occur entirely within the electrolyte. The 
enthalpy of the reaction is computed as follows;

2 2 2 2

0 0 0

0 H O ,H O ,H ,O

1
,

2

T T T

p p p

T T T

H H c dT c dT c dT        (24)

The specific heats are presently evaluated using the polynomial expressions 
given in Todd and Young [6]. It is, however, desirable to break the heat-source 
terms down as follows and treal the electrolyte, electrodes, and interconnects 
individually. The entropy is computed as,

2 2 2

2

0 0 0

,H O ,H ,O

0 H O

1
,

2

T T T
p p p

T T T

c c c
S S dT dT dT

T T T
        (25)
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In the active electrode regions, all 3 terms may be present, whereas in the 
electrolyte and interconnects, and passive electrode regions, only the Ohmic 
terms are active.

1.4.8 Computational algorithm

We can prescribe the load resistance, the operating voltage or the required 
current. For the case of prescribed cell voltage, V, (potentiostatic boundary 
condition) the procedure then is as follows:

1. Initial field values are prescribed
2. The transport equations for fluid flow, mass fraction and temperature field are 
solved
3. The Nernst potential is computed based on the molar fractions using Eq. (17).
4. The cell resistance is computed as a function of temperature.
5. The local current density is obtained from Eq. (16)
6. The mass sources/sinks in the species balance are computed from Faraday’s 
law, Eq. (6).
7. The source term for ohmic heating is computed using Eq. (23)

Steps 2-6 are repeated.

For the case of prescribed mean current density, ''i , (galvanostatic boundary 
condition) an additional pair of steps is required, namely

7. Compute the mean current density, '*'i
8. Correct the voltage according to 

 ˆ '' ''*V R i i   (26)

Where, in the spirit of the C/C++ programming language, “+=”means that the 
value of the expression on the right is added to the value of  V (which is the value 
of the voltage at the end of the previous iterative cycle) to obtain the new, 

updated, value of V. R̂ is a relaxation constant, nominally equal to the average 
resistance (though the precise value is not particularly important). This 
constitutes the basic model.

1.5 Multi-scale models

1.5.1 Stack model

Stack models may be divided into two essential classes: (1) detailed cell-level 
models which are simultaneously applied to multiple cells with manifolds and (2) 
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models which involve volume-averaging of the governing equations. The 
theoretical basis for the volume-averaged models based on a distributed 
resistance analogy [7] in the context of fuel cells was described in the paper by 
Beale and Zhubrin  [1]. Both approaches are currently being compared by a 
FCRC MSc student, and we shall report on the results of those studies in Nishida 
et al. [8].

1.5.2 Micro-scale model

Cell models require effective thermal and diffusion coefficients, Eqs. (3)-(4), and 
other empirical parameters such as hydraulic permeability, Eq. (5). Effective 
electrical conductivities may also be required depending on the model. It is 
frequently difficult or impossible to obtain these by the performance of physical 
experiments; rather a numerical experiment must suffice. For this reason micro-
scale models were developed and applied at FCRC. The paper by Choi et al. [9]
contains first results of the application of OpenFoam in that context. The code 
architecture of the micro-scale model has been deliberately set out to be similar 
to the form of the cell model.

In addition, a FCRC MSc student, is developing a detailed electrochemical model 
whereby the reaction at the triple phase boundary (TPB) is computed along the 
locus of the space curve of intersection of the one gas and two solid phases
corresponding to the reaction sites in the electrodes. This work is ongoing.

1.5.3 Two-potential model

At a scale between the TPB work, above, and the cell-level model are so-called 
two potential models. Popular in low temperature PEM codes, these typically 
involve the solution for electronic and ionic potentials according to Poisson 
equations, coupled via the source terms, which in turn are obtained as Butler-
Volmer or equivalent type equations. A full two-potential model has been 
developed at NRC and is currently being compared with the basic cell model. 
The code structure of this model is similar in style to the cell model.
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2. IMPLEMENTATION OF MODEL EQUATIONS IN C++ CLASS LIBRARY

2.1 Brief description of OpenFOAM code

The object-oriented open source software suite OpenFOAM version 1.6-ext was 
selected as the development platform for the multi-physics and multi-scale 
calculation. The set of governing equations is solved by using a finite-volume 
method written in the object-oriented C++ programming language. The numerical 
model was implemented for steady-state. A useful feature of OpenFOAM is the 
provision of a full set of implicit finite volume discretisation operators and 
associated linear system solver classes, allowing transparent representation of 
partial differential equations in the code. This provides a set of operators that 
allows equation mimicking in the code.  For example Eqn. (4) is implemented in 
OpenFOAM as follows:

solve
    (
        fvm::div(rhoCpPhiCell, Tcell)
      - fvm::laplacian(kCell, Tcell)
     ==
        TsourceCell 
    );

So the actual code bears a marked similarity to the partial differential equations,
integrated over finite volumes. The selection of linear solvers and their 
parameters are chosen at run time. For the calculations reported here, symmetric 
linear systems were solved using conjugate gradient with incomplete Cholesky 
pre-conditioning (ICCG) [10] and asymmetric systems using bi-conjugate 
gradient schemes, BiCG, Bi-CGSTAB [11, 12].

2.2 Domain decomposition issues - ‘Conjugate’ and ‘cell’ models

A feature of the OpenFOAM code is that it does not permit internal boundary 
conditions; since, by definition, boundaries are at the surface of the geometrical 
domain. This creates problems in fuel cell modelling where sources/sinks of 
mass, momentum, species, and energy are present internally, eg at the 
electrodes, the implication being that it is not possible to work with a single mesh 
encompassing the entire region, both fluid and solid, as is the case with some 
other CFD codes, such as PHOENICS. 

Therefore, in the course of the project: two distinct solutions to the domain 



53179
12

decomposition problem were explored: In the original “cell” model proposed and 
developed initially at Wikki, and modified substantially at NRC, the temperature 
field (only) was solved on a ‘parent’ mesh. For each of the fluid zones (both open 
channels and porous media), individual ‘child’ meshes were also constructed. 
The child meshes had no knowledge of each other, i.e., the solutions in each 
domain were essentially independent. No child meshes were constructed for the 
solid regions (interconnects, electrolyte) since only T is solved in these regions. 
As part of the solution procedure, individual fields for u etc. were mapped from 
the child meshes up to the parent mesh on a volumetric basis, and similarly T
was mapped back from the parent mesh to the child mesh.  

In the “conjugate” model there is no parent mesh, rather a complete set of child 
meshes need be constructed for all of the sub-domains, both fluid and solid. 
These must all connect together in a conservative fashion to encompass the 
entire domain of the cell/stack. In this approach the temperature field at the 
internal field is coupled internally. 

Both approaches have their advantages and drawbacks. In reality the main 
differences in the two methods of domain decomposition lie in the internal 
structure of the code and do not significantly impact on the end user. Some time 
was spent in obtaining near-identical results for the two different approaches. In 
Chapter 0, operational details are provided for the cell (not the conjugate) model, 
though in practice differences are rather minor.

2.3 Code evolution and development

A ‘bottom-up’ approach to the software design/development process was 
adopted. The first version of the code was developed on behalf of NRC, who 
provided detailed specifications of the geometry and equations-to-be solved by 
engineers at Wikki (U.K.) Ltd. A highly simplified, planar geometry for all regions 
(fuel/air/electrolyte/interconnect) [13] with no ribs, lands, or porous zones was 
adopted with constant properties assumed throughout.  This was done to achieve 
“proof-of-concept” of the Nernst formulation which requires obtaining values from 
different spatial zones, and allowed for model validation to be expedited using 
known results from previous CFD codes (Fluent, PHOENICS) under similar 
geometric and operating conditions. All heat sources, regardless of origin or 
location, were presumed to happen in the electrolyte region. Electrodes were 
treated as being thin plates.

Subsequently NRC and FCRC personnel added substantial physical realism; 
both in terms of the geometry corresponding to more realistic fuel cell designs, 
and also incorporating variable density and specific heat as a function of 
composition and temperature, and different porous regions with ‘effective’
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diffusivities based on both theoretical formulations and sub-scale numerical 
calculations using both CFD and Monte Carlo methods. 

Operational details

2.4 Introduction

This chapter describes how to obtain and use the “cell” model.  Computationally, 
the model is a multiple-region model that solves for region-specific fields on their 
specific region.  In a preprocessing step, meshes are generated for the fuel cell 
as a whole and also for each of the interconnect, air, fuel, and electrolyte 
volumetric zones described in Section 2.  The active and passive anode and 
cathode zones are treated as porous zones within the fuel and air regions, 
respectively.

Each mesh, or computational domain, supports its own fields.  Pressure, 
momentum and species mass fractions, for example, are solved on the air and 
fuel domains. Temperature is solved on the global domain.  Global and regional 
information is transferred back and forth via grid cell mappings that are 
established during mesh generation/splitting.  

2.5 Prerequisites

2.5.1 OpenFoam

A working installation of OpenFoam (OF) is required.  A number of versions are 
possible, including OF 1.7.x through OF 2.1.1, available from 
http://www.openfoam.org/download/ , and OF 1.6-ext, available from the 
OpenFoam Extend project at http://www.extend-project.de/ .  Download 
instructions are available on the sites.

Some experience running OpenFoam applications, as might be obtained from 
OpenFoam tutorials, will be helpful.

2.5.2 svn

The sofcFoam cell model code is maintained in a Subversion 
(http://subversion.apache.org/) version control system repository at
http://cfd.icpet.nrc.ca/svn/sofcFoam/trunk/ . The Subversion command line client 
tool is svn.  Graphical tools are also available, e.g. RapidSVN, SmartSVN.

2.6 Obtaining an sofcFoam cell-level model

There are some minor differences in the official OpenFoam-2.1.x and the Extend 
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project’s OpenFoam-1.6-ext vis-à-vis the cell model, such that code which 
compiles under the one version will fail compilation under the other.  Separate 
codes are available in the repository.  Historically, the cell model code was 
developed first in OF-1.6-ext and later ported to OF-2.1.1, at revision number 
263.  The “conjugate” model code’s energy solver is available only in OF-1.6-ext. 
Table 1 shows the various models at approximately equivalent stages.

     Table 1. svn models
OF-
ver

svn location revision 
#

OF-
2.1.x

http://cfd.icpet.nrc.ca/svn/sofcFoam/trunk/ 265

OF-
1.6-
ext

http://cfd.icpet.nrc.ca/svn/sofcFoam/branches/cell/ 262

OF-
1.6-
ext

http://cfd.icpet.nrc.ca/svn/sofcFoam/branches/conjugateCell/ 245

Revisions later than those shown in the table introduced run-time selection of 
species, first in sofcFoam/branches/conjugateCell and then in sofcFoam/trunk.  There 
is no further development planned for sofcFoam/branches/cell.

The latest version of the sofcFoam cell model can be downloaded from 
http://cfd.icpet.nrc.ca/svn/sofcFoam/trunk. Using the svn command line tool, one 
simply types
      
       svn co http://cfd.icpet.nrc.ca/svn/sofcFoam/trunk

at the prompt.  

For a specific revision number, one modifies the above command as

       svn co –r <n> http://cfd.icpet.nrc.ca/svn/sofcFoam/trunk/

where <n> is the desired revision number, eg 265.  The check-out delivers the 
directory structure shown in Figure 2(a) to the current working directory.  Note 
that some of the file details change after the introduction of run-time selection of 
species. For those details, see the document gettingStarted_Cell268_OF21x.pdf 
at http://cfd.icpet.nrc.ca/svn/sofcFoam/trunk/docs/ .
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2.7 Directories

From Figure 2(a), the left panel of Figure 2, we see that the trunk/ directory has 
two main subdirectories, run/ and src/.  The run/ directory contains examples of 
cases that can be simulated with the cell model, while the src/ directory contains 
the model source code.  We examine both of these more closely, beginning with 
the src/ directory.

2.7.1 trunk/src/

The src/ directory contains the major subdirectories libSrc/ and appSrc/.  In libSrc/, 
we find C++ classes that have been specifically developed or modified for 
sofcFoam and are used in the cell model.  The appSrc/ directory contains the cell 
model source files, which instantiate objects from both libSrc/ and OpenFoam/src

as needed, to implement the cell model algorithm.  As is typical for OpenFoam 
applications, the cell model application is built by including blocks of code (*.H 
files) into a main program (*.C file).  

2.7.2 trunk/run/

The run directory contains case directories, or cases. The cases coFlow, 
counterFlow, and crossFlow exercise the model on co-flow, counter-flow, and 
cross-flow configurations, respectively.  The case quickTest is similar to the 
coFlow case, but reduced from twelve to three channels.  In each configuration, 
the fuel velocity is in the +x direction, while the air velocity is in the direction of 
+x, -x, and +y for co-flow, counter-flow and cross-flow, respectively.

Like any other OpenFoam case directory, the three cases here contain major 
subdirectories 0/, constant/, and system/.  With only a single mesh, these 0/, 
constant/ and system/ directories would be populated by files only, but with 
multiple meshes they have a subdirectory for each region, and the files for each 
domain are placed in the appropriate directory or subdirectory.  Thus initial global 
temperature T is found in 0/T, initial air velocity U in 0/air/U, initial fuel pressure p 
in 0/fuel/p, etc.  Similarly, global cell properties are found in constant/cellProperties, 
whereas air properties are found in constant/air/airProperties.  See Figure 2(b) for 
more complete listings.
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trunk/
    run/
        coFlow/
            0/
                air/
                fuel/
            system/
                air/
                electrolyte/
                fuel/
                interconnect0/
                interconnect1/
            config/
            constant/
                polyMesh/
                air/
                electrolyte/
                fuel/
                interconnect0/
                interconnect1/
        counterFlow/
            <...like coFlow...>
        crossFlow/
            <...like coFlow...>
        quickTest/
            <...like coFlow...>
   src/

        appSrc/
            Make/
        libSrc/
            continuityErrs/
            smearPatchToMesh/
            diffusivityModels/
                diffusivityModel/
                fixedDiffusivity/
                fsgDiffusionVolumes/
                fsgMolecularWeights/
                binaryFSG/
                knudsen/
                porousFSG/
            Make/
    

(a)

0/
    T
    air/
        p
        U
        yN2
        yO2
    fuel/
        p
        U
        yH2
        yH2O
config/
    make.faceAir
    make.faceFuel
    make.faceSet
    make.setAir
    make.setFuel
    make.setSet
constant/
    cellProperties
    air/
        porousZones
        airProperties
    electrolyte/
        electrolyteProperties
    fuel/
        porousZones
        fuelProperties
    interconnect0/
        interconnectProperties
    interconnect1/
        interconnectProperties
    polyMesh/
        blockMeshDict
system/
    controlDict.mesh
    controlDict.run
    controlDict
    fvSchemes
    fvSolution
    decomposeParDict
    createPatchDict
    air/
        fvSchemes
        fvSolution
    fuel/
        fvSchemes
        fvSolution
    electrolyte/
        fvSchemes
        fvSolution
    interconnect0/
        fvSchemes
        fvSolution
    interconnect1/
        fvSchemes
        fvSolution
Allclean
Makefile
(b)

Figure 2.  (a), left panel, directory structure from svn check out.  (b), right panel, 
files in a case directory after checkout and before meshing.
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2.8 Installation

In your chosen parent directory for the sofcFoam cell model, e.g. your 
OpenFoam work space $WM_PROJECT_USER_DIR/applications/, check out the 
trunk/ directory from the Subversion repository.  This creates directory trunk in the 
current working directory. 

2.8.1 src

To compile the library and application source code, go to trunk/src/ directory and 
run the Allwmake script.  This should generate shared object library 
libsofcFoam.so in the $FOAM_USER_LIBBIN directory and application executable 
sofcFoam in the $FOAM_USER_APPBIN directory.  A lnInclude/ directory, 
containing links to all of the libsSrc class files, will appear in the libSrc/ directory.

2.8.2 cases 

As can be seen in Figure 2(b), a case directory contains only one polyMesh/ 
directory immediately after checkout, and it contains only the dictionary file 
blockMeshDict.  This dictionary, together with the setSet batch command files in 
the <case>/config/ directory, describes the global and regional meshes.  After the 
global mesh is made by the OpenFOAM utility blockMesh, the utility 
splitMeshRegions generates the required regional meshes and map files.  For 
more information on the blockMesh, setSet, and setsToZones utilities, see 
Chapter 5 “Mesh generation and conversion” and Section 3.6 “Standard utilities” 
in the OpenFOAM User Guide (http://www.openfoam.com/docs/user/ ).  

Making the global and regional meshes is handled in sofcFoam/cell by the 
Makefile in the case directory.  See, for example, run/coFlow/Makefile.  The 
command
      
      make mesh

will generate the global mesh and the region meshes.  During model execution, 
various material property and other field values will be mapped from the region 
meshes to the global mesh.  Cells that began life labeled as a fluid in the global 
mesh may have become a solid, and some of these may have boundary faces on 
the original fluid inlet or outlet patches.  Accordingly, the fluid inlet and outlet 
patches may need to be redefined for the new reality.  The redefinitions are 
specified by the make.face[Air|Fuel|Set] files in the config directory.  See Appendix 
A for a description of the steps required to specify a new geometry.

2.9 Running the model

With the application already compiled, the command
     
      make run
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will run the executable from the command line, using the available case data.  
The model can also be run by typing the executable name, and the output 
directed to Standard Out can be redirected to a file:

      sofcFoam | tee log.run

Instead of running the model from the command line, a runscript is available to 
submit a job to a queue.  The script usage line may need editing for your queuing 
system.

After the model has run to completion, VTK files for visualization, e.g. with 
paraview, can be prepared easily using the Makefile.  Typing

      make view

will generate VTK files for the last output step, whereas

      make viewAll

will generate VTK files for all output directories.

2.10 Mesh files

Before making the meshes the only mesh file is constant/polyMesh/blockMeshDict.  
Making the meshes introduces new directories and files as shown in Table 2  In 
addition to the standard boundary, faces, neighbour, owner and points files, each 
domain has a cellZones and a faceZones file.  The original polyMesh directory, 
constant/polyMesh/, has a pointZones file and a sets/ subdirectory containing 
cellSet information for each subregion and faceSet information for each patch.  
The regional polyMesh/ directories contain faceZones and cellZones, as well as 
addressing files relating their domains to the global domain.  The fluid regions, 
i.e., air and fuel, also have a sets/ subdirectory, which contains cellSet 
information for their entire region and for their porous zones.
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Table 2. Mesh files.  Left:  new files in constant, constant/polyMesh/ and 
constant/polyMesh/sets after generating the meshes.  Centre: files from meshing 
in the new constant/<fluid>/polyMesh/ directories, for fluids air and fuel, with 
additional file details for constant/air/polyMesh/sets/ and 
constant/fuel/polyMesh/sets/ subdirectories.  Right: files from meshing in the new 
constant/<solid>/polyMesh/ directories, for solids electrolyte, interconnect0, and 
interconnect1.  

Constant constant/<fluid>/polyMesh constant/<solid>/polyMesh

    cellToRegion     boundary     boundary

constant/polyMesh/     boundaryRegionAddressing     boundaryRegionAddressing

    blockMeshDict     cellRegionAddressing     cellRegionAddressing

    Boundary     cellZones     cellZones

    cellZones     faceRegionAddressing     faceRegionAddressing

    Faces     faces     faces

    faceZones     faceZones     faceZones

    neighbour     neighbour     neighbour

    Owner     owner     owner

    Points     pointRegionAddressing     pointRegionAddressing

    sets/     points     points

        aflSides     sets/

        air

        airInlet constant/air/polyMesh/sets

        airOutlet         air

        airSides         cathode

        anodeSides         cfl

        cathodeSides

        cflSides constant/fuel/polyMesh/sets

        electrolyte         afl

        fuel         anode

        fuelInlet         fuel

        fuelOutlet

        fuelSides

        electrolyteSides

        interconnect0

        interconnect1

        interconnectBottom

        interconnectBottomSides

        interconnectTop

        interconnectTopSides
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Table 3.   Input properties and parameters

file constant/cellProperties

Parameter Remarks

anodePatch fuel mesh patch name for the fuel/electrolyte interface

cathodePatch air mesh patch name for the air/electrolyte interface

electrolyteAnodePatch electrolyte mesh patch name for the electrolyte/fuel 
interface

electrolyteCathodePatch electrolyte mesh patch name for the electrolyte/air 
interface

voltage initial value for voltage

ibar0 prescribed mean current density

Rhat voltage correction relaxation coefficient

Tinit initial internalField temperature for regional 
temperature fields

file constant/air/airProperties

parameter remarks

Rho air mixture density

Mu air molecular viscosity

Cp air isobaric heat capacity

K air thermal conductivity

diffusivity subdictionary for diffusivity model*

file constant/fuel/fuelProperties

        same as for air properties, but for fuel

file constant/air/porousZones

parameter remarks

-- zone name e.g. cathode
coordinateSystem not required for geometry aligned with Cartesian 

coordinate axes

porosity porosity value

Cp zone isobaric heat capacity

K zone thermal conductivity

Darcy Darcy-Forchheimer subdictionary

diffusivity diffusivity model subdictionary*

-- repeat for successive 
zones

file constant/fuel/porousZones

        same as for air porousZones, but for fuel

file constant/electrolyte/electrolyteProperties

parameter remarks
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rho electrolyte density

Cp electrolyte isobaric heat capacity

k electrolyte thermal conductivity

Hsrc initial heat source value

file constant/interconnect0/interconnectProperties

parameter remarks

rho interconnect density

Cp interconnect isobaric heat capacity

k interconnect thermal conductivity

file constant/interconnect1/interconnectProperties

        same as for interconnect0, but for interconnect1

* Diffusivity models and their dictionaries are described in Roth (2010)

Table 4.   Input initial fields.  

file physical field remarks

0/T cell temperature May be changed to suit operating conditions

0/k cell conductivity Inlet values = 0 prevents outward diffusion at inlets

0/air/p air pressure internalField and outlet boundaries at atmospheric 
pressure
other patches zeroGradient or equivalent

0/air/U  air velocity internalField 0 (or initialized to inlet value); inlet 
specified; outlet zeroGradient;  cathodePatch type 
must allow code to set value (e.g. fixedValue)

0/air/yN2  mass fraction N2 internalField initialized to inlet value
cathodePatch must be type fixedGradient

0/air/yO2 mass fraction O2 as for yN2

0/air/diff gas diffusivity Inlet value = 0 prevents outward diffusion at inlet

0/fuel/p fuel pressure internalField and outlet boundaries at atmospheric 
pressure
other patches zeroGradient or equivalent

0/fuel/U fuel velocity internalField 0 (or initialized to inlet value);  inlet 
specified; outlet zeroGradient;  anodePatch type 
must allow code to set value (e.g. fixedValue)

0/fuel/yH2 mass fraction H2 internalField initialized to inlet value
anodePatch must be type fixedGradient

0/fuel/yH2O mass fraction H2O as for yH2

0/fuel/diff gas diffusivity Inlet value = 0 prevents outward diffusion at inlet
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2.11 Inputs

Runtime inputs to the model are supplied in dictionaries in the case directory.  
Among these are the mesh files and mesh mapping files generated during mesh 
generation, as discussed above. Tables 3 and 4 show the remaining fields and 
parameters that must be specified.  The specifications supplied for the example 
coFlow/, counterFlow/, and crossFlow/ cases can be viewed in their respective case 
files, as indicated by Table 3. Physical dimensions of all inputs are specified in 
the appropriate files as required by the OpenFOAM software. They are omitted in 
Tables 3 and 4.

Numerical Schemes are specified at runtime by fvSchemes files in the system 
directories (system, system/air, etc).  The fvSchemes dictionary contains a number 
of subdictionaries which must be defined for the code to run.  In Table 5 we list 
the fvSchemes used by the model and the regions in which the listed schemes 
are applicable.

Table 5.   fvSchemes settings

operator scheme applicable region(s) 

ddtSchemes

        default steadyState;         all

gradSchemes

        default                 Gauss linear;          all

        grad(p)                 Gauss linear;        air*, fuel**

divSchemes

       default                none; all

       div(rhoCpPhi,T)    Gauss upwind;         cell***

       div(phi,U)            Gauss GammaV 0.2;        air, fuel

       div(phi,y)           Gauss upwind;              air, fuel

laplacianSchemes

       default                none;                         all

       laplacian(k,T)          Gauss harmonic corrected;   cell

       laplacian(mu,U)      Gauss harmonic corrected;    air, fuel

       laplacian((rho|A(U)),p) Gauss linear corrected;    air, fuel

       laplacian(diff,y) Gauss harmonic corrected;    air, fuel

interpolationSchemes

       default                harmonic;             cell

       default linear; fluid, solid regions

       interpolate(T) harmonic; air, fuel
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snGradSchemes

       default                corrected;     all

fluxRequired

       default          no;          all

       p               air, fuel

*constant/air/fvSchemes    **constant/fuel/fvSchemes    ***constant/fvSchemes

Solver and other algorithmic controls and tolerances are supplied by the 
fvSolution dictionary files in the system directories, as shown in Table 6.  

Table 6.   fvSolution settings

solvers dictionary

Field solver parameters region(s)

T                            PBiCG   preconditioner   DILU;
tolerance           1e-10;
relTol                0.0;
maxIter             5000;

cell

p  PCG preconditioner  DIC;
tolerance          1e-09;
relTol               0;
maxIter            700;

air, fuel

U  PBiCG preconditioner  DILU;
tolerance          1e-09;  
relTol               0;
maxIter            700;

air, fuel

yO2
yN2
yH2

yH2O    

PBiCG preconditioner  DILU;
tolerance          1e-09;
relTol               0.0;

maxIter            700;

PISO dictionary     air, fuel

parameter value

nIteration
nCorrectors
nNonOrthogonalCorrectors
pRefCell
pRefValue

0
2
0
0
0

relaxationFactors dictionary

field value

p
U

yO2air

0.3
0.7

0.5

air, fuel
air, fuel

air
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yN2air
yH2fuel
yH2Ofuel

0.5
0.1
0.5

air
fuel
fuel

Table 6 shows three subdictionaries in the fvSolution files: solvers, PISO, and 
relaxationFactors. In the solvers subdictionary, we find the settings for the linear 
solvers chosen to solve the discretized finite volume equations for the various 
fields.  The relaxationFactors subdictionary contains under-relaxation factors to 
improve stability.  The PISO subdictionary controls the PISO algorithm for the 
simultaneous solution of pressure and momentum.  Table 6 also shows which 
regions (domains) use the tabulated settings.  Note that the fvSolution file must 
exist in the system directory, even though it may not need any subdictionaries.

2.12 Outputs

The model writes selected fields to time directories in the case directory, and also 
writes to Standard Out as it proceeds.

2.12.1.1 Time directories

The model produces “time” directories in the case directory, in accordance with 
the settings in the control dictionary (system/controlDict).  For a steady model like 
the cell model, these directory time names (e.g. 50/, 100/, etc.) represent 
iteration count rather than time.  Field IOobjects created with the AUTO_WRITE 
attribute will be written to these time directories.  These include the MUST_READ 
fields present in the 0/ directories, and others, as shown in Table 7.

Table 7.   Output files at times > 0.  
Those marked * are MUST_READ and are thus required at time 0/

<case>/ <case>/air/ <case>/fuel/ physical field

    

  *T
  *k

   *diff
   *p
    phi
    rho
    T
   *U
    xN2
    xO2
   *yN2
   *yO2

   *diff
   *p
    phi
    rho
    T
   *U
    xH2
    xH2O
   *yH2
   *yH2O
    i

mass diffusivity
pressure
velocity flux
density
temperature
velocity
mole fraction
mole fraction
mass fraction
mass fraction
current density
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2.12.2 Run log

The model writes considerable information to Standard Out during each “time 
step”, of the  iteration loop.  Among these are residuals from linear system 
solvers, continuity errors, min, mean, and max of various fields, electrochemical 
information, etc.

2.13 Summary

Assuming you have OpenFOAM version 2.1.x with environment variables set, 
here is all you need to download, compile, and run the sofcFoam cell model.

# obtain the code
cd <myChosenParentDirectory>
svn co http://cfd.icpet.nrc.ca/svn/sofcFoam/trunk/
cd trunk

# compile the model
cd src
./ Allwmake

cd ..    #return to trunk directory

# generate meshes
cd run/<caseDirectory>    #coFlow, counterFlow, crossFlow, ...
make mesh

# run model from the command line with delivered settings
make run

# generate VTK files for final output time
make view
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3. CASE STUDIES

Validation and verification (V&V) of the code is an ongoing activity that leads to 
confidence that the right calculations are being preformed, and that the 
calculations are being performed right. In view of the limited experimental data 
both on fuel cell property values, and on detailed performance results, V&V was 
conducted by comparison of the OpenFOAM output with results from calculations 
with another CFD code, PHOENICS, under similar conditions, and also with 
simple spreadsheets for consistency of output and physical realism. 
Subsequently several different geometries and operating conditions were 
considered in detail.

3.1 IEA geometry

The IEA geometry, Achenbach [14], was developed in the 1990s as a simple 
benchmark problem for code validation at the time. A journal paper on the 
subject has been submitted at the time of writing. In this paper, the present 
authors’ results are compared with those of the original IEA participants together 
with more recent work on the subject [15-17]. It was observed that the Reynolds 
and Péclet numbers for heat and mass transfer were less than unity for the fuel 
phase, and this has important implications on the problem formulation and 
computed results which fuel cell researchers (particularly those employing “black 
box” commercial codes) and non-CFD codes based on rate equation 
formulations need to be aware of. Moreover some of the assumptions and 
simplifications made in  [14], such as the absence of porous diffusion layers, and 
limited chemical kinetics formulation suggest the IEA geometry is of limited use 
as a benchmark in the present day and age, although it is still useful as a first 
“reality check”.

3.2 Taiwan geometry

This geometry is based upon a somewhat idealized version of the Jülich F-
design geometry. It is, however, more complex and physically realistic than the
IEA case, above; the cell being composed of 9 layers: lower interconnect, air 
channel, cathode current collector layer, cathode functional layer, electrolyte, 
anode functional layer, anode substrate layer, fuel channel and top interconnect. 
It is idealized in that the manifolds are absent and the geometry of the design is 
somewhat simplified. This geometry formed the basis for the conference paper 
by Jeon et al. [18] which has now been submitted in a revised form as a journal 
paper [19] with the calculations being redone following a bug fix to the code. This 
journal article represents the first public disclosure of the MUSIC project at the 
cell level in archival form, including reference to the source code. Calculations 
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were performed for the cases of counter-flow, co-flow and cross-flow, and the 
results compared.

3.3 Jülich F-design 

Figure 2. Computer aided design geometry 
used to generate computational grid for 
Jülich F-design

Figure 3. V-i performance curves, from 
ref. [20].

A conference paper with the first results for the Jülich F-design geometry [20]
was presented. This is currently being expanded and improved to journal format.
The F-design for stacks with anode supported cells (ASC) has been in use at 
Jülich since 2003, and significant experimental data is available. Cells are either 
1010 cm2 or 2020 cm2 in size. The number of cells in the stacks tested to-date, 
range from 2 up to 60. Figure 2 shows the CAD geometry used in construction of 
the computational mesh at NRC.

Anode supported cells with either double layer LSM cathodes or high 
performance LSCF cathodes are generally used.  Anode substrate and anode 
functional layers are both fabricated with conventional Nickel and Yttria-stabilised 
Zirconia (Ni/YSZ) cermet. The yttria stabilized zirconia (8YSZ) electrolyte layer is 
around 8 µm in thickness. A Gd-doped Ce-oxide layer is applied on the 
electrolyte prior to depositing the LSCF cathode to prevent the inter-diffusion of 
cathode constituents into the zirconia electrolyte layer.

The interconnect plates, with integrated manifold structures for a counter-flow 
configuration of the reactants, are machined from e.g., Crofer22APU steel. A Ni-
mesh is spot-welded to one side of the interconnect plate, providing a low 
resistance interface with the anode substrate. The Ni-mesh simultaneously acts 
as both a fuel gas distributor over the anode area and also provides electrical 
continuity. On the other side of the interconnect plates, channels are machined in 
the plates to distribute the air over the cathode surface. On the ribs between the 
channels a Mn-oxide layer and a perovskite type (LCC10) oxide layer are 
deposited providing the low resistant interface with the cathode. For sealing, a 
glass-ceramic sealant from the BCAS-system is used. Table 8 lists the stack 
components and details for cells with LSCF cathodes, as used in kW-class, 
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F-design stacks. Material properties are given in Table 9.

Table 8. Components commonly used in F-design stacks
Stack / cell component Material Thickness
Interconnect / cell frame Crofer22APU 2.5 mm
Anode contact layer Ni-mesh 1.2 mm

Cathode contact layer
perovskite type oxide 
(LCC10) 

~ 150 µm

Anode substrate Ni/8YSZ ~ 1500 µm
Anode functional layer Ni/8YSZ ~ 8 µm
Electrolyte 8YSZ ~ 8 µm
Diffusion barrier layer CGO ~ 5 µm
Cathode functional layer LSCF ~ 35 µm

Table 9. Material properties of cell and stack components

Material
Thermal 

conductivity
Specific heat Solid density

W/mK J/kgK kg/m³

Steel Crofer22APU 24 
(at 1073 K)

660 
(at 1073 K)

7900

Ni-mesh 23 540 8800
Anode Ni/8YSZ 3 1000 6950
Electrolyte 8YSZ 2.4 550 6000
Cathode LSCF 3 750 6580

The model is solved on six computational domains which together make up the 
fuel cell.  These are air, fuel, electrolyte, middle plate, and two interconnects.  All 
fields are specific to a domain; for example, air pressure and velocity are solved 
on the air domain, whereas hydrogen mass fraction is solved on the fuel domain.  
Each domain has its own temperature and thermal conductivity fields.  The 
temperature of the whole cell is computed by implicitly coupling temperature and 
thermal conductivities through adjacent boundaries, where it is required that both 
temperature and heat flux are continuous.

The computational domain of the F-design SOFC stack contains 65 parallel air 
channels with a Ni-mesh employed as the fuel distributor on the fuel side. A 
computational grid of over 3.4 million cells was used to tessellate the one-cell 
SOFC stack. The flow configuration is counter-flow. The motion of fuel and air in 
the porous anode and cathode regions are governed by Darcy’s law, which is 
implemented by introducing a distributed resistance as a volumetric source term 
in the momentum equation.  Electrochemical reactions are treated as surface 
reactions occurring at the electrode-electrolyte boundaries.  The resulting 
electrochemical mass fluxes provide boundary conditions for velocity and mass 
fraction on the air and fuel boundaries adjacent to the electrolyte. Gas inlet 
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velocities and temperatures are prescribed, with all other walls (apart from
outlets) presumed adiabatic. Numerical convergence was identified when 
residual errors dropped below a reference tolerance.

Numerical calculations were performed under similar conditions to physical 
experiments, namely, 20.3 A.cmi  with fuel/air utilizations of 15%/20%, inlet 
temperatures of 1023 K/973 K at 1.01325 bar. Figure 3 shows the V-i curve from 
the numerical model compared to that obtained from experiment. It can be seen 
that there is fair agreement between calculated and experimental data, with the 
former a little larger than the latter, especially at higher current density.

Figure 4. Air-side pressure Figure 5. Plate temperature

Figure 6. Air-side streamlines Figure 7. H2 mass fraction

Figure 8. Local current density Figure 9. Nernst potential
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4. DISCUSSION OF RESULTS

4.1 Technical achievements

Working as a multi-disciplinary team with FZJ, FCRC, and Wikki, NRC led the 
development of multi-scale models for SOFCs using the open source software 
OpenFOAM. The technical work for the cell/small stack level model was mainly 
completed at NRC, whereas the micro-scale model was primarily built by FCRC. 
The cell/stack-level model is based on a Nernst potential minus losses 
(overpotentials) algorithm with a complete CFD solution for flow and heat and 
mass transfer. 

Two codes were developed: 
(1) A “cell model” which consists of a parent mesh (for heat transfer) and several 
child meshes (fuel passages) for solving different variables (mass 
fractions,velocities, pressures) and different equations (Navier Stokes, Darcy’s 
law etc.) 
(2) A “conjugate model” where there is no parent mesh, only child meshes, 
obviating mesh decomposition. Avoiding mesh decomposition/splitting  is a good 
idea/goal, but in practice we have to-date been obtaining the region meshes by 
splitting the parent mesh. 

The model may readily be adapted for high temperature PEMs (FCRC are 
already doing this for another research programme)

The SOFC model was readily applied to (a) simple test cases developed at NRC  
(b) IEA benchmark case of Achenbach (c) Jülich simplified geometry, aka, 
Taiwan geometry (d) Jülich Mark F geometry

The model accounts for variable density and specific heat as a function of 
composition and temperature, and different porous regions with effective 
diffusivities. Viscosity and thermal conductivity are however constants.

In addition to the cell-scale model, a micro-model was successfully used to 
compute effective properties for porous media, based on numerically-generated 
packed spheres as well as tomography recontruction (FIB-SEM or X-ray). A 
prototype full two-potential model (for the electric fields) was also developed; and 
is currently being compared with existing Nernst-equation based model. A large-
stack model is currently being worked-on by Nishida, Beale and Pharoah [8].

Three annual contracts (around $15K each) were given to Wikki to provide 
support and assist in program development. Monthly videoconferences, with 
minutes, were held to connect the researchers in Canada and Germany.  The 
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working code and documentation is deposited in Subversion (SVN) repository at 
NRC, and is available for download by would-be users. A major advantage of 
developing MUSIC within OpenFOAM is that our code can be distributed freely to 
partners, clients and stakeholders. That is not true for commercial licensed 
products

4.2 Problems encountered

The grid generation application(s) associated with OpenFOAM are of rather 
limited application compared to commercial GUI-based products. However we 
have successfully built grids for both the full F-design, and complex 3-phase 
micro-scale domains with the OpenFOAM snappyHexMesh code.

The fuel cell code itself does not have a proper GUI-based user interface and this 
would need to be carefully designed. A few bugs caused significant delays in the 
project. Code development was slower than expected. Specifically:

The mesh decomposition script in the conjugate code failed to reassign boundary 
faces on the parent mesh in accordance with the assignment of cells to the child 
meshes. A very long time was taken to identify and fix this problem.

Parallelization has proved to be an ongoing issue which has still not been entirely 
resolved.

Problems arose when different individuals made various changes to the same 
code and then checked them in, destroying other peoples’ work. Fortunately 
because the SVN repository was employed, there was a path back and these 
changes could be reconciled. While irritating, this did not cause a particularly 
long delay. However some protocol for code management, when multiple 
researchers are involved, needs to be established.

Documentation for OpenFOAM is far from extensive, and courses for 
programmers and students are quite expensive.

Although the user/programmer has the source code, this is of little use if he/she 
does not understand the program architecture, and this is difficult due to the 
hierarchical nature of object-oriented code, and inheritance of C++ class objects. 

Future investment in the use of more sophisticated/professional programming 
environments, such as the integrated development environment (IDE) Eclipse
(http://www.eclipse.org/) is possibly warranted. However, it is often difficult to 
pursuade researchers and graduate students to work in a professional software 
engineering environment/mode.

Different groups have modified OpenFOAM; for example Wikki 
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http://www.wikki.co.uk/
(founded by one of the original OpenFOAM code developers) created version 

1.6ext which differs significantly from v1.6 which was developed by OpenCFD. 
These companies are in a constant state-of-evolution and are dependent on 
being able to obtain contracts to survive. Thus software “forks” are inevitable. 

Open software is not free software, rather it is prudent to obtain some sort of 
funding arrangement with one or more of these companies in order to obtain 
timely solutions to problems if and when they arise.

4.3 Suggestions for future work

At present only hydrogen fuel has been considered with binary fuel and oxidant 
mixtures. In order to add, say, methane, or more general arbitrary fuel and 
oxidant combinations, with multiple chemical and multi-step electrochemical
reactions etc., careful planning is required (NB: Work for generalized species is 
in fact in progress, but so far only for a single chemical reaction). The heat 
source terms also need to be split up (at present these only occur in the 
electrolyte).

The next logical step is the development of a community of users for the SOFC 
suite of codes. This could be undertaken by FZJ and/or NRC and/or FCRC in a 
stand-alone mode or under the auspices of an intergovernmental program such 
as the International Energy Agency. An example of an existing special interest 
group is the OpenFOAM working group on turbomachinery.

The development of a high-fidelity experimental data base of both property 
values and performance measures such as polarisation curves and temperature, 
species and local current density distributions is highly desirable.

Expansion of the repository to include multiple fuel cell types (SOFC, HT-
PEMFC, DMFC) at multiple scales (micro, cell, small/large stack) in a manner 
consistent with existing OpenFOAM library cases is important. Mounting of the 
suite on an open source repository such as SourceForge.net would increase 
exposure to the worldwide community. 

The code could further be adapted for application to other electrochemical 
processes and products, such as electrolysers and batteries, in due course.
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5. CONCLUSIONS AND RECOMMENDATIONS

It was shown that the open source CFD code, OpenFOAM, could be successfully 
used to develop mathematical models of hydrogen fuel cells. Initial development 
was at the cell and small stack level, with subsequent focus on micro-scale and 
large stack-type models. The use of open source software obviates expensive 
annual license fees associated with commercial codes, and allows researchers 
complete access-to and control of the underlying models. Commercial CFD 
software products are generally geared towards industrial clients with well-
defined products and processes, readily amenable to standard analysis. Fuel 
cells are an emerging product involving a significant research component for 
which the open source environment allows more control.

The advancement of OpenFOAM as a useful tool for practical applications relies 
on a measure of sponsorship by government agencies and/or academic 
communities, worldwide. It would be advisable for the MUSIC community to 
procure a measure of support from one or more of the OpenFOAM 
development/application houses in order that a well-balanced suite of software 
be maintained. As additional users start to use the MUSIC suite, this will become 
increasingly important. One particular area for concern is mesh generation 
where, at present, there is a deficit of open source codes able to meet the 
demanding requirements required for practical engineering fuel cells. This may 
be mitigated in the future as more users embrace the open source paradigm.

The basic algorithm developed in the small stack/cell model described in this 
report and also the two potential models, section  1.5.3, may readily be adapted 
for HT-PEMFCs. Similarly, micro-scale models [9] would appear to be readily  
applicable with some modification.  Large-scale SOFC stack models may prove 
less amenable for application to PEMFC stacks, if the membrane resistances 
associated with hydration in PEMs show substantial local variation in the through 
plane direction. This is a subject for further research.



53179
34

APPENDIX I: SPECIFYING MESHES FOR A NEW GEOMETRY

Figure A1 shows the proposed geometry we intend to model.  The associated 
dimensions of the components are given in Table A1.  The vertical structure can 
be captured by seven blocks, as shown in Figure A2, (the block containing the 
electrolyte is too thin to be discernible).  The blocks containing the air and fuel 
channels can then be split horizontally to separate the channels from the ribs, the 
latter being part of the interconnects.

Figure A1.  A fuel cell with one air channel and one fuel channel.  Left panel 
shows air (blue) and fuel (purple) inlets, interconnects (grey) and electrode sides.  
Centre panel shows air (blue) and fuel (purple) volume regions, each comprised 
of both a channel and a porous electrode zone.  Right panel shows lower (blue) 
and upper (red) interconnect regions.

Table A1.  Dimensions and extents of the cell components.

interconnect0
air 

channel cathode electrolyte anode
fuel 

channel interconnect1

xlow 0 0 0 0 0 0 0
xhigh 50 50 50 50 50 50 50
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length [mm] 50 50 50 50 50 50 50

ylow 0 1 0 0 0 1 0

yhigh 4 3 4 4 4 3 4
width [mm] 4 2 4 4 4 2 4

zlow 0 3.5 5.00 5.29 5.3 6.3 6.3

zhigh 5 5.0 5.29 5.30 6.3 7.8 11.3

height [mm] 5 1.5 0.29 0.01 1 1.5 5

Figure A2.  Vertical block structure.  Bottom to top: interconnect0, air, cathode, 
electrolyte (too thin to discern), anode, fuel, and interconnect1.

We begin with a blockMeshDict dictionary that will create a parent mesh 
consisting of the seven vertical blocks (Figure A2), which for convenience, going 
from bottom to top, we refer to as interconnect0, air, cathode, electrolyte, anode, 
fuel, and interconnect1.  Although the geometry shows symmetry about the y = 2 
plane, we construct the entire domain for illustrative purposes.  Here is the list of 
points for the blockMeshDict file:  

blockMeshDict
convertToMeters 0.001;

vertices
(
// ... From Bottom To Top
// Interconnect0
    ( 0 0 0)         // 0
    (50 0 0)         // 1
    (50 4 0)         // 2
    ( 0 4 0)         // 3
// Interconnect0_to_Air
    ( 0 0 3.5)       // 4
    (50 0 3.5)       // 5
    (50 4 3.5)       // 6
    ( 0 4 3.5)       // 7
// Air_to_cathode
    ( 0 0 5.0)       // 8
    (50 0 5.0)       // 9
    (50 4 5.0)       //10
    ( 0 4 5.0)       //11
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// cathode_to_Electrolyte
    ( 0 0 5.29)      //12
    (50 0 5.29)      //13
    (50 4 5.29)      //14
    ( 0 4 5.29)      //15
// Electrolyte_to_anode
    ( 0 0 5.3)       //16
    (50 0 5.3)       //17
    (50 4 5.3)       //18
    ( 0 4 5.3)       //19
// anode_to_Fuel
    ( 0 0 6.3)       //20
    (50 0 6.3)       //21
    (50 4 6.3)       //22
    ( 0 4 6.3)       //23
// fuel_to_Interconnect1
    ( 0 0 7.8)       //24
    (50 0 7.8)       //25
    (50 4 7.8)       //26
    ( 0 4 7.8)       //27
// Interconnect1
    ( 0 0 11.3)      //28
    (50 0 11.3)      //29
    (50 4 11.3)      //30
    ( 0 4 11.3)      //31
);

In the vertices section above, each set of four vertices defines a horizontal 
rectangle representing an interface between the above mentioned blocks (and 
including the top and bottom surfaces).  As can be readily seen, the vertices of a 
rectangle are arranged so that a traversal from one to the next takes one 
anticlockwise around the rectangle, starting from x=0.  Note that the coordinates 
are scaled by 0.001 metres, so the maximum x-coordinate, for example, is 50 
mm.  The vertices are numbered by their index in the list, beginning at index 0.  
Figure A3 shows the location of some of these points on the geometry.

Figure A3.  Location on geometry of selected vertices, as numbered by the 
blockMeshDict file.

In the blocks section below, each hexahedral block is defined by two successive 
sets of four vertices, i.e. the corner vertices of the block.  The air block, eg, is 
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defined by:  hex (4 5 6 7 8 9 10 11).  The number of cells in each coordinate direction 
and the grading of the mesh are also prescribed here.

blocks
(
// Interconnect0
    hex (0 1 2 3 4 5 6 7)         (25 8 7) simpleGrading (1 1 1)
// air
    hex (4 5 6 7 8 9 10 11)       (25 8 3) simpleGrading (1 1 1)
// cathode
    hex (8 9 10 11 12 13 14 15)   (25 8 1) simpleGrading (1 1 1)
// electrolyte
    hex (12 13 14 15 16 17 18 19) (25 8 1) simpleGrading (1 1 1)
// anode
    hex (16 17 18 19 20 21 22 23) (25 8 2) simpleGrading (1 1 1)
// fuel
    hex (20 21 22 23 24 25 26 27) (25 8 3) simpleGrading (1 1 1)
// Interconnect1
    hex (24 25 26 27 28 29 30 31) (25 8 7) simpleGrading (1 1 1)
);

We have no need to define any edges.

edges
(
);

A patch consists of one or more outer boundaries of the blocks.  These 
boundaries (rectangles in our case) are described by their corner vertices, 
arranged so that a traversal from one to the next takes one round the rectangle 
anticlockwise about the outward normal.

patches
(
// ... From Bottom to Top
// Interconnect0
    patch interconnect0Bottom
    (
        (0 3 2 1)
    )
    patch interconnect0Sides
    (
        (0 1 5 4)
        (3 7 6 2)
        (0 4 7 3)
        (1 2 6 5)
    )
// Air
    patch airInlet
    (
        (4 8 11 7)
    )
    patch airOutlet
    (
        (5 6 10 9)
    )
    patch airSides
    (
        (4 5 9 8)
        (7 11 10 6)
    )

// Cathode
    patch cathodeSides
    (



53179
38

        (8 9 13 12)
        (11 15 14 10)
        (8 12 15 11)
        (9 10 14 13)
    )

// Electrolyte
    patch electrolyteSides
    (
        (12 13 17 16)
        (15 19 18 14)
        (12 16 19 15)
        (13 14 18 17)
    )

// Anode
    patch anodeSides
    (
        (16 17 21 20)
        (19 23 22 18)
        (16 20 23 19)
        (17 18 22 21)
    )

// Fuel
    patch fuelInlet
    (
        (20 24 27 23)
    )
    patch fuelOutlet
    (
        (21 22 26 25)
    )
    patch fuelSides
    (
        (20 21 25 24)
        (23 27 26 22)
    )

// interconnect1
    patch interconnect1Sides
    (
        (24 28 31 27)
        (25 26 30 29)
        (24 25 29 28)
        (27 31 30 26)
    )
    patch interconnect1Top
    (
        (28 29 30 31)
    )
);

mergePatchPairs
(
);

// ********************************** //

For more description of the blockMeshDict dictionary and the blockMesh utility, 
see section 5.3, Mesh generation with the blockMesh utility, in the OpenFoam 
User Guide, available at http://www.openfoam.org/docs/
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We must now define the cellSets that will make up the cells of our five regions: 
interconnect0, air, electrolyte, fuel and interconnect1.  Using the cellSets, a mesh 
will be generated for each region.  Note that the cathode and anode blocks will 
become porousZones within the air and fuel regions, respectively.  A portion of 
the air block contains two ribs that must become part of the interconnect0 region, 
and similarly two ribs contained in the fuel block must become part of the 
interconnect1 region.  Cells in the electrolyte block will form the electrolyte 
region, and cells in the interconnect blocks will become part of the interconnect 
regions

The cellSets for the regions are specified in config/make.setSet.  Here each cellSet 
is defined by the diagonally opposite corners of a box bounded by coordinate 
planes.  

The first set specified is the cellSet interconnect0.  The specification begins with 
the cells in the interconnect0 block, which consists of all the cells below z=3.5mm 
(note that the coordinates are given in metres).  Then the cells of the ribs are 
added.  One of these extends from y=0 mm to y=1 mm, and the other from y=3 
mm to y=4 mm.  Both extend the full length of 50 mm in x, and in height from 
z=3.5 mm to z=5 mm.  
The specification for the air cellSet begins with the cathode block and adds the 
channel, which extends the full length of 50 mm in x, from y=1 mm to y=3 mm in 
width, and from y=3.5 mm to y=5 mm in height.  The remaining sets are similarly 
specified.

make.setSet
cellSet interconnect0 new boxToCell  (0 0.0e-3 0.0e-3) (50.0e-3 4.0e-3 3.5e-3)
cellSet interconnect0 add boxToCell  (0 0.0e-3 3.5e-3) (50.0e-3 1.0e-3 5.0e-3)
cellSet interconnect0 add boxToCell  (0 3.0e-3 3.5e-3) (50.0e-3 4.0e-3 5.0e-3)

cellSet air new boxToCell (0 0.0e-3 5.0e-3) (50.0e-3 4.0e-3 5.29e-3)
cellSet air add boxToCell (0 1.0e-3 3.5e-3) (50.0e-3 3.0e-3 5.0e-3)

cellSet electrolyte new boxToCell (0 0 5.29e-3) (50.0e-3 4.0e-3 5.3e-3)

cellSet fuel new boxToCell (0 0.0e-3 5.3e-3) (50.0e-3 4.0e-3 6.3e-3)
cellSet fuel add boxToCell (0 1.0e-3 6.3e-3) (50.0e-3 3.0e-3 7.8e-3)

cellSet interconnect1 new boxToCell  (0 0.0e-3 7.8e-3) (50.0e-3 4.0e-3 11.3e-3)
cellSet interconnect1 add boxToCell  (0 0.0e-3 6.3e-3) (50.0e-3 1.0e-3  7.8e-3)
cellSet interconnect1 add boxToCell  (0 3.0e-3 6.3e-3) (50.0e-3 4.0e-3  7.8e-3)

The air and fuel regions are each given a porous zone within the fluid zone, as 
specified in config/make.setAir and config/make.set fuel:

make.setAir
cellSet air new boxToCell (0 0.0e-3 5.0e-3) (50.0e-3 4.0e-3 5.29e-3)
cellSet air add boxToCell (0 1.0e-3 3.5e-3) (50.0e-3 3.0e-3 5.0e-3)

cellSet cathode new boxToCell (0 0 5.0e-3) (40.0e-3 4.0e-3 5.29e-3)

make.setFuel
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cellSet fuel new boxToCell (0 0.0e-3 5.3e-3) (50.0e-3 4.0e-3 6.3e-3)
cellSet fuel add boxToCell (0 1.0e-3 6.3e-3) (50.0e-3 3.0e-3 7.8e-3)

cellSet anode new boxToCell (0 0 5.3e-3) (50.0e-3 4.0e-3 6.3e-3)

Clearly, the fluid inlet and outlet patches on the global mesh are incorrect, since 
their original definitions include faces that are really part ot the interconnect ribs.  
The correction proceeds in three steps.  First, faceSets for all of the existing 
patches of the blockMesh are created using the patchToFace action of the 
faceSet utility, as specified by the config/make.faceSet file:

faceSet interconnect0Sides   new patchToFace interconnect0Sides all
faceSet interconnect0Bottom  new patchToFace interconnect0Bottom all

faceSet interconnect1Sides  new patchToFace interconnect1sides all
faceSet interconnect1Top    new patchToFace interconnect1Top  all

faceSet electrolyteSides  new patchToFace electrolyteSides all

faceSet cathodeSides  new patchToFace cathodeSides all
faceSet airSides      new patchToFace airSides  all
faceSet airInlet      new patchToFace airInlet  all
faceSet airOutlet     new patchToFace airOutlet all

faceSet anodeSides  new patchToFace anodeSides all
faceSet fuelSides   new patchToFace fuelSides  all
faceSet fuelInlet   new patchToFace fuelInlet  all
faceSet fuelOutlet  new patchToFace fuelOutlet all

faceSet interconnect0Sides  add patchToFace airInlet  all
faceSet interconnect0Sides  add patchToFace airOutlet all
faceSet interconnect0Sides  add patchToFace airSides  all

faceSet interconnect1Sides  add patchToFace fuelInlet  all
faceSet interconnect1Sides  add patchToFace fuelOutlet all
faceSet interconnect1Sides  add patchToFace fuelSides  all

faceSet airSides  clear
faceSet airInlet  clear
faceSet airOutlet clear

faceSet fuelSides  clear
faceSet fuelInlet  clear
faceSet fuelOutlet clear

Note that the make.faceset file also specifies some manipulations, adding faceSets 
airInlet, airOutlet, and airSides to the faceSet interconnect0, and similary on the 
fuel side.  After being added, they are subsequently cleared.  Next, the inlet and 
outlet faceSets are corrected using new specifications in config/make.faceAir and 
config/make.faceFuel:

make.faceAir
faceSet airInlet new boxToFace (-1e-6 1.0e-3 3.5e-3) (1e-6 3.0e-3 5.0e-3)

faceSet airOutlet new boxToFace (39.999e-3 1.0e-3 3.5e-3) (40.001e-3 3.0e-3 5.0e-3)

faceSet interconnect0Sides delete faceToFace airInlet all
faceSet interconnect0Sides delete faceToFace airOutlet all
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make.faceFuel
faceSet fuelInlet new boxToFace (-1e-6 1e-3 6.3e-3) (1e-6 3.0e-3 7.8e-3)

faceSet fuelOutlet new boxToFace (39.999e-3 1e-3 6.3e-3) (40.001e-3 3.0e-3 7.8e-3)

faceSet interconnect1Sides delete faceToFace fuelInlet  all
faceSet interconnect1Sides delete faceToFace fuelOutlet all

The new inlet and outlet patches are defined by a bounding box for the new 
patch.  Here the new airInlet, eg, is normal to the x-direction and is bounded by a 
box which is shallow in x, extending 1e-6 m in front of and behind the prescribed 
x-coordinate location.  The lateral extents of the box in the other two directions 
correspond to the lateral extent of the inlet in those directions.  Faces with face 
centre within the box will be selected, so the box must not extend to the adjacent 
grid cell.  The fuelInlet and the two outlets are similarly defined.  The new inlets 
and outlets are then removed from the interconnect faceSets.

Finally, the facesets are used to create new patches using the createPatch utility, 
which is controlled by the system/createPatchDict file.  Here is an excerpt for the 
airInlet patch:

patchInfo
(
    {
        name airInlet;
        // Type of new patch
        dictionary
        {
            type patch;
        }
        constructFrom set;
        patches ();
        set airInlet;
    }
    . . .
);

We will find the following entry (with additional face numbering information) for 
the airInlet in the mesh boundary file.

    airInlet
    {
        type            patch;
    }

The remaining patches are formed in the same way.  The complete patch list is:

interconnect0Bottom
interconnect0Sides
airInlet
airOutlet
cathodeSides
electrolyteSides
anodeSides
fuelInlet
fuelOutlet
interconnect1Sides
interconnect1Top



53179
42

6. REFERENCES

[1] Beale, S. B., Lin, Y., Zhubrin, S. V., and Dong, W., 2003, "Computer Methods 
for Performance Prediction in Fuel Cells," J. Power Sources, 11(1-2), pp. 79-85.
[2] Weller, H. G., Tabor, G., Jasak, H., and Fureby, C., 1998, "A Tensorial 
Approach to Computational Continuum Mechanics Using Object-Oriented 
Techniques," Comput. Phys., 12(6), pp. 620-631.
[3] Pressman, R. S., and Ince, D., 1992, Software Engineering: A Practitioner's 
Approach, McGraw-hill New York.
[4] Hernández-Pacheco, E., and Mann, M., 2004, "The Rational Approximation 
Method in the Prediction of Thermodynamic Properties for Sofcs," J. Power 
Sources, 128(1), pp. 25-33.
[5] Dong, W., Beale, S. B., and Boersma, R. J., "Computational Modelling of 
Solid Oxide Fuel Cells," Proc. Proceedings of the 9th Conference of the CFD 
Society of Canada - CFD 2001, pp. 382-387.
[6] Todd, B., and Young, J., 2002, "Thermodynamic and Transport Properties of 
Gases for Use in Solid Oxide Fuel Cell Modelling," J. Power Sources, 110(1), pp. 
186-200.
[7] Patankar, S. V., and Spalding, D. B., 1974, "A Calculation Procedure for the 
Transient and Steady-State Behavior of Shell-and-Tube Heat Exchangers," Heat 
Exchangers: Design and Theory Sourcebook, N. Afgan, and E. U. Schlünder, 
eds., Scripta Book Company, Washington. D.C., pp. 155-176.
[8] Nishida, R., Beale, S. B., and Pharoah, J. G., "Comparison of Solid-Oxide 
Fuel Cell Stack Performance Using Detailed and Simplified Models," Proc. ASME 

2013 11th Fuel Cell Science, Engineering and Technology Conference.
[9] Choi, H., Berson, A., Pharoah, J., and Beale, S., "Effective Transport 
Properties of the Porous Electrodes in Solid Oxide Fuel Cells," Proceedings of 
the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 
225(2), p. 183.
[10] Kershaw, D. S., 1978, "The Incomplete Cholesky-Conjugate Gradient 
Method for the Iterative Solution of Systems of Linear Equations," Journal of 
Computational Physics, 26(1), pp. 43-65.
[11] Fletcher, R., "Conjugate Gradient Methods for Indefinite Systems, in Numerical Analysis 

" Proc. Numerical Analysis Conference, G. Watson, ed., Springer Verlag,, pp. 73-89.
[12] Van der Vorst, H. A., 1992, "BICGSTAB: A Fast and Smoothly Converging 
Variant of BICG for the Solution of Nonsymmetric Linear Systems," SIAM Journal 
on scientific and statistical computing, 13(2), pp. 631-644.
[13] Beale, S. B., and Zhubrin, S. V., 2005, "A Distributed Resistance Analogy for 
Solid Oxide Fuel Cells," Numer. Heat Transfer B, 47(6), pp. 573-591.
[14] Achenbach, E., 1996, "Iea Programme on R, D&D on Advanced Fuel Cells
Annex II: Modeling and Evaluation of Advanced Solid Oxide Fuel Cells, SOFC 
Stack Modeling," International Energy Agency, Juelich.
[15] Braun, R. J., 2002, "Optimal Design and Operation of Solid Oxide Fuel Cell 



43

Systems for Small-Scale Stationary Applications," PhD PhD, University of 
Wisconsin-Madison, Madison.
[16] Li, M., Powers, J. D., and Brouwer, J., "A Finite Volume SOFC Model for 
Coal-Based Integrated Gasification Fuel Cell Systems Analysis," Journal of Fuel 
Cell Science and Technology, 7, p. 041017.
[17] Colpan, C. O., Hamdullahpur, F., and Dincer, I., 2011, "Transient Heat 
Transfer Modeling of a Solid Oxide Fuel Cell Operating with Humidified 
Hydrogen," International Journal of Hydrogen Energy, 36.
[18] Jeon, D. H., Beale, S. B., Pharaoh, J. G., and Roth, H., "Computational 
Study of Heat and Mass Transfer Issues in Solid Oxide Fuel Cells," Proc. The 
21st International Symposium on Transport Phenomena ISTP-21.
[19] Choi, H. W., Jeon, D. H., Beale, S. B., Pharoah, J. G., and Roth, H., 2013, 
"Computational Study of Heat and Mass Transfer Issues in Solid Oxide Fuel 
Cells," International Journal of Hydrogen Energy, Submitted.
[20] Beale, S. B., Le, A. D., Roth, H. K., Pharaoh, J. G., Choi, H. W., De Haart, L. 
G. J., and Froning, D., 2011, "Numerical and Experimental Analysis of a Solid 
Oxide Fuel Cell Stack C8 - Ecs Transactions," pp. 935-943.


