
https://doi.org/10.4224/21268547

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien

DOI ci-dessous.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Development of an open source software library for solid oxide fuel

cells
Beale, S. B.; Roth, H. K.; Le, A.; Jeon, D. H.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=ab243f2e-c463-4926-b007-486c56cafdd5

https://publications-cnrc.canada.ca/fra/voir/objet/?id=ab243f2e-c463-4926-b007-486c56cafdd5

 National Research Conseil national
 Council Canada de recherches Canada

 Energy, Mining and Énergie, mines
 and Environment et environnement

 Process Engineering and Modeling Génie des procédés et modélisation

Development of an Open Source
Software Library for Solid Oxide Fuel Cells

S.B. Beale, H.K. Roth, A. Le, D.H. Jeon

Technical Report Rapport technique

2013/01
NRCC 53179

UNLIMITED ILLIMITÉE
UNCLASSIFIED NON CLASSIFIÉE

53179
i

EXECUTIVE SUMMARY

This report details the development of a Multi-Scale integrated fuel cell suite of
software developed at NRC and Queens/RMC Fuel Cell Centre in conjunction
with Forschungszentrum Jülich GmbH. Following the history of the project, some
mathematical details of the cell/small stack level models are provided, together
with brief details on other scale models. The model is developed for application to
solid oxide fuel cells, though it may readily be applied to polymer electrolyte fuel
cells. The implementation of the model into the C++ class library, OpenFoam, is
then explained together with details of how to download and run the code from the
repository where it resides. Some examples of practical applications, considered
as validation and verification exercises of the code, together with discussion
highlighting the advantages and disadvantages associated with the open source
implementation, are provided. Finally, general conclusions from the project are
drawn and suggestions for future work are proposed.

53179ii

CONTENTS

Page

DEVELOPMENT OF AN OPEN SOURCE SOFTWARE LIBRARY FOR SOLID
OXIDE FUEL CELLS ...1

1. INTRODUCTION ...1

1.1 Historical Background...1
1.1.1 National Research Council ..1
1.1.2 Forschungszentrum Jülich GmbH ...2
1.1.3 Queen’s-RMC Fuel Cell Research Centre.......................................2
1.1.4 Project meetings..2

1.2 Problem Definition ..3

1.3 Description of Remainder of the Report..3

2. Description of cell and small-stack model..4

2.1 SOFC cell-level model equations ...4
2.1.1 Transport equations...4
2.1.2 Porous media source term ..5
2.1.3 Species source terms ..5
2.1.4 Electrochemistry ..7
2.1.5 Area specific resistance...7
2.1.6 Activation overpotentials..8
2.1.7 Electrolyte heat source..8
2.1.8 Computational algorithm..9

2.2 Multi-scale models ..9
2.2.1 Stack model...9
2.2.2 Micro-scale model ...10
2.2.3 Two-potential model ..10

3. Implementation of model equations in C++ class library..............................11

3.1 Brief description of OpenFOAM code ...11

3.2 ‘Conjugate’ vs ‘cell’ models...11

3.3 Model development ..12

4. Operational details...13

4.1 Introduction...13

4.2 Prerequisites...13
4.2.1 OpenFoam ..13
4.2.2 svn...13

4.3 Obtaining an sofcFoam/ cell-level model ..13

53179
iii

4.4 Directories ..15
4.4.1 trunk/src/..15
4.4.2 trunk/run/ ...15

4.5 Installation ..17
4.5.1 src..17
4.5.2 cases...17

4.6 Running the model ...17

4.7 Mesh files ...18

4.8 Inputs..22

4.9 Outputs ...24
4.9.2 Run log ..25

4.10 Summary ..25

5. Case studies ..26

5.1 IEA geometry..26

5.2 Taiwan geometry ..26

5.3 Jülich F-design ...27

6. Discussion of results..30

6.1 Technical achievements ...30

6.2 Problems encountered..31

6.3 Suggestions for future work..32

7. Conclusions and recommendations...33

APPENDIX i: Specifying meshes for a new geometry ..34

8. References ..42

53179iv

LIST OF FIGURES

Figure 1. Schematic of fuel cell showing component layers..................................5
Figure 2. Computer aided design geometry used to generate computational grid

for Jülich F-design ...27
Figure 3. V-i performance curves, from ref. [19]..27
Figure 4. Air-side pressure..29
Figure 5. Plate temperature ..29
Figure 6. Air-side streamlines ...29
Figure 7. H2 mass fraction...29
Figure 8. Local current density..29
Figure 9. Nernst potential..29

LIST OF TABLES

Table Page

Table 1. svn models..14
Table 2. Input properties and parameters ...20
Table 3. Input initial fields. ..21
Table 4. fvSchemes settings...22
Table 5. fvSolution settings...23
Table 6. Output files at times > 0. ...24
Table 7. Components commonly used in F-design stacks..............................28
Table 8. Material properties of cell and stack components28

1

DEVELOPMENT OF AN OPEN SOURCE SOFTWARE LIBRARY FOR SOLID
OXIDE FUEL CELLS

1. INTRODUCTION

1.1 Historical Background

1.1.1 National Research Council

The National Research Council (NRC) is Canada’s premier federal science and
technology laboratory. Within NRCs Institute for Chemical Process and
Environmental Technology (ICPET), now a unit of the Energy Mining and
Environment (EME) portfolio, fuel cell models have been developed using
computational fluid dynamics (CFD), and other codes and methods, since 1999.
These include solid oxide fuel cell (SOFC) and polymer electrolyte fuel cell
(PEMFC) models.

Originally, models were developed by writing subroutines and functions in-house,
in programming languages such as FORTRAN and C, within large commercial
codes such as PHOENICS and Fluent [1]. Subsequently with the development by
Fluent and others, of their own specialized PEMFC and SOFC codes, the NRC-
developed user-defined functions were abandoned. However, experience in
adapting such “black-box” commercial CFD codes to the complex physico-
chemical hydrodynamics associated with hydrogen fuel cells was mixed. In
addition, because such codes are proprietary, ie. the property of the software
house, it is not possible to share resources among collaborators and partners,
without such third parties purchasing additional licenses at significant cost.

At the same time in-house codes were also developed, in C/C++. These have the
advantage that the authors have complete control over the product, but suffer
from the need for development of suitable interfaces to graphical post-processing
software, such as VTK, and front-end graphical user interfaces (GUI) which can
involve more work and maintenance than the development of the core solver
itself. In addition, the issue of portability, eg between MSWindows and UNIX, is a
matter for concern. Also NRC/ICPET does not have the facilities to provide
software support, in the commercial sense, to partners and stakeholders.

It became apparent that a third way was necessary; one where software
development was restricted to features salient to fuel cell research and
development, but without “reinventing the wheel” in terms of well-established flow
solvers and numerical schemes. The arrival of open source CFD codes in the
workplace proved to be timely, and it was agreed to conduct an experiment in
fuel cell modelling employing the open source CFD code “OpenFoam”, Weller et
al. [2], which is the core activity of this program. In addition to this project,
OpenFoam has replaced commercial CFD code in numerous other projects at

53179
2

NRC/ICPET.

1.1.2 Forschungszentrum Jülich GmbH

Forschungszentrum Jülich GmbH (FZJ) is one of Europe’s largest
interdisciplinary research centres, and generates research in the areas of health,
energy, climate and information technology. The Institute for Energy Research –
Fuel Cells (IEF-3), now including climate (klima) research (IEK-3, Energy
Process Engineering), has been developing fuel cell technology for a number of
decades. It is generally considered to be the leading European laboratory in fuel
cell development. FZJ has been a leading developer of planar SOFCs and is
working on the development of high temperature polymer electrolyte fuel cells
(HT-PEMFCs) and direct methanol fuel cells (DMFCs) . Similar to the NRC
situation, FZJ had been employing commercial codes, but increasingly found the
conventional licensing model to be, not only expensive, but also sub-optimal in
the context of fuel cell R&D, especially for running in parallel on the Jülich
Supercomputing Facility, one of the largest supercomputing facilities in the world.

1.1.3 Queen’s-RMC Fuel Cell Research Centre

Although not formally part of the original project/contract between NRC and FZJ;
faculty members, staff, and students at the Queen’s-RMC Fuel Cell Research
Centre (FCRC) have participated in the project from its earliest stages, and will
continue to do so into the future. The FCRC is Canada's leading university-based
research and development organization in partnership with industry dedicated to
advancing the knowledge base for addressing the key technology challenges to
the commercialisation of fuel cell applications.

1.1.4 Project meetings

Dr. Beale visited IEF-3 Jülich in March 2007 where the idea for a project was
originally conceived. M. Spiller and D. Froning of IEF-3 visited NRC in 6-7
September 2007. Dr. Beale visited Jülich together with Prof. Pharoah and Prof.
Karan in December 2007. A MUSIC workshop was held in the Jülich
Supercomputing Centre in March 2009. In attendance were H. Jasak, H. Rusche
(Wikki Ltd.), S. Beale, H. Roth (NRC), J. Pharoah, H-W Choi, D. Jeon (FCRC), D.
Froning, S. Berns (FZJ). Dr. Beale and Prof. Pharoah visited Jülich and also
Wikki in London 19-21 January 2011. The partners met again in Montreal in May
2011 at the ECS meeting. In addition to face-to-face meetings, video
conferences between the parties have been held on a monthly basis over the
period of the project.

3

1.2 Problem definition

The partners agreed to develop a common framework for fuel cell modelling. The
model was to be for Multi-Scale Integrated Fuel Cells (MUSIC), the ultimate goal
being to develop an integrated suite of software, freely available to fuel cell
researchers at every scale from nano/micro through to cell/stack and hotbox. By
freely sharing the implementation, it is hoped to accelerate technical
improvements in fuel cell modelling and hence fuel cell design, eliminate silos,
and establish a ‘community of users’ who can continually upgrade and enhance
the MUSIC library. At the same time the details of any specific design can be
kept private, thereby obviating any compromise to intellectual property to
individual stakeholders, who may be potential business rivals, in the project.

The authors will maintain versions using configuration management (CM) tools.
The code is to run on PCs, parallel LINUX Beowulf clusters, and eventually
super-computing facilities. The existing software suite, OpenFOAM, was selected
as the platform for the project. Technical support was provided by Wikki Ltd.
(London, UK) under sub-contract to NRC. Adoption of software best practices [3]
from the outset assists in continuity in model development and application.

The details of the sub-component of the work statement specific to the NRC-
Jülich funded interaction as discussed in this report are as follows: NRC staff and
personnel would:

1. Implement a SOFC/HTPEMFC single-cell model in OpenFoam
2. Implement a SOFC/HTPEMFC stack model in OpenFoam
3. Perform simulation for a 3D Jülich fuel cell stack
4. Verify and validate the developed model(s)

Owing to staffing and funding issues at both NRC and FZJ, there were some
variances from the original work statement as further detailed in the report below.

1.3 Description of remainder of the report

This report is mainly centred on the development, application, and
documentation of the cell-level and detailed (cell-based) stack model, in the
context of SOFCs, since this consumed, by far, the majority of the actual time
spent on the project. Chapter 0 gives a description of the cell/small-stack level
model together with a brief description of MUSIC models at other scales.
Chapters 2 and 0 discuss the specific implementation of the model in
OpenFOAM and also provide details for the user interested in downloading and
running the cell-level code for the cases of co-flow, counter-flow, and cross-flow.
The architecture for other MUSIC modules is similar to that provided here at the
cell-level. Chapter 3 discusses some case studies considered as part of the
validation and verification process. Finally, Chapter 4 contains a discussion of
the overall results of the project and Chapter 5 points to some conclusions and

53179
4

suggestions for future work.

Description of cell and small-stack model

1.4 SOFC cell-level model equations

The fuel cell is presumed to be composed of the following volumetric zones: two
interconnects, fuel (channel), passive anode substrate layer (ASL), active anode
function layer (AFL), electrolyte, cathode current collector (CCL), cathode
functional layer (CFL), and air (channel). The reactions in the active layers are
presently being treated as acting on planar interfaces between the volumetric
electrode(s) and the electrolyte.

A binary mixture of oxygen and nitrogen is presumed on the air (cathode) side,
whereas a bindary mixture of hydrogen, and water vapour is presumed on the
anode side.

1.4.1 Transport equations

The equations to be solved are as follows:

 div 0 u (1)

 div grad div gradp Puu u S (2)

 effdiv div gradi iy y u (3)

 effdiv div gradP Pc T k c T S u (4)

5

Figure 1. Schematic of fuel cell showing component layers.

1.4.2 Porous media source term

In the , AFL, CFL, ASL, CCL

Dk

 P

u
S (5)

ie., the state variable is the superficial (not interstitial) velocity.

1.4.3 Species source terms

In the cell model, the electrochemical reactions are presumed to occur at the
interface of the AFL and CFL with the electrolyte. This shortcoming will be

removed in future versions. The source terms are thus per unit area ''im (kg/m2s)

(for H2, H2O and O2) and related to current density, "i (A/m2), according to
Faraday’s law. The mass source/sink terms are given by,

"
''i

Mi
m

F

 (6)

where M = 2, 18 and 32 [kg/kmol] for H2, H2O, O2 and = 2, 2, 4 [electrons
transferred per molecule] respectively.

53179
6

The species source terms per unit area, ''S , are prescribed as follows:

Air-side (cathode):

O2 mass sink

2O

32
''

4

i
m

F

 (7)

O2 species sink:

2 2O O'' " 1S m y (8)

N2 species source:

22 NO "'' ymS (9)

Fuel-side (anode):

2H

2
''

2

i
m

F
 (10)

H2 species sink due to H2 consumption

2 2H H'' " 1S m y (11)

H2O species source due to H2 consumption

OHH 22
"'' ymS (12)

H2O mass source

2H O

18
''

2

i
m

F

 (13)

H2O species source due to H2O production

2 2H O H O'' " 1S m y (14)

H2 species sink due to H2O production

2 2H O H" "S m y (15)

7

1.4.4 Electrochemistry

If the current density is considered variable, the cell voltage, V, may be
expressed as,

caRiEV (16)

where a and c are anodic and cathodic overpotentials, and R is the area
specific resistance(m2).

The Nernst potential, E, is obtained as

a
p

p

F

RT

x

xx

F

RT
EE

0OH

0.5
OH

0 ln
4

ln
2

2

22 (17)

Where 0 a
p p is the ratio of the air-side pressure to the (air) pressure at which

E0 is evaluated., and,

0
0

G
E

nF

 (18)

where 0G is the reference Gibb’s free energy. From Hernández-Pacheco and

Mann [4], the following expression is obtained.

 0

247340 54.85

2

T
E T

F

 (19)

1.4.5 Area specific resistance

Initially a semi-empirical correlation by Ghosh et al., see [5], was used to
compute R in units of ohm cm2.

2 3 40.3044 0.408 0.8687 2.7861 2.9285R r r r r (20)

where

1463.1
1000

T

r (21)

with T in degrees C. Other ASR correlations were subsequently coded based on
(proprietary) formulations provided by FZJ, and others. These may, or may not,
include an implicit contribution due to activation overpotentials being excluded
explicitly from Eq. (16).

53179
8

1.4.6 Activation overpotentials

The overpotentials are obtained implicitly during the iterative procedure by
means of the well-known Butler-Volmer equations at both the anode and the
cathode,

 RTnFRTnFii 1expexp"" 0 (22)

with "0i and being prescribed at both the anode and the cathode. At present it

is presumed 0"0 i , and these terms are excluded, with the activation terms

being incorporated via the ASR, above. However when comparing with the two-
potential model (below) values of are computed, for a given local current
density, "i , based on values of 0i and from the literature. Theoretically, these

are applied at both the anode and the cathode, though in practice the anodic
activation overpotential may be considered as being negligibly small.

1.4.7 Electrolyte heat source

The total volumetric heat source (W/m3) in the electrolyte is presumed to be the
difference between the total heat and that consumed in the load, as follows,

2

H
S i V

F

 (23)

At present this source is presumed to occur entirely within the electrolyte. The
enthalpy of the reaction is computed as follows;

2 2 2 2

0 0 0

0 H O ,H O ,H ,O

1
,

2

T T T

p p p

T T T

H H c dT c dT c dT (24)

The specific heats are presently evaluated using the polynomial expressions
given in Todd and Young [6]. It is, however, desirable to break the heat-source
terms down as follows and treal the electrolyte, electrodes, and interconnects
individually. The entropy is computed as,

2 2 2

2

0 0 0

,H O ,H ,O

0 H O

1
,

2

T T T
p p p

T T T

c c c
S S dT dT dT

T T T
 (25)

9

In the active electrode regions, all 3 terms may be present, whereas in the
electrolyte and interconnects, and passive electrode regions, only the Ohmic
terms are active.

1.4.8 Computational algorithm

We can prescribe the load resistance, the operating voltage or the required
current. For the case of prescribed cell voltage, V, (potentiostatic boundary
condition) the procedure then is as follows:

1. Initial field values are prescribed
2. The transport equations for fluid flow, mass fraction and temperature field are
solved
3. The Nernst potential is computed based on the molar fractions using Eq. (17).
4. The cell resistance is computed as a function of temperature.
5. The local current density is obtained from Eq. (16)
6. The mass sources/sinks in the species balance are computed from Faraday’s
law, Eq. (6).
7. The source term for ohmic heating is computed using Eq. (23)

Steps 2-6 are repeated.

For the case of prescribed mean current density, ''i , (galvanostatic boundary
condition) an additional pair of steps is required, namely

7. Compute the mean current density, '*'i
8. Correct the voltage according to

 ˆ '' ''*V R i i (26)

Where, in the spirit of the C/C++ programming language, “+=”means that the
value of the expression on the right is added to the value of V (which is the value
of the voltage at the end of the previous iterative cycle) to obtain the new,

updated, value of V. R̂ is a relaxation constant, nominally equal to the average
resistance (though the precise value is not particularly important). This
constitutes the basic model.

1.5 Multi-scale models

1.5.1 Stack model

Stack models may be divided into two essential classes: (1) detailed cell-level
models which are simultaneously applied to multiple cells with manifolds and (2)

53179
10

models which involve volume-averaging of the governing equations. The
theoretical basis for the volume-averaged models based on a distributed
resistance analogy [7] in the context of fuel cells was described in the paper by
Beale and Zhubrin [1]. Both approaches are currently being compared by a
FCRC MSc student, and we shall report on the results of those studies in Nishida
et al. [8].

1.5.2 Micro-scale model

Cell models require effective thermal and diffusion coefficients, Eqs. (3)-(4), and
other empirical parameters such as hydraulic permeability, Eq. (5). Effective
electrical conductivities may also be required depending on the model. It is
frequently difficult or impossible to obtain these by the performance of physical
experiments; rather a numerical experiment must suffice. For this reason micro-
scale models were developed and applied at FCRC. The paper by Choi et al. [9]
contains first results of the application of OpenFoam in that context. The code
architecture of the micro-scale model has been deliberately set out to be similar
to the form of the cell model.

In addition, a FCRC MSc student, is developing a detailed electrochemical model
whereby the reaction at the triple phase boundary (TPB) is computed along the
locus of the space curve of intersection of the one gas and two solid phases
corresponding to the reaction sites in the electrodes. This work is ongoing.

1.5.3 Two-potential model

At a scale between the TPB work, above, and the cell-level model are so-called
two potential models. Popular in low temperature PEM codes, these typically
involve the solution for electronic and ionic potentials according to Poisson
equations, coupled via the source terms, which in turn are obtained as Butler-
Volmer or equivalent type equations. A full two-potential model has been
developed at NRC and is currently being compared with the basic cell model.
The code structure of this model is similar in style to the cell model.

11

2. IMPLEMENTATION OF MODEL EQUATIONS IN C++ CLASS LIBRARY

2.1 Brief description of OpenFOAM code

The object-oriented open source software suite OpenFOAM version 1.6-ext was
selected as the development platform for the multi-physics and multi-scale
calculation. The set of governing equations is solved by using a finite-volume
method written in the object-oriented C++ programming language. The numerical
model was implemented for steady-state. A useful feature of OpenFOAM is the
provision of a full set of implicit finite volume discretisation operators and
associated linear system solver classes, allowing transparent representation of
partial differential equations in the code. This provides a set of operators that
allows equation mimicking in the code. For example Eqn. (4) is implemented in
OpenFOAM as follows:

solve
 (
 fvm::div(rhoCpPhiCell, Tcell)
 - fvm::laplacian(kCell, Tcell)
 ==
 TsourceCell
);

So the actual code bears a marked similarity to the partial differential equations,
integrated over finite volumes. The selection of linear solvers and their
parameters are chosen at run time. For the calculations reported here, symmetric
linear systems were solved using conjugate gradient with incomplete Cholesky
pre-conditioning (ICCG) [10] and asymmetric systems using bi-conjugate
gradient schemes, BiCG, Bi-CGSTAB [11, 12].

2.2 Domain decomposition issues - ‘Conjugate’ and ‘cell’ models

A feature of the OpenFOAM code is that it does not permit internal boundary
conditions; since, by definition, boundaries are at the surface of the geometrical
domain. This creates problems in fuel cell modelling where sources/sinks of
mass, momentum, species, and energy are present internally, eg at the
electrodes, the implication being that it is not possible to work with a single mesh
encompassing the entire region, both fluid and solid, as is the case with some
other CFD codes, such as PHOENICS.

Therefore, in the course of the project: two distinct solutions to the domain

53179
12

decomposition problem were explored: In the original “cell” model proposed and
developed initially at Wikki, and modified substantially at NRC, the temperature
field (only) was solved on a ‘parent’ mesh. For each of the fluid zones (both open
channels and porous media), individual ‘child’ meshes were also constructed.
The child meshes had no knowledge of each other, i.e., the solutions in each
domain were essentially independent. No child meshes were constructed for the
solid regions (interconnects, electrolyte) since only T is solved in these regions.
As part of the solution procedure, individual fields for u etc. were mapped from
the child meshes up to the parent mesh on a volumetric basis, and similarly T
was mapped back from the parent mesh to the child mesh.

In the “conjugate” model there is no parent mesh, rather a complete set of child
meshes need be constructed for all of the sub-domains, both fluid and solid.
These must all connect together in a conservative fashion to encompass the
entire domain of the cell/stack. In this approach the temperature field at the
internal field is coupled internally.

Both approaches have their advantages and drawbacks. In reality the main
differences in the two methods of domain decomposition lie in the internal
structure of the code and do not significantly impact on the end user. Some time
was spent in obtaining near-identical results for the two different approaches. In
Chapter 0, operational details are provided for the cell (not the conjugate) model,
though in practice differences are rather minor.

2.3 Code evolution and development

A ‘bottom-up’ approach to the software design/development process was
adopted. The first version of the code was developed on behalf of NRC, who
provided detailed specifications of the geometry and equations-to-be solved by
engineers at Wikki (U.K.) Ltd. A highly simplified, planar geometry for all regions
(fuel/air/electrolyte/interconnect) [13] with no ribs, lands, or porous zones was
adopted with constant properties assumed throughout. This was done to achieve
“proof-of-concept” of the Nernst formulation which requires obtaining values from
different spatial zones, and allowed for model validation to be expedited using
known results from previous CFD codes (Fluent, PHOENICS) under similar
geometric and operating conditions. All heat sources, regardless of origin or
location, were presumed to happen in the electrolyte region. Electrodes were
treated as being thin plates.

Subsequently NRC and FCRC personnel added substantial physical realism;
both in terms of the geometry corresponding to more realistic fuel cell designs,
and also incorporating variable density and specific heat as a function of
composition and temperature, and different porous regions with ‘effective’

13

diffusivities based on both theoretical formulations and sub-scale numerical
calculations using both CFD and Monte Carlo methods.

Operational details

2.4 Introduction

This chapter describes how to obtain and use the “cell” model. Computationally,
the model is a multiple-region model that solves for region-specific fields on their
specific region. In a preprocessing step, meshes are generated for the fuel cell
as a whole and also for each of the interconnect, air, fuel, and electrolyte
volumetric zones described in Section 2. The active and passive anode and
cathode zones are treated as porous zones within the fuel and air regions,
respectively.

Each mesh, or computational domain, supports its own fields. Pressure,
momentum and species mass fractions, for example, are solved on the air and
fuel domains. Temperature is solved on the global domain. Global and regional
information is transferred back and forth via grid cell mappings that are
established during mesh generation/splitting.

2.5 Prerequisites

2.5.1 OpenFoam

A working installation of OpenFoam (OF) is required. A number of versions are
possible, including OF 1.7.x through OF 2.1.1, available from
http://www.openfoam.org/download/ , and OF 1.6-ext, available from the
OpenFoam Extend project at http://www.extend-project.de/ . Download
instructions are available on the sites.

Some experience running OpenFoam applications, as might be obtained from
OpenFoam tutorials, will be helpful.

2.5.2 svn

The sofcFoam cell model code is maintained in a Subversion
(http://subversion.apache.org/) version control system repository at
http://cfd.icpet.nrc.ca/svn/sofcFoam/trunk/ . The Subversion command line client
tool is svn. Graphical tools are also available, e.g. RapidSVN, SmartSVN.

2.6 Obtaining an sofcFoam cell-level model

There are some minor differences in the official OpenFoam-2.1.x and the Extend

53179
14

project’s OpenFoam-1.6-ext vis-à-vis the cell model, such that code which
compiles under the one version will fail compilation under the other. Separate
codes are available in the repository. Historically, the cell model code was
developed first in OF-1.6-ext and later ported to OF-2.1.1, at revision number
263. The “conjugate” model code’s energy solver is available only in OF-1.6-ext.
Table 1 shows the various models at approximately equivalent stages.

 Table 1. svn models
OF-
ver

svn location revision
#

OF-
2.1.x

http://cfd.icpet.nrc.ca/svn/sofcFoam/trunk/ 265

OF-
1.6-
ext

http://cfd.icpet.nrc.ca/svn/sofcFoam/branches/cell/ 262

OF-
1.6-
ext

http://cfd.icpet.nrc.ca/svn/sofcFoam/branches/conjugateCell/ 245

Revisions later than those shown in the table introduced run-time selection of
species, first in sofcFoam/branches/conjugateCell and then in sofcFoam/trunk. There
is no further development planned for sofcFoam/branches/cell.

The latest version of the sofcFoam cell model can be downloaded from
http://cfd.icpet.nrc.ca/svn/sofcFoam/trunk. Using the svn command line tool, one
simply types

 svn co http://cfd.icpet.nrc.ca/svn/sofcFoam/trunk

at the prompt.

For a specific revision number, one modifies the above command as

 svn co –r <n> http://cfd.icpet.nrc.ca/svn/sofcFoam/trunk/

where <n> is the desired revision number, eg 265. The check-out delivers the
directory structure shown in Figure 2(a) to the current working directory. Note
that some of the file details change after the introduction of run-time selection of
species. For those details, see the document gettingStarted_Cell268_OF21x.pdf
at http://cfd.icpet.nrc.ca/svn/sofcFoam/trunk/docs/ .

15

2.7 Directories

From Figure 2(a), the left panel of Figure 2, we see that the trunk/ directory has
two main subdirectories, run/ and src/. The run/ directory contains examples of
cases that can be simulated with the cell model, while the src/ directory contains
the model source code. We examine both of these more closely, beginning with
the src/ directory.

2.7.1 trunk/src/

The src/ directory contains the major subdirectories libSrc/ and appSrc/. In libSrc/,
we find C++ classes that have been specifically developed or modified for
sofcFoam and are used in the cell model. The appSrc/ directory contains the cell
model source files, which instantiate objects from both libSrc/ and OpenFoam/src

as needed, to implement the cell model algorithm. As is typical for OpenFoam
applications, the cell model application is built by including blocks of code (*.H
files) into a main program (*.C file).

2.7.2 trunk/run/

The run directory contains case directories, or cases. The cases coFlow,
counterFlow, and crossFlow exercise the model on co-flow, counter-flow, and
cross-flow configurations, respectively. The case quickTest is similar to the
coFlow case, but reduced from twelve to three channels. In each configuration,
the fuel velocity is in the +x direction, while the air velocity is in the direction of
+x, -x, and +y for co-flow, counter-flow and cross-flow, respectively.

Like any other OpenFoam case directory, the three cases here contain major
subdirectories 0/, constant/, and system/. With only a single mesh, these 0/,
constant/ and system/ directories would be populated by files only, but with
multiple meshes they have a subdirectory for each region, and the files for each
domain are placed in the appropriate directory or subdirectory. Thus initial global
temperature T is found in 0/T, initial air velocity U in 0/air/U, initial fuel pressure p
in 0/fuel/p, etc. Similarly, global cell properties are found in constant/cellProperties,
whereas air properties are found in constant/air/airProperties. See Figure 2(b) for
more complete listings.

53179
16

trunk/
 run/
 coFlow/
 0/
 air/
 fuel/
 system/
 air/
 electrolyte/
 fuel/
 interconnect0/
 interconnect1/
 config/
 constant/
 polyMesh/
 air/
 electrolyte/
 fuel/
 interconnect0/
 interconnect1/
 counterFlow/
 <...like coFlow...>
 crossFlow/
 <...like coFlow...>
 quickTest/
 <...like coFlow...>
 src/

 appSrc/
 Make/
 libSrc/
 continuityErrs/
 smearPatchToMesh/
 diffusivityModels/
 diffusivityModel/
 fixedDiffusivity/
 fsgDiffusionVolumes/
 fsgMolecularWeights/
 binaryFSG/
 knudsen/
 porousFSG/
 Make/

(a)

0/
 T
 air/
 p
 U
 yN2
 yO2
 fuel/
 p
 U
 yH2
 yH2O
config/
 make.faceAir
 make.faceFuel
 make.faceSet
 make.setAir
 make.setFuel
 make.setSet
constant/
 cellProperties
 air/
 porousZones
 airProperties
 electrolyte/
 electrolyteProperties
 fuel/
 porousZones
 fuelProperties
 interconnect0/
 interconnectProperties
 interconnect1/
 interconnectProperties
 polyMesh/
 blockMeshDict
system/
 controlDict.mesh
 controlDict.run
 controlDict
 fvSchemes
 fvSolution
 decomposeParDict
 createPatchDict
 air/
 fvSchemes
 fvSolution
 fuel/
 fvSchemes
 fvSolution
 electrolyte/
 fvSchemes
 fvSolution
 interconnect0/
 fvSchemes
 fvSolution
 interconnect1/
 fvSchemes
 fvSolution
Allclean
Makefile
(b)

Figure 2. (a), left panel, directory structure from svn check out. (b), right panel,
files in a case directory after checkout and before meshing.

17

2.8 Installation

In your chosen parent directory for the sofcFoam cell model, e.g. your
OpenFoam work space $WM_PROJECT_USER_DIR/applications/, check out the
trunk/ directory from the Subversion repository. This creates directory trunk in the
current working directory.

2.8.1 src

To compile the library and application source code, go to trunk/src/ directory and
run the Allwmake script. This should generate shared object library
libsofcFoam.so in the $FOAM_USER_LIBBIN directory and application executable
sofcFoam in the $FOAM_USER_APPBIN directory. A lnInclude/ directory,
containing links to all of the libsSrc class files, will appear in the libSrc/ directory.

2.8.2 cases

As can be seen in Figure 2(b), a case directory contains only one polyMesh/
directory immediately after checkout, and it contains only the dictionary file
blockMeshDict. This dictionary, together with the setSet batch command files in
the <case>/config/ directory, describes the global and regional meshes. After the
global mesh is made by the OpenFOAM utility blockMesh, the utility
splitMeshRegions generates the required regional meshes and map files. For
more information on the blockMesh, setSet, and setsToZones utilities, see
Chapter 5 “Mesh generation and conversion” and Section 3.6 “Standard utilities”
in the OpenFOAM User Guide (http://www.openfoam.com/docs/user/).

Making the global and regional meshes is handled in sofcFoam/cell by the
Makefile in the case directory. See, for example, run/coFlow/Makefile. The
command

 make mesh

will generate the global mesh and the region meshes. During model execution,
various material property and other field values will be mapped from the region
meshes to the global mesh. Cells that began life labeled as a fluid in the global
mesh may have become a solid, and some of these may have boundary faces on
the original fluid inlet or outlet patches. Accordingly, the fluid inlet and outlet
patches may need to be redefined for the new reality. The redefinitions are
specified by the make.face[Air|Fuel|Set] files in the config directory. See Appendix
A for a description of the steps required to specify a new geometry.

2.9 Running the model

With the application already compiled, the command

 make run

53179
18

will run the executable from the command line, using the available case data.
The model can also be run by typing the executable name, and the output
directed to Standard Out can be redirected to a file:

 sofcFoam | tee log.run

Instead of running the model from the command line, a runscript is available to
submit a job to a queue. The script usage line may need editing for your queuing
system.

After the model has run to completion, VTK files for visualization, e.g. with
paraview, can be prepared easily using the Makefile. Typing

 make view

will generate VTK files for the last output step, whereas

 make viewAll

will generate VTK files for all output directories.

2.10 Mesh files

Before making the meshes the only mesh file is constant/polyMesh/blockMeshDict.
Making the meshes introduces new directories and files as shown in Table 2 In
addition to the standard boundary, faces, neighbour, owner and points files, each
domain has a cellZones and a faceZones file. The original polyMesh directory,
constant/polyMesh/, has a pointZones file and a sets/ subdirectory containing
cellSet information for each subregion and faceSet information for each patch.
The regional polyMesh/ directories contain faceZones and cellZones, as well as
addressing files relating their domains to the global domain. The fluid regions,
i.e., air and fuel, also have a sets/ subdirectory, which contains cellSet
information for their entire region and for their porous zones.

19

Table 2. Mesh files. Left: new files in constant, constant/polyMesh/ and
constant/polyMesh/sets after generating the meshes. Centre: files from meshing
in the new constant/<fluid>/polyMesh/ directories, for fluids air and fuel, with
additional file details for constant/air/polyMesh/sets/ and
constant/fuel/polyMesh/sets/ subdirectories. Right: files from meshing in the new
constant/<solid>/polyMesh/ directories, for solids electrolyte, interconnect0, and
interconnect1.

Constant constant/<fluid>/polyMesh constant/<solid>/polyMesh

 cellToRegion boundary boundary

constant/polyMesh/ boundaryRegionAddressing boundaryRegionAddressing

 blockMeshDict cellRegionAddressing cellRegionAddressing

 Boundary cellZones cellZones

 cellZones faceRegionAddressing faceRegionAddressing

 Faces faces faces

 faceZones faceZones faceZones

 neighbour neighbour neighbour

 Owner owner owner

 Points pointRegionAddressing pointRegionAddressing

 sets/ points points

 aflSides sets/

 air

 airInlet constant/air/polyMesh/sets

 airOutlet air

 airSides cathode

 anodeSides cfl

 cathodeSides

 cflSides constant/fuel/polyMesh/sets

 electrolyte afl

 fuel anode

 fuelInlet fuel

 fuelOutlet

 fuelSides

 electrolyteSides

 interconnect0

 interconnect1

 interconnectBottom

 interconnectBottomSides

 interconnectTop

 interconnectTopSides

53179
20

Table 3. Input properties and parameters

file constant/cellProperties

Parameter Remarks

anodePatch fuel mesh patch name for the fuel/electrolyte interface

cathodePatch air mesh patch name for the air/electrolyte interface

electrolyteAnodePatch electrolyte mesh patch name for the electrolyte/fuel
interface

electrolyteCathodePatch electrolyte mesh patch name for the electrolyte/air
interface

voltage initial value for voltage

ibar0 prescribed mean current density

Rhat voltage correction relaxation coefficient

Tinit initial internalField temperature for regional
temperature fields

file constant/air/airProperties

parameter remarks

Rho air mixture density

Mu air molecular viscosity

Cp air isobaric heat capacity

K air thermal conductivity

diffusivity subdictionary for diffusivity model*

file constant/fuel/fuelProperties

 same as for air properties, but for fuel

file constant/air/porousZones

parameter remarks

-- zone name e.g. cathode
coordinateSystem not required for geometry aligned with Cartesian

coordinate axes

porosity porosity value

Cp zone isobaric heat capacity

K zone thermal conductivity

Darcy Darcy-Forchheimer subdictionary

diffusivity diffusivity model subdictionary*

-- repeat for successive
zones

file constant/fuel/porousZones

 same as for air porousZones, but for fuel

file constant/electrolyte/electrolyteProperties

parameter remarks

21

rho electrolyte density

Cp electrolyte isobaric heat capacity

k electrolyte thermal conductivity

Hsrc initial heat source value

file constant/interconnect0/interconnectProperties

parameter remarks

rho interconnect density

Cp interconnect isobaric heat capacity

k interconnect thermal conductivity

file constant/interconnect1/interconnectProperties

 same as for interconnect0, but for interconnect1

* Diffusivity models and their dictionaries are described in Roth (2010)

Table 4. Input initial fields.

file physical field remarks

0/T cell temperature May be changed to suit operating conditions

0/k cell conductivity Inlet values = 0 prevents outward diffusion at inlets

0/air/p air pressure internalField and outlet boundaries at atmospheric
pressure
other patches zeroGradient or equivalent

0/air/U air velocity internalField 0 (or initialized to inlet value); inlet
specified; outlet zeroGradient; cathodePatch type
must allow code to set value (e.g. fixedValue)

0/air/yN2 mass fraction N2 internalField initialized to inlet value
cathodePatch must be type fixedGradient

0/air/yO2 mass fraction O2 as for yN2

0/air/diff gas diffusivity Inlet value = 0 prevents outward diffusion at inlet

0/fuel/p fuel pressure internalField and outlet boundaries at atmospheric
pressure
other patches zeroGradient or equivalent

0/fuel/U fuel velocity internalField 0 (or initialized to inlet value); inlet
specified; outlet zeroGradient; anodePatch type
must allow code to set value (e.g. fixedValue)

0/fuel/yH2 mass fraction H2 internalField initialized to inlet value
anodePatch must be type fixedGradient

0/fuel/yH2O mass fraction H2O as for yH2

0/fuel/diff gas diffusivity Inlet value = 0 prevents outward diffusion at inlet

53179
22

2.11 Inputs

Runtime inputs to the model are supplied in dictionaries in the case directory.
Among these are the mesh files and mesh mapping files generated during mesh
generation, as discussed above. Tables 3 and 4 show the remaining fields and
parameters that must be specified. The specifications supplied for the example
coFlow/, counterFlow/, and crossFlow/ cases can be viewed in their respective case
files, as indicated by Table 3. Physical dimensions of all inputs are specified in
the appropriate files as required by the OpenFOAM software. They are omitted in
Tables 3 and 4.

Numerical Schemes are specified at runtime by fvSchemes files in the system
directories (system, system/air, etc). The fvSchemes dictionary contains a number
of subdictionaries which must be defined for the code to run. In Table 5 we list
the fvSchemes used by the model and the regions in which the listed schemes
are applicable.

Table 5. fvSchemes settings

operator scheme applicable region(s)

ddtSchemes

 default steadyState; all

gradSchemes

 default Gauss linear; all

 grad(p) Gauss linear; air*, fuel**

divSchemes

 default none; all

 div(rhoCpPhi,T) Gauss upwind; cell***

 div(phi,U) Gauss GammaV 0.2; air, fuel

 div(phi,y) Gauss upwind; air, fuel

laplacianSchemes

 default none; all

 laplacian(k,T) Gauss harmonic corrected; cell

 laplacian(mu,U) Gauss harmonic corrected; air, fuel

 laplacian((rho|A(U)),p) Gauss linear corrected; air, fuel

 laplacian(diff,y) Gauss harmonic corrected; air, fuel

interpolationSchemes

 default harmonic; cell

 default linear; fluid, solid regions

 interpolate(T) harmonic; air, fuel

23

snGradSchemes

 default corrected; all

fluxRequired

 default no; all

 p air, fuel

*constant/air/fvSchemes **constant/fuel/fvSchemes ***constant/fvSchemes

Solver and other algorithmic controls and tolerances are supplied by the
fvSolution dictionary files in the system directories, as shown in Table 6.

Table 6. fvSolution settings

solvers dictionary

Field solver parameters region(s)

T PBiCG preconditioner DILU;
tolerance 1e-10;
relTol 0.0;
maxIter 5000;

cell

p PCG preconditioner DIC;
tolerance 1e-09;
relTol 0;
maxIter 700;

air, fuel

U PBiCG preconditioner DILU;
tolerance 1e-09;
relTol 0;
maxIter 700;

air, fuel

yO2
yN2
yH2

yH2O

PBiCG preconditioner DILU;
tolerance 1e-09;
relTol 0.0;

maxIter 700;

PISO dictionary air, fuel

parameter value

nIteration
nCorrectors
nNonOrthogonalCorrectors
pRefCell
pRefValue

0
2
0
0
0

relaxationFactors dictionary

field value

p
U

yO2air

0.3
0.7

0.5

air, fuel
air, fuel

air

53179
24

yN2air
yH2fuel
yH2Ofuel

0.5
0.1
0.5

air
fuel
fuel

Table 6 shows three subdictionaries in the fvSolution files: solvers, PISO, and
relaxationFactors. In the solvers subdictionary, we find the settings for the linear
solvers chosen to solve the discretized finite volume equations for the various
fields. The relaxationFactors subdictionary contains under-relaxation factors to
improve stability. The PISO subdictionary controls the PISO algorithm for the
simultaneous solution of pressure and momentum. Table 6 also shows which
regions (domains) use the tabulated settings. Note that the fvSolution file must
exist in the system directory, even though it may not need any subdictionaries.

2.12 Outputs

The model writes selected fields to time directories in the case directory, and also
writes to Standard Out as it proceeds.

2.12.1.1 Time directories

The model produces “time” directories in the case directory, in accordance with
the settings in the control dictionary (system/controlDict). For a steady model like
the cell model, these directory time names (e.g. 50/, 100/, etc.) represent
iteration count rather than time. Field IOobjects created with the AUTO_WRITE
attribute will be written to these time directories. These include the MUST_READ
fields present in the 0/ directories, and others, as shown in Table 7.

Table 7. Output files at times > 0.
Those marked * are MUST_READ and are thus required at time 0/

<case>/ <case>/air/ <case>/fuel/ physical field

 *T
 *k

 *diff
 *p
 phi
 rho
 T
 *U
 xN2
 xO2
 *yN2
 *yO2

 *diff
 *p
 phi
 rho
 T
 *U
 xH2
 xH2O
 *yH2
 *yH2O
 i

mass diffusivity
pressure
velocity flux
density
temperature
velocity
mole fraction
mole fraction
mass fraction
mass fraction
current density

25

2.12.2 Run log

The model writes considerable information to Standard Out during each “time
step”, of the iteration loop. Among these are residuals from linear system
solvers, continuity errors, min, mean, and max of various fields, electrochemical
information, etc.

2.13 Summary

Assuming you have OpenFOAM version 2.1.x with environment variables set,
here is all you need to download, compile, and run the sofcFoam cell model.

obtain the code
cd <myChosenParentDirectory>
svn co http://cfd.icpet.nrc.ca/svn/sofcFoam/trunk/
cd trunk

compile the model
cd src
./ Allwmake

cd .. #return to trunk directory

generate meshes
cd run/<caseDirectory> #coFlow, counterFlow, crossFlow, ...
make mesh

run model from the command line with delivered settings
make run

generate VTK files for final output time
make view

53179
26

3. CASE STUDIES

Validation and verification (V&V) of the code is an ongoing activity that leads to
confidence that the right calculations are being preformed, and that the
calculations are being performed right. In view of the limited experimental data
both on fuel cell property values, and on detailed performance results, V&V was
conducted by comparison of the OpenFOAM output with results from calculations
with another CFD code, PHOENICS, under similar conditions, and also with
simple spreadsheets for consistency of output and physical realism.
Subsequently several different geometries and operating conditions were
considered in detail.

3.1 IEA geometry

The IEA geometry, Achenbach [14], was developed in the 1990s as a simple
benchmark problem for code validation at the time. A journal paper on the
subject has been submitted at the time of writing. In this paper, the present
authors’ results are compared with those of the original IEA participants together
with more recent work on the subject [15-17]. It was observed that the Reynolds
and Péclet numbers for heat and mass transfer were less than unity for the fuel
phase, and this has important implications on the problem formulation and
computed results which fuel cell researchers (particularly those employing “black
box” commercial codes) and non-CFD codes based on rate equation
formulations need to be aware of. Moreover some of the assumptions and
simplifications made in [14], such as the absence of porous diffusion layers, and
limited chemical kinetics formulation suggest the IEA geometry is of limited use
as a benchmark in the present day and age, although it is still useful as a first
“reality check”.

3.2 Taiwan geometry

This geometry is based upon a somewhat idealized version of the Jülich F-
design geometry. It is, however, more complex and physically realistic than the
IEA case, above; the cell being composed of 9 layers: lower interconnect, air
channel, cathode current collector layer, cathode functional layer, electrolyte,
anode functional layer, anode substrate layer, fuel channel and top interconnect.
It is idealized in that the manifolds are absent and the geometry of the design is
somewhat simplified. This geometry formed the basis for the conference paper
by Jeon et al. [18] which has now been submitted in a revised form as a journal
paper [19] with the calculations being redone following a bug fix to the code. This
journal article represents the first public disclosure of the MUSIC project at the
cell level in archival form, including reference to the source code. Calculations

27

were performed for the cases of counter-flow, co-flow and cross-flow, and the
results compared.

3.3 Jülich F-design

Figure 2. Computer aided design geometry
used to generate computational grid for
Jülich F-design

Figure 3. V-i performance curves, from
ref. [20].

A conference paper with the first results for the Jülich F-design geometry [20]
was presented. This is currently being expanded and improved to journal format.
The F-design for stacks with anode supported cells (ASC) has been in use at
Jülich since 2003, and significant experimental data is available. Cells are either
1010 cm2 or 2020 cm2 in size. The number of cells in the stacks tested to-date,
range from 2 up to 60. Figure 2 shows the CAD geometry used in construction of
the computational mesh at NRC.

Anode supported cells with either double layer LSM cathodes or high
performance LSCF cathodes are generally used. Anode substrate and anode
functional layers are both fabricated with conventional Nickel and Yttria-stabilised
Zirconia (Ni/YSZ) cermet. The yttria stabilized zirconia (8YSZ) electrolyte layer is
around 8 µm in thickness. A Gd-doped Ce-oxide layer is applied on the
electrolyte prior to depositing the LSCF cathode to prevent the inter-diffusion of
cathode constituents into the zirconia electrolyte layer.

The interconnect plates, with integrated manifold structures for a counter-flow
configuration of the reactants, are machined from e.g., Crofer22APU steel. A Ni-
mesh is spot-welded to one side of the interconnect plate, providing a low
resistance interface with the anode substrate. The Ni-mesh simultaneously acts
as both a fuel gas distributor over the anode area and also provides electrical
continuity. On the other side of the interconnect plates, channels are machined in
the plates to distribute the air over the cathode surface. On the ribs between the
channels a Mn-oxide layer and a perovskite type (LCC10) oxide layer are
deposited providing the low resistant interface with the cathode. For sealing, a
glass-ceramic sealant from the BCAS-system is used. Table 8 lists the stack
components and details for cells with LSCF cathodes, as used in kW-class,

Current density (A.cm
-2

)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

C
e

ll
vo

lta
g

e
 (

V
)

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Experimental data

Numerical simulation

53179
28

F-design stacks. Material properties are given in Table 9.

Table 8. Components commonly used in F-design stacks
Stack / cell component Material Thickness
Interconnect / cell frame Crofer22APU 2.5 mm
Anode contact layer Ni-mesh 1.2 mm

Cathode contact layer
perovskite type oxide
(LCC10)

~ 150 µm

Anode substrate Ni/8YSZ ~ 1500 µm
Anode functional layer Ni/8YSZ ~ 8 µm
Electrolyte 8YSZ ~ 8 µm
Diffusion barrier layer CGO ~ 5 µm
Cathode functional layer LSCF ~ 35 µm

Table 9. Material properties of cell and stack components

Material
Thermal

conductivity
Specific heat Solid density

W/mK J/kgK kg/m³

Steel Crofer22APU 24
(at 1073 K)

660
(at 1073 K)

7900

Ni-mesh 23 540 8800
Anode Ni/8YSZ 3 1000 6950
Electrolyte 8YSZ 2.4 550 6000
Cathode LSCF 3 750 6580

The model is solved on six computational domains which together make up the
fuel cell. These are air, fuel, electrolyte, middle plate, and two interconnects. All
fields are specific to a domain; for example, air pressure and velocity are solved
on the air domain, whereas hydrogen mass fraction is solved on the fuel domain.
Each domain has its own temperature and thermal conductivity fields. The
temperature of the whole cell is computed by implicitly coupling temperature and
thermal conductivities through adjacent boundaries, where it is required that both
temperature and heat flux are continuous.

The computational domain of the F-design SOFC stack contains 65 parallel air
channels with a Ni-mesh employed as the fuel distributor on the fuel side. A
computational grid of over 3.4 million cells was used to tessellate the one-cell
SOFC stack. The flow configuration is counter-flow. The motion of fuel and air in
the porous anode and cathode regions are governed by Darcy’s law, which is
implemented by introducing a distributed resistance as a volumetric source term
in the momentum equation. Electrochemical reactions are treated as surface
reactions occurring at the electrode-electrolyte boundaries. The resulting
electrochemical mass fluxes provide boundary conditions for velocity and mass
fraction on the air and fuel boundaries adjacent to the electrolyte. Gas inlet

29

velocities and temperatures are prescribed, with all other walls (apart from
outlets) presumed adiabatic. Numerical convergence was identified when
residual errors dropped below a reference tolerance.

Numerical calculations were performed under similar conditions to physical
experiments, namely, 20.3 A.cmi with fuel/air utilizations of 15%/20%, inlet
temperatures of 1023 K/973 K at 1.01325 bar. Figure 3 shows the V-i curve from
the numerical model compared to that obtained from experiment. It can be seen
that there is fair agreement between calculated and experimental data, with the
former a little larger than the latter, especially at higher current density.

Figure 4. Air-side pressure Figure 5. Plate temperature

Figure 6. Air-side streamlines Figure 7. H2 mass fraction

Figure 8. Local current density Figure 9. Nernst potential

53179
30

4. DISCUSSION OF RESULTS

4.1 Technical achievements

Working as a multi-disciplinary team with FZJ, FCRC, and Wikki, NRC led the
development of multi-scale models for SOFCs using the open source software
OpenFOAM. The technical work for the cell/small stack level model was mainly
completed at NRC, whereas the micro-scale model was primarily built by FCRC.
The cell/stack-level model is based on a Nernst potential minus losses
(overpotentials) algorithm with a complete CFD solution for flow and heat and
mass transfer.

Two codes were developed:
(1) A “cell model” which consists of a parent mesh (for heat transfer) and several
child meshes (fuel passages) for solving different variables (mass
fractions,velocities, pressures) and different equations (Navier Stokes, Darcy’s
law etc.)
(2) A “conjugate model” where there is no parent mesh, only child meshes,
obviating mesh decomposition. Avoiding mesh decomposition/splitting is a good
idea/goal, but in practice we have to-date been obtaining the region meshes by
splitting the parent mesh.

The model may readily be adapted for high temperature PEMs (FCRC are
already doing this for another research programme)

The SOFC model was readily applied to (a) simple test cases developed at NRC
(b) IEA benchmark case of Achenbach (c) Jülich simplified geometry, aka,
Taiwan geometry (d) Jülich Mark F geometry

The model accounts for variable density and specific heat as a function of
composition and temperature, and different porous regions with effective
diffusivities. Viscosity and thermal conductivity are however constants.

In addition to the cell-scale model, a micro-model was successfully used to
compute effective properties for porous media, based on numerically-generated
packed spheres as well as tomography recontruction (FIB-SEM or X-ray). A
prototype full two-potential model (for the electric fields) was also developed; and
is currently being compared with existing Nernst-equation based model. A large-
stack model is currently being worked-on by Nishida, Beale and Pharoah [8].

Three annual contracts (around $15K each) were given to Wikki to provide
support and assist in program development. Monthly videoconferences, with
minutes, were held to connect the researchers in Canada and Germany. The

31

working code and documentation is deposited in Subversion (SVN) repository at
NRC, and is available for download by would-be users. A major advantage of
developing MUSIC within OpenFOAM is that our code can be distributed freely to
partners, clients and stakeholders. That is not true for commercial licensed
products

4.2 Problems encountered

The grid generation application(s) associated with OpenFOAM are of rather
limited application compared to commercial GUI-based products. However we
have successfully built grids for both the full F-design, and complex 3-phase
micro-scale domains with the OpenFOAM snappyHexMesh code.

The fuel cell code itself does not have a proper GUI-based user interface and this
would need to be carefully designed. A few bugs caused significant delays in the
project. Code development was slower than expected. Specifically:

The mesh decomposition script in the conjugate code failed to reassign boundary
faces on the parent mesh in accordance with the assignment of cells to the child
meshes. A very long time was taken to identify and fix this problem.

Parallelization has proved to be an ongoing issue which has still not been entirely
resolved.

Problems arose when different individuals made various changes to the same
code and then checked them in, destroying other peoples’ work. Fortunately
because the SVN repository was employed, there was a path back and these
changes could be reconciled. While irritating, this did not cause a particularly
long delay. However some protocol for code management, when multiple
researchers are involved, needs to be established.

Documentation for OpenFOAM is far from extensive, and courses for
programmers and students are quite expensive.

Although the user/programmer has the source code, this is of little use if he/she
does not understand the program architecture, and this is difficult due to the
hierarchical nature of object-oriented code, and inheritance of C++ class objects.

Future investment in the use of more sophisticated/professional programming
environments, such as the integrated development environment (IDE) Eclipse
(http://www.eclipse.org/) is possibly warranted. However, it is often difficult to
pursuade researchers and graduate students to work in a professional software
engineering environment/mode.

Different groups have modified OpenFOAM; for example Wikki

53179
32

http://www.wikki.co.uk/
(founded by one of the original OpenFOAM code developers) created version

1.6ext which differs significantly from v1.6 which was developed by OpenCFD.
These companies are in a constant state-of-evolution and are dependent on
being able to obtain contracts to survive. Thus software “forks” are inevitable.

Open software is not free software, rather it is prudent to obtain some sort of
funding arrangement with one or more of these companies in order to obtain
timely solutions to problems if and when they arise.

4.3 Suggestions for future work

At present only hydrogen fuel has been considered with binary fuel and oxidant
mixtures. In order to add, say, methane, or more general arbitrary fuel and
oxidant combinations, with multiple chemical and multi-step electrochemical
reactions etc., careful planning is required (NB: Work for generalized species is
in fact in progress, but so far only for a single chemical reaction). The heat
source terms also need to be split up (at present these only occur in the
electrolyte).

The next logical step is the development of a community of users for the SOFC
suite of codes. This could be undertaken by FZJ and/or NRC and/or FCRC in a
stand-alone mode or under the auspices of an intergovernmental program such
as the International Energy Agency. An example of an existing special interest
group is the OpenFOAM working group on turbomachinery.

The development of a high-fidelity experimental data base of both property
values and performance measures such as polarisation curves and temperature,
species and local current density distributions is highly desirable.

Expansion of the repository to include multiple fuel cell types (SOFC, HT-
PEMFC, DMFC) at multiple scales (micro, cell, small/large stack) in a manner
consistent with existing OpenFOAM library cases is important. Mounting of the
suite on an open source repository such as SourceForge.net would increase
exposure to the worldwide community.

The code could further be adapted for application to other electrochemical
processes and products, such as electrolysers and batteries, in due course.

33

5. CONCLUSIONS AND RECOMMENDATIONS

It was shown that the open source CFD code, OpenFOAM, could be successfully
used to develop mathematical models of hydrogen fuel cells. Initial development
was at the cell and small stack level, with subsequent focus on micro-scale and
large stack-type models. The use of open source software obviates expensive
annual license fees associated with commercial codes, and allows researchers
complete access-to and control of the underlying models. Commercial CFD
software products are generally geared towards industrial clients with well-
defined products and processes, readily amenable to standard analysis. Fuel
cells are an emerging product involving a significant research component for
which the open source environment allows more control.

The advancement of OpenFOAM as a useful tool for practical applications relies
on a measure of sponsorship by government agencies and/or academic
communities, worldwide. It would be advisable for the MUSIC community to
procure a measure of support from one or more of the OpenFOAM
development/application houses in order that a well-balanced suite of software
be maintained. As additional users start to use the MUSIC suite, this will become
increasingly important. One particular area for concern is mesh generation
where, at present, there is a deficit of open source codes able to meet the
demanding requirements required for practical engineering fuel cells. This may
be mitigated in the future as more users embrace the open source paradigm.

The basic algorithm developed in the small stack/cell model described in this
report and also the two potential models, section 1.5.3, may readily be adapted
for HT-PEMFCs. Similarly, micro-scale models [9] would appear to be readily
applicable with some modification. Large-scale SOFC stack models may prove
less amenable for application to PEMFC stacks, if the membrane resistances
associated with hydration in PEMs show substantial local variation in the through
plane direction. This is a subject for further research.

53179
34

APPENDIX I: SPECIFYING MESHES FOR A NEW GEOMETRY

Figure A1 shows the proposed geometry we intend to model. The associated
dimensions of the components are given in Table A1. The vertical structure can
be captured by seven blocks, as shown in Figure A2, (the block containing the
electrolyte is too thin to be discernible). The blocks containing the air and fuel
channels can then be split horizontally to separate the channels from the ribs, the
latter being part of the interconnects.

Figure A1. A fuel cell with one air channel and one fuel channel. Left panel
shows air (blue) and fuel (purple) inlets, interconnects (grey) and electrode sides.
Centre panel shows air (blue) and fuel (purple) volume regions, each comprised
of both a channel and a porous electrode zone. Right panel shows lower (blue)
and upper (red) interconnect regions.

Table A1. Dimensions and extents of the cell components.

interconnect0
air

channel cathode electrolyte anode
fuel

channel interconnect1

xlow 0 0 0 0 0 0 0
xhigh 50 50 50 50 50 50 50

35

length [mm] 50 50 50 50 50 50 50

ylow 0 1 0 0 0 1 0

yhigh 4 3 4 4 4 3 4
width [mm] 4 2 4 4 4 2 4

zlow 0 3.5 5.00 5.29 5.3 6.3 6.3

zhigh 5 5.0 5.29 5.30 6.3 7.8 11.3

height [mm] 5 1.5 0.29 0.01 1 1.5 5

Figure A2. Vertical block structure. Bottom to top: interconnect0, air, cathode,
electrolyte (too thin to discern), anode, fuel, and interconnect1.

We begin with a blockMeshDict dictionary that will create a parent mesh
consisting of the seven vertical blocks (Figure A2), which for convenience, going
from bottom to top, we refer to as interconnect0, air, cathode, electrolyte, anode,
fuel, and interconnect1. Although the geometry shows symmetry about the y = 2
plane, we construct the entire domain for illustrative purposes. Here is the list of
points for the blockMeshDict file:

blockMeshDict
convertToMeters 0.001;

vertices
(
// ... From Bottom To Top
// Interconnect0
 (0 0 0) // 0
 (50 0 0) // 1
 (50 4 0) // 2
 (0 4 0) // 3
// Interconnect0_to_Air
 (0 0 3.5) // 4
 (50 0 3.5) // 5
 (50 4 3.5) // 6
 (0 4 3.5) // 7
// Air_to_cathode
 (0 0 5.0) // 8
 (50 0 5.0) // 9
 (50 4 5.0) //10
 (0 4 5.0) //11

53179
36

// cathode_to_Electrolyte
 (0 0 5.29) //12
 (50 0 5.29) //13
 (50 4 5.29) //14
 (0 4 5.29) //15
// Electrolyte_to_anode
 (0 0 5.3) //16
 (50 0 5.3) //17
 (50 4 5.3) //18
 (0 4 5.3) //19
// anode_to_Fuel
 (0 0 6.3) //20
 (50 0 6.3) //21
 (50 4 6.3) //22
 (0 4 6.3) //23
// fuel_to_Interconnect1
 (0 0 7.8) //24
 (50 0 7.8) //25
 (50 4 7.8) //26
 (0 4 7.8) //27
// Interconnect1
 (0 0 11.3) //28
 (50 0 11.3) //29
 (50 4 11.3) //30
 (0 4 11.3) //31
);

In the vertices section above, each set of four vertices defines a horizontal
rectangle representing an interface between the above mentioned blocks (and
including the top and bottom surfaces). As can be readily seen, the vertices of a
rectangle are arranged so that a traversal from one to the next takes one
anticlockwise around the rectangle, starting from x=0. Note that the coordinates
are scaled by 0.001 metres, so the maximum x-coordinate, for example, is 50
mm. The vertices are numbered by their index in the list, beginning at index 0.
Figure A3 shows the location of some of these points on the geometry.

Figure A3. Location on geometry of selected vertices, as numbered by the
blockMeshDict file.

In the blocks section below, each hexahedral block is defined by two successive
sets of four vertices, i.e. the corner vertices of the block. The air block, eg, is

37

defined by: hex (4 5 6 7 8 9 10 11). The number of cells in each coordinate direction
and the grading of the mesh are also prescribed here.

blocks
(
// Interconnect0
 hex (0 1 2 3 4 5 6 7) (25 8 7) simpleGrading (1 1 1)
// air
 hex (4 5 6 7 8 9 10 11) (25 8 3) simpleGrading (1 1 1)
// cathode
 hex (8 9 10 11 12 13 14 15) (25 8 1) simpleGrading (1 1 1)
// electrolyte
 hex (12 13 14 15 16 17 18 19) (25 8 1) simpleGrading (1 1 1)
// anode
 hex (16 17 18 19 20 21 22 23) (25 8 2) simpleGrading (1 1 1)
// fuel
 hex (20 21 22 23 24 25 26 27) (25 8 3) simpleGrading (1 1 1)
// Interconnect1
 hex (24 25 26 27 28 29 30 31) (25 8 7) simpleGrading (1 1 1)
);

We have no need to define any edges.

edges
(
);

A patch consists of one or more outer boundaries of the blocks. These
boundaries (rectangles in our case) are described by their corner vertices,
arranged so that a traversal from one to the next takes one round the rectangle
anticlockwise about the outward normal.

patches
(
// ... From Bottom to Top
// Interconnect0
 patch interconnect0Bottom
 (
 (0 3 2 1)
)
 patch interconnect0Sides
 (
 (0 1 5 4)
 (3 7 6 2)
 (0 4 7 3)
 (1 2 6 5)
)
// Air
 patch airInlet
 (
 (4 8 11 7)
)
 patch airOutlet
 (
 (5 6 10 9)
)
 patch airSides
 (
 (4 5 9 8)
 (7 11 10 6)
)

// Cathode
 patch cathodeSides
 (

53179
38

 (8 9 13 12)
 (11 15 14 10)
 (8 12 15 11)
 (9 10 14 13)
)

// Electrolyte
 patch electrolyteSides
 (
 (12 13 17 16)
 (15 19 18 14)
 (12 16 19 15)
 (13 14 18 17)
)

// Anode
 patch anodeSides
 (
 (16 17 21 20)
 (19 23 22 18)
 (16 20 23 19)
 (17 18 22 21)
)

// Fuel
 patch fuelInlet
 (
 (20 24 27 23)
)
 patch fuelOutlet
 (
 (21 22 26 25)
)
 patch fuelSides
 (
 (20 21 25 24)
 (23 27 26 22)
)

// interconnect1
 patch interconnect1Sides
 (
 (24 28 31 27)
 (25 26 30 29)
 (24 25 29 28)
 (27 31 30 26)
)
 patch interconnect1Top
 (
 (28 29 30 31)
)
);

mergePatchPairs
(
);

// ********************************** //

For more description of the blockMeshDict dictionary and the blockMesh utility,
see section 5.3, Mesh generation with the blockMesh utility, in the OpenFoam
User Guide, available at http://www.openfoam.org/docs/

39

We must now define the cellSets that will make up the cells of our five regions:
interconnect0, air, electrolyte, fuel and interconnect1. Using the cellSets, a mesh
will be generated for each region. Note that the cathode and anode blocks will
become porousZones within the air and fuel regions, respectively. A portion of
the air block contains two ribs that must become part of the interconnect0 region,
and similarly two ribs contained in the fuel block must become part of the
interconnect1 region. Cells in the electrolyte block will form the electrolyte
region, and cells in the interconnect blocks will become part of the interconnect
regions

The cellSets for the regions are specified in config/make.setSet. Here each cellSet
is defined by the diagonally opposite corners of a box bounded by coordinate
planes.

The first set specified is the cellSet interconnect0. The specification begins with
the cells in the interconnect0 block, which consists of all the cells below z=3.5mm
(note that the coordinates are given in metres). Then the cells of the ribs are
added. One of these extends from y=0 mm to y=1 mm, and the other from y=3
mm to y=4 mm. Both extend the full length of 50 mm in x, and in height from
z=3.5 mm to z=5 mm.
The specification for the air cellSet begins with the cathode block and adds the
channel, which extends the full length of 50 mm in x, from y=1 mm to y=3 mm in
width, and from y=3.5 mm to y=5 mm in height. The remaining sets are similarly
specified.

make.setSet
cellSet interconnect0 new boxToCell (0 0.0e-3 0.0e-3) (50.0e-3 4.0e-3 3.5e-3)
cellSet interconnect0 add boxToCell (0 0.0e-3 3.5e-3) (50.0e-3 1.0e-3 5.0e-3)
cellSet interconnect0 add boxToCell (0 3.0e-3 3.5e-3) (50.0e-3 4.0e-3 5.0e-3)

cellSet air new boxToCell (0 0.0e-3 5.0e-3) (50.0e-3 4.0e-3 5.29e-3)
cellSet air add boxToCell (0 1.0e-3 3.5e-3) (50.0e-3 3.0e-3 5.0e-3)

cellSet electrolyte new boxToCell (0 0 5.29e-3) (50.0e-3 4.0e-3 5.3e-3)

cellSet fuel new boxToCell (0 0.0e-3 5.3e-3) (50.0e-3 4.0e-3 6.3e-3)
cellSet fuel add boxToCell (0 1.0e-3 6.3e-3) (50.0e-3 3.0e-3 7.8e-3)

cellSet interconnect1 new boxToCell (0 0.0e-3 7.8e-3) (50.0e-3 4.0e-3 11.3e-3)
cellSet interconnect1 add boxToCell (0 0.0e-3 6.3e-3) (50.0e-3 1.0e-3 7.8e-3)
cellSet interconnect1 add boxToCell (0 3.0e-3 6.3e-3) (50.0e-3 4.0e-3 7.8e-3)

The air and fuel regions are each given a porous zone within the fluid zone, as
specified in config/make.setAir and config/make.set fuel:

make.setAir
cellSet air new boxToCell (0 0.0e-3 5.0e-3) (50.0e-3 4.0e-3 5.29e-3)
cellSet air add boxToCell (0 1.0e-3 3.5e-3) (50.0e-3 3.0e-3 5.0e-3)

cellSet cathode new boxToCell (0 0 5.0e-3) (40.0e-3 4.0e-3 5.29e-3)

make.setFuel

53179
40

cellSet fuel new boxToCell (0 0.0e-3 5.3e-3) (50.0e-3 4.0e-3 6.3e-3)
cellSet fuel add boxToCell (0 1.0e-3 6.3e-3) (50.0e-3 3.0e-3 7.8e-3)

cellSet anode new boxToCell (0 0 5.3e-3) (50.0e-3 4.0e-3 6.3e-3)

Clearly, the fluid inlet and outlet patches on the global mesh are incorrect, since
their original definitions include faces that are really part ot the interconnect ribs.
The correction proceeds in three steps. First, faceSets for all of the existing
patches of the blockMesh are created using the patchToFace action of the
faceSet utility, as specified by the config/make.faceSet file:

faceSet interconnect0Sides new patchToFace interconnect0Sides all
faceSet interconnect0Bottom new patchToFace interconnect0Bottom all

faceSet interconnect1Sides new patchToFace interconnect1sides all
faceSet interconnect1Top new patchToFace interconnect1Top all

faceSet electrolyteSides new patchToFace electrolyteSides all

faceSet cathodeSides new patchToFace cathodeSides all
faceSet airSides new patchToFace airSides all
faceSet airInlet new patchToFace airInlet all
faceSet airOutlet new patchToFace airOutlet all

faceSet anodeSides new patchToFace anodeSides all
faceSet fuelSides new patchToFace fuelSides all
faceSet fuelInlet new patchToFace fuelInlet all
faceSet fuelOutlet new patchToFace fuelOutlet all

faceSet interconnect0Sides add patchToFace airInlet all
faceSet interconnect0Sides add patchToFace airOutlet all
faceSet interconnect0Sides add patchToFace airSides all

faceSet interconnect1Sides add patchToFace fuelInlet all
faceSet interconnect1Sides add patchToFace fuelOutlet all
faceSet interconnect1Sides add patchToFace fuelSides all

faceSet airSides clear
faceSet airInlet clear
faceSet airOutlet clear

faceSet fuelSides clear
faceSet fuelInlet clear
faceSet fuelOutlet clear

Note that the make.faceset file also specifies some manipulations, adding faceSets
airInlet, airOutlet, and airSides to the faceSet interconnect0, and similary on the
fuel side. After being added, they are subsequently cleared. Next, the inlet and
outlet faceSets are corrected using new specifications in config/make.faceAir and
config/make.faceFuel:

make.faceAir
faceSet airInlet new boxToFace (-1e-6 1.0e-3 3.5e-3) (1e-6 3.0e-3 5.0e-3)

faceSet airOutlet new boxToFace (39.999e-3 1.0e-3 3.5e-3) (40.001e-3 3.0e-3 5.0e-3)

faceSet interconnect0Sides delete faceToFace airInlet all
faceSet interconnect0Sides delete faceToFace airOutlet all

41

make.faceFuel
faceSet fuelInlet new boxToFace (-1e-6 1e-3 6.3e-3) (1e-6 3.0e-3 7.8e-3)

faceSet fuelOutlet new boxToFace (39.999e-3 1e-3 6.3e-3) (40.001e-3 3.0e-3 7.8e-3)

faceSet interconnect1Sides delete faceToFace fuelInlet all
faceSet interconnect1Sides delete faceToFace fuelOutlet all

The new inlet and outlet patches are defined by a bounding box for the new
patch. Here the new airInlet, eg, is normal to the x-direction and is bounded by a
box which is shallow in x, extending 1e-6 m in front of and behind the prescribed
x-coordinate location. The lateral extents of the box in the other two directions
correspond to the lateral extent of the inlet in those directions. Faces with face
centre within the box will be selected, so the box must not extend to the adjacent
grid cell. The fuelInlet and the two outlets are similarly defined. The new inlets
and outlets are then removed from the interconnect faceSets.

Finally, the facesets are used to create new patches using the createPatch utility,
which is controlled by the system/createPatchDict file. Here is an excerpt for the
airInlet patch:

patchInfo
(
 {
 name airInlet;
 // Type of new patch
 dictionary
 {
 type patch;
 }
 constructFrom set;
 patches ();
 set airInlet;
 }
 . . .
);

We will find the following entry (with additional face numbering information) for
the airInlet in the mesh boundary file.

 airInlet
 {
 type patch;
 }

The remaining patches are formed in the same way. The complete patch list is:

interconnect0Bottom
interconnect0Sides
airInlet
airOutlet
cathodeSides
electrolyteSides
anodeSides
fuelInlet
fuelOutlet
interconnect1Sides
interconnect1Top

53179
42

6. REFERENCES

[1] Beale, S. B., Lin, Y., Zhubrin, S. V., and Dong, W., 2003, "Computer Methods
for Performance Prediction in Fuel Cells," J. Power Sources, 11(1-2), pp. 79-85.
[2] Weller, H. G., Tabor, G., Jasak, H., and Fureby, C., 1998, "A Tensorial
Approach to Computational Continuum Mechanics Using Object-Oriented
Techniques," Comput. Phys., 12(6), pp. 620-631.
[3] Pressman, R. S., and Ince, D., 1992, Software Engineering: A Practitioner's
Approach, McGraw-hill New York.
[4] Hernández-Pacheco, E., and Mann, M., 2004, "The Rational Approximation
Method in the Prediction of Thermodynamic Properties for Sofcs," J. Power
Sources, 128(1), pp. 25-33.
[5] Dong, W., Beale, S. B., and Boersma, R. J., "Computational Modelling of
Solid Oxide Fuel Cells," Proc. Proceedings of the 9th Conference of the CFD
Society of Canada - CFD 2001, pp. 382-387.
[6] Todd, B., and Young, J., 2002, "Thermodynamic and Transport Properties of
Gases for Use in Solid Oxide Fuel Cell Modelling," J. Power Sources, 110(1), pp.
186-200.
[7] Patankar, S. V., and Spalding, D. B., 1974, "A Calculation Procedure for the
Transient and Steady-State Behavior of Shell-and-Tube Heat Exchangers," Heat
Exchangers: Design and Theory Sourcebook, N. Afgan, and E. U. Schlünder,
eds., Scripta Book Company, Washington. D.C., pp. 155-176.
[8] Nishida, R., Beale, S. B., and Pharoah, J. G., "Comparison of Solid-Oxide
Fuel Cell Stack Performance Using Detailed and Simplified Models," Proc. ASME

2013 11th Fuel Cell Science, Engineering and Technology Conference.
[9] Choi, H., Berson, A., Pharoah, J., and Beale, S., "Effective Transport
Properties of the Porous Electrodes in Solid Oxide Fuel Cells," Proceedings of
the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
225(2), p. 183.
[10] Kershaw, D. S., 1978, "The Incomplete Cholesky-Conjugate Gradient
Method for the Iterative Solution of Systems of Linear Equations," Journal of
Computational Physics, 26(1), pp. 43-65.
[11] Fletcher, R., "Conjugate Gradient Methods for Indefinite Systems, in Numerical Analysis

" Proc. Numerical Analysis Conference, G. Watson, ed., Springer Verlag,, pp. 73-89.
[12] Van der Vorst, H. A., 1992, "BICGSTAB: A Fast and Smoothly Converging
Variant of BICG for the Solution of Nonsymmetric Linear Systems," SIAM Journal
on scientific and statistical computing, 13(2), pp. 631-644.
[13] Beale, S. B., and Zhubrin, S. V., 2005, "A Distributed Resistance Analogy for
Solid Oxide Fuel Cells," Numer. Heat Transfer B, 47(6), pp. 573-591.
[14] Achenbach, E., 1996, "Iea Programme on R, D&D on Advanced Fuel Cells
Annex II: Modeling and Evaluation of Advanced Solid Oxide Fuel Cells, SOFC
Stack Modeling," International Energy Agency, Juelich.
[15] Braun, R. J., 2002, "Optimal Design and Operation of Solid Oxide Fuel Cell

43

Systems for Small-Scale Stationary Applications," PhD PhD, University of
Wisconsin-Madison, Madison.
[16] Li, M., Powers, J. D., and Brouwer, J., "A Finite Volume SOFC Model for
Coal-Based Integrated Gasification Fuel Cell Systems Analysis," Journal of Fuel
Cell Science and Technology, 7, p. 041017.
[17] Colpan, C. O., Hamdullahpur, F., and Dincer, I., 2011, "Transient Heat
Transfer Modeling of a Solid Oxide Fuel Cell Operating with Humidified
Hydrogen," International Journal of Hydrogen Energy, 36.
[18] Jeon, D. H., Beale, S. B., Pharaoh, J. G., and Roth, H., "Computational
Study of Heat and Mass Transfer Issues in Solid Oxide Fuel Cells," Proc. The
21st International Symposium on Transport Phenomena ISTP-21.
[19] Choi, H. W., Jeon, D. H., Beale, S. B., Pharoah, J. G., and Roth, H., 2013,
"Computational Study of Heat and Mass Transfer Issues in Solid Oxide Fuel
Cells," International Journal of Hydrogen Energy, Submitted.
[20] Beale, S. B., Le, A. D., Roth, H. K., Pharaoh, J. G., Choi, H. W., De Haart, L.
G. J., and Froning, D., 2011, "Numerical and Experimental Analysis of a Solid
Oxide Fuel Cell Stack C8 - Ecs Transactions," pp. 935-943.

